235
Views
3
CrossRef citations to date
0
Altmetric
Review

From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax

ORCID Icon, ORCID Icon & ORCID Icon
Pages 195-207 | Received 27 Sep 2019, Accepted 18 Feb 2020, Published online: 28 Feb 2020

References

  • Rappuoli R, Miller HI, Falkow S. Medicine. The intangible value of vaccination. Science. 2002;297(5583):937–939.
  • Finco O, Rappuoli R. Designing vaccines for the twenty-first century society. Front Immunol. 2014;5:12.
  • Willis NJ. Edward Jenner and the eradication of smallpox. Scott Med J. 1997;42(4):118–121.
  • Kaushik DK, Sehgal D. Developing antibacterial vaccines in genomics and proteomics era. Scand J Immunol. 2008;67(6):544–552.
  • Rappuoli R. From Pasteur to genomics: progress and challenges in infectious diseases. Nat Med. 2004;10(11):1177–1185.
  • Tuju J, Kamuyu G, Murungi LM, et al. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology. 2017;152(2):195–206.
  • Malkin E, Hu J, Li Z, et al. A phase 1 trial of PfCP2.9: an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine. 2008;26(52):6864–6873.
  • Sagara I, Ellis RD, Dicko A, et al. A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel + CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine. 2009;27(52):7292–7298.
  • Audran R, Cachat M, Lurati F, et al. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun. 2005;73(12):8017–8026.
  • Arama C, Troye-Blomberg M. The path of malaria vaccine development: challenges and perspectives. J Intern Med. 2014;275(5):456–466.
  • Plebanski M, Locke E, Kazura JW, et al. Malaria vaccines: into a mirror, darkly? Trends Parasitol. 2008;24(12):532–536.
  • Goodman AL, Draper SJ. Blood-stage malaria vaccines - recent progress and future challenges. Ann Trop Med Parasitol. 2010;104(3):189–211.
  • Lyke KE. Steady progress toward a malaria vaccine. Curr Opin Infect Dis. 2017;30(5):463–470.
  • Volkman SK, Hartl DL, Wirth DF, et al. Excess polymorphisms in genes for membrane proteins in Plasmodium falciparum. Science. 2002;298(5591):216–218.
  • Flanagan KL, Wilson KL, Plebanski M. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design. Expert Rev Vaccines. 2016;15(3):389–399.
  • Takala SL, Coulibaly D, Thera MA, et al. Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali. PLoS Med. 2007;4(3):e93.
  • Ouattara A, Barry AE, Dutta S, et al. Designing malaria vaccines to circumvent antigen variability. Vaccine. 2015;33(52):7506–7512.
  • Patarroyo ME, Bermudez A, Patarroyo MA. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev. 2011;111(5):3459–3507.
  • Carlton JM, Adams JH, Silva JC, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455(7214):757–763.
  • Anderson DC, Lapp SA, Barnwell JW, et al. A large scale Plasmodium vivax- Saimiri boliviensis trophozoite-schizont transition proteome. PLoS One. 2017;12(8):e0182561.
  • Bozdech Z, Mok S, Hu G, et al. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci U S A. 2008;105(42):16290–16295.
  • Kanjee U, Rangel GW, Clark MA, et al. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol. 2018;46:109–115.
  • Bermudez M, Arevalo-Pinzon G, Rubio L, et al. Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: analysing rhoptry neck proteins 2 and 4. Cell Microbiol. 2018;20(7):e12835.
  • Arevalo-Pinzon G, Bermudez M, Hernandez D, et al. Plasmodium vivax ligand-receptor interaction: pvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.
  • Reyes-Sandoval A, Bachmann MF. Plasmodium vivax malaria vaccines: why are we where we are? Hum Vaccin Immunother. 2013;9(12):2558–2565.
  • Gunalan K, Lo E, Hostetler JB, et al. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci U S A. 2016;113(22):6271–6276.
  • Gunalan K, Niangaly A, Thera MA, et al. Plasmodium vivax Infections of Duffy-Negative Erythrocytes: historically Undetected or a Recent Adaptation? Trends Parasitol. 2018;34(5):420–429.
  • Wertheimer SP, Barnwell JW. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol. 1989;69(4):340–350.
  • Gruszczyk J, Kanjee U, Chan LJ, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359(6371):48–55.
  • Lim C, Dankwa S, Paul AS, et al. Host cell tropism and adaptation of blood-stage malaria parasites: challenges for Malaria Elimination. Cold Spring Harb Perspect Med. 2017;7(11):a025494.
