260
Views
9
CrossRef citations to date
0
Altmetric
Review

Modeling tick vaccines: a key tool to improve protection efficacy

ORCID Icon, &
Pages 217-225 | Received 19 Aug 2019, Accepted 18 Mar 2020, Published online: 24 Mar 2020

References

  • Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:S3–S14.
  • de la Fuente J, Estrada-Peña A, Venzal JM, et al. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;13:6938–6946.
  • Paules CI, Marston HD, Bloom ME, et al. Tick-borne diseases - confronting a growing threat. N Engl J Med. 2018;379:701–703.
  • Cabezas-Cruz A, Hodžić A, Román-Carrasco P, et al. Environmental and molecular drivers of the α-Gal syndrome. Front Immunol. 2019;10:1210.
  • de la Fuente J, Contreras M, Estrada-Peña A, et al. Targeting a global health problem: vaccine design and challenges for the control of tick-borne diseases. Vaccine. 2017;35:5089–5094.
  • de la Fuente J. Controlling ticks and tick-borne diseases … looking forward. Ticks Tick Borne Dis. 2018;9:1354–1357.
  • de la Fuente J, Estrada-Peña A. Why new vaccines for the control of ectoparasite vectors have not been registered and commercialized? Vaccines (Basel). 2019;7:75.
  • Almazán C, Tipacamu GA, Rodriguez S, et al. Immunological control of ticks and tick-borne diseases that impact cattle health and production. Front Biosci (Landmark Ed). 2018;23:1535–1551.
  • Stutzer C, Richards SA, Ferreira M, et al. Metazoan parasite vaccines: present status and future prospects. Front Cell Infect Microbiol. 2018;8:67.
  • de la Fuente J, Almazán C, Canales M, et al. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev. 2007;8:23–28.
  • de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines. 2015;14:1367–1376.
  • de la Fuente J, Merino O. Vaccinomics, the new road to tick vaccines. Vaccine. 2013;31:5923–5929.
  • de la Fuente J, Kopáček P, Lew-Tabor A, et al. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol. 2016;38:754–769.
  • Contreras M, Alberdi P, Fernández de Mera IG, et al. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front Cell Infect Microbiol. 2017;7:360.
  • de la Fuente J, Villar M, Estrada-Peña A, et al. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent big data analytic techniques. Expert Rev Vaccines. 2018;17:569–576.
  • Rashid M, Rashid MI, Akbar H, et al. A systematic review on modeling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology. 2019;146:129–141.
  • Ginsberg HS, Couret J. Nonlinearities in transmission dynamics and efficient management of vector-borne pathogens. Ecol Appl. 2019;29