  • Wright GJ, Rayner JC. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog. 2014;10(3):e1003943.
  • Clyde DF. Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg. 1975;24(3):397–401.
  • Chen JH, Jung JW, Wang Y, et al. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. J Proteome Res. 2010;9(12):6479–6489.
  • Lu F, Li J, Wang B, et al. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics. 2014;102:66–82.
  • Han JH, Li J, Wang B, et al. Identification of immunodominant B-cell epitope regions of reticulocyte binding proteins in Plasmodium vivax by protein microarray based immunoscreening. Korean J Parasitol. 2015;53(4):403–411.
  • Arevalo-Herrera M, Lopez-Perez M, Dotsey E, et al. Antibody profiling in naive and semi-immune individuals experimentally challenged with Plasmodium vivax Sporozoites. PLoS Negl Trop Dis. 2016;10(3):e0004563.
  • Franca CT, Hostetler JB, Sharma S, et al. An antibody screen of a Plasmodium vivax antigen library identifies novel merozoite proteins associated with clinical protection. PLoS Negl Trop Dis. 2016;10(5):e0004639.
  • King CL, Michon P, Shakri AR, et al. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proc Natl Acad Sci U S A. 2008;105(24):8363–8368.
  • Cole-Tobian JL, Michon P, Biasor M, et al. Strain-specific duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous plasmodium vivax strains in Papua New Guinean children. Infect Immun. 2009;77(9):4009–4017.
  • Franca CT, White MT, He WQ, et al. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. Elife. 2017;6.
  • Patarroyo MA, Calderon D, Moreno-Perez DA. Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines. 2012;11(10):1249–1260.
  • Neafsey DE, Galinsky K, Jiang RH, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet. 2012;44(9):1046–1050.
  • Menard D, Chan ER, Benedet C, et al. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl Trop Dis. 2013;7(11):e2489.
  • Gilabert A, Otto TD, Rutledge GG, et al. Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution. PLoS Biol. 2018;16(8):e2006035.
  • Jones P, Binns D, Chang HY, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–1240.
  • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
  • Ansari FA, Kumar N, Bala Subramanyam M, et al. MAAP: malarial adhesins and adhesin-like proteins predictor. Proteins. 2008;70(3):659–666.
  • Bourgard C, Albrecht L, Kayano A, et al. Plasmodium vivax Biology: insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol. 2018;8:34.
  • Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites. Front Microbiol. 2016;7:1617.
  • Fowkes FJ, Richards JS, Simpson JA, et al. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med. 2010;7(1):e1000218.
  • Ouattara A, Takala-Harrison S, Thera MA, et al. Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications. J Infect Dis. 2013;207(3):511–519.
  • Patarroyo ME, Alba MP, Rojas-Luna R, et al. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017;9(2):131–155.
  • Garzon-Ospina D, Forero-Rodriguez J, Patarroyo MA. Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. Infect Genet Evol. 2015;33:182–188.
  • Baquero LA, Moreno-Perez DA, Garzon-Ospina D, et al. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors. 2017;10(1):251.
  • Camargo-Ayala PA, Garzon-Ospina D, Moreno-Perez DA, et al. On the evolution and function of Plasmodium vivax reticulocyte binding surface antigen (pvrbsa). Front Genet. 2018;9:372.
  • Cheng Y, Lu F, Wang B, et al. Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status. Sci Rep. 2016;6:35581.
  • Noulin F, Borlon C, Van Den Abbeele J, et al. 1912–2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol. 2013;29(6):286–294.
  • Yap A, Azevedo MF, Gilson PR, et al. Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642–656.
  • Fidock DA, Wellems TE. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc Natl Acad Sci U S A. 1997;94(20):10931–10936.
  • van Dijk MR, Waters AP, Janse CJ. Stable transfection of malaria parasite blood stages. Science. 1995;268(5215):1358–1362.
  • Webster WA, McFadden GI. From the genome to the phenome: tools to understand the basic biology of Plasmodium falciparum. J Eukaryot Microbiol. 2014;61(6):655–671.
  • de Koning-ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol. 2015;13(6):373–387.
  • Moraes Barros RR, Straimer J, Sa JM, et al. Editing the Plasmodium vivax genome, using zinc-finger nucleases. J Infect Dis. 2015;211(1):125–129.
  • Pfahler JM, Galinski MR, Barnwell JW, et al. Transient transfection of Plasmodium vivax blood stage parasites. Mol Biochem Parasitol. 2006;149(1):99–101.
  • Malleret B, Li A, Zhang R, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood. 2015;125(8):1314–1324.
  • Drew DR, Sanders PR, Weiss G, et al. Functional conservation of the AMA1 host-cell invasion ligand between P. falciparum and P. vivax: a novel platform to accelerate vaccine and drug development. J Infect Dis. 2018;217(3):498–507.
  • Mohring F, Hart MN, Rawlinson TA, et al. Rapid and iterative genome editing in the malaria parasite Plasmodium knowlesi provides new tools for P. vivax research. Elife. 2019;8.
  • Remarque EJ, Faber BW, Kocken CH, et al. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008;24(2):74–84.
  • Escalante AA, Ayala FJ. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci U S A. 1994;91(24):11373–11377.
  • Pacheco MA, Matta NE, Valkiunas G, et al. Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol. 2018;35(2):383–403.
  • Adams JH, Hudson DE, Torii M, et al. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell. 1990;63(1):141–153.
  • Horuk R, Chitnis CE, Darbonne WC, et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science. 1993;261(5125):1182–1184.
  • Miller LH, Mason SJ, Dvorak JA, et al. Erythrocyte receptors for (Plasmodium knowlesi) malaria: duffy blood group determinants. Science. 1975;189(4202):561–563.
  • Bermudez M, Moreno-Perez DA, Arevalo-Pinzon G, et al. Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J. 2018;17(1):301.
  • Malleret B, Renia L, Russell B. The unhealthy attraction of Plasmodium vivax to reticulocytes expressing transferrin receptor 1 (CD71). Int J Parasitol. 2017;47(7):379–383.
  • Barnwell JW, Nichols ME, Rubinstein P. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J Exp Med. 1989;169(5):1795–1802.
  • Russell B, Suwanarusk R, Borlon C, et al. A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood. 2011;118(13):e74–81.
  • Nichols ME, Rubinstein P, Barnwell J, et al. A new human Duffy blood group specificity defined by a murine monoclonal antibody. Immunogenetics and association with susceptibility to Plasmodium vivax. J Exp Med. 1987;166(3):776–785.
  • Grimberg BT, Udomsangpetch R, Xainli J, et al. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Med. 2007;4(12):e337.
  • Cho JS, Russell B, Kosaisavee V, et al. Unambiguous determination of Plasmodium vivax reticulocyte invasion by flow cytometry. Int J Parasitol. 2016;46(1):31–39.
  • Kanjee U, Gruring C, Chaand M, et al. CRISPR/Cas9 knockouts reveal genetic interaction between strain-transcendent erythrocyte determinants of Plasmodium falciparum invasion. Proc Natl Acad Sci U S A. 2017;114(44):E9356–E9365.
  • Wilson MC, Trakarnsanga K, Heesom KJ, et al. Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol Cell Proteomics. 2016;15(6):1938–1946.
  • Scully EJ, Shabani E, Rangel GW, et al. Generation of an immortalized erythroid progenitor cell line from peripheral blood: a model system for the functional analysis of Plasmodium spp. invasion. Am J Hematol. 2019;94:963–974.
  • Ntumngia FB, Pires CV, Barnes SJ, et al. An engineered vaccine of the Plasmodium vivax Duffy binding protein enhances induction of broadly neutralizing antibodies. Sci Rep. 2017;7(1):13779.
  • Han JH, Cho JS, Cheng Y, et al. Plasmodium vivax Merozoite Surface Protein 1 Paralog as a Mediator of Parasite Adherence to Reticulocytes. Infect Immun. 2018;86(9).
  • Urusova D, Carias L, Huang Y, et al. Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nat Microbiol. 2019;4(9):1486–1496.
  • Carias LL, Dechavanne S, Nicolete VC, et al. Identification and characterization of functional human monoclonal antibodies to Plasmodium vivax duffy-binding protein. J Immunol. 2019;202(9):2648–2660.
  • Batchelor JD, Zahm JA, Tolia NH. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat Struct Mol Biol. 2011;18(8):908–914.
  • Chootong P, Ntumngia FB, VanBuskirk KM, et al. Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infect Immun. 2010;78(3):1089–1095.
  • Cole-Tobian J, King CL. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol. 2003;127(2):121–132.
  • Patarroyo ME, Aza-Conde J, Moreno-Vranich A, et al. Far from the madding crowd: the molecular basis for immunological escape of Plasmodium falciparum. Curr Issues Mol Biol. 2017;22:65–78.
  • Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001;1(3):209–219.
  • Espejo F, Cubillos M, Salazar LM, et al. Structure, Immunogenicity, and protectivity relationship for the 1585 malarial peptide and its substitution analogues. Angew Chem. 2001;40(24):4654–4657.
  • Guzman F, Jaramillo K, Salazar LM, et al. 1H-NMR structures of the Plasmodium falciparum 1758 erythrocyte binding peptide analogues and protection against malaria. Life Sci. 2002;71(23):2773–2785.
  • Patarroyo ME, Patarroyo MA, Pabon L, et al. Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine. 2015;33(52):7525–7537.
  • Galinski MR, Medina CC, Ingravallo P, et al. A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell. 1992;69(7):1213–1226.
  • Li J, Han ET. Dissection of the Plasmodium vivax reticulocyte binding-like proteins (PvRBPs). Biochem Biophys Res Commun. 2012;426(1):1–6.
  • Chitnis CE, Miller LH. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med. 1994;180(2):497–506.
  • Tyagi RK, Sharma YD. Erythrocyte binding activity displayed by a selective group of Plasmodium vivax tryptophan rich antigens is inhibited by patients’ antibodies. PLoS One. 2012;7(12):e50754.
  • Zeeshan M, Tyagi RK, Tyagi K, et al. Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors. J Infect Dis. 2015;211(7):1111–1120.
  • Alam MS, Zeeshan M, Mittra P, et al. Receptor specific binding regions of Plasmodium vivax tryptophan rich antigens and parasite growth inhibition activity of PvTRAg35.2. Microbes Infect. 2016;18(9):550–558.
  • Rathore D, Sacci JB, de la Vega P, et al. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J Biol Chem. 2002;277(9):7092–7098.
  • Alam MS, Choudhary V, Zeeshan M, et al. Interaction of Plasmodium vivax tryptophan-rich antigen PvTRAg38 with Band 3 on human erythrocyte surface facilitates parasite growth. J Biol Chem. 2015;290(33):20257–20272.
  • Moreno-Perez DA, Ruiz JA, Patarroyo MA. Reticulocytes: plasmodium vivax target cells. Biol Cell. 2013;105(6):251–260.
  • Chu TTT, Sinha A, Malleret B, et al. Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol. 2018;180(1):118–133.
  • Udomsangpetch R, Somsri S, Panichakul T, et al. Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol Int. 2007;56(1):65–69.
  • Ovchynnikova E, Aglialoro F, Bentlage AEH, et al. DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism. Blood. 2017;130(12):1441–1444.
  • Malleret B, Sahili AE, Howland SW et al. CD98 is a Plasmodium vivax receptor for human reticulocytes. Paper presented at the Proceedings of International Conference on Plasmodium vivax, (2018).
  • Obaldia N 3rd, Rossan RN, Cooper RD, et al. WR 238605, chloroquine, and their combinations as blood schizonticides against a chloroquine-resistant strain of Plasmodium vivax in Aotus monkeys. Am J Trop Med Hyg. 1997;56(5):508–510.
  • Collins WE, Kaslow DC, Sullivan JS, et al. Testing the efficacy of a recombinant merozoite surface protein (MSP-1(19)) of Plasmodium vivax in Saimiri boliviensis monkeys. Am J Trop Med Hyg. 1999;60(3):350–356.
  • Arevalo-Herrera M, Castellanos A, Yazdani SS, et al. Immunogenicity and protective efficacy of recombinant vaccine based on the receptor-binding domain of the Plasmodium vivax Duffy binding protein in Aotus monkeys. Am J Trop Med Hyg. 2005;73(5 Suppl):25–31.
  • Castellanos A, Arevalo-Herrera M, Restrepo N, et al. Plasmodium vivax thrombospondin related adhesion protein: immunogenicity and protective efficacy in rodents and Aotus monkeys. Mem Inst Oswaldo Cruz. 2007;102(3):411–416.
  • Collins WE. Nonhuman primate models. II. Infection of Saimiri and Aotus monkeys with Plasmodium vivax. Methods Mol Med. 2002;72:85–92.
  • Williams AM, Barefield SJ, Carter ER, et al. Adaptation of Plasmodium vivax to growth in owl monkeys (Aotus nancymai). Comp Med. 2005;55(6):528–532.
  • Sullivan JS, Strobert E, Yang C, et al. Adaptation of a strain of Plasmodium vivax from India to New World monkeys, chimpanzees, and anopheline mosquitoes. J Parasitol. 2001;87(6):1398–1403.
  • Stewart VA. Plasmodium vivax under the microscope: the Aotus model. Trends Parasitol. 2003;19(12):589–594.
  • Chan ER, Barnwell JW, Zimmerman PA, et al. Comparative analysis of field-isolate and monkey-adapted Plasmodium vivax genomes. PLoS Negl Trop Dis. 2015;9(3):e0003566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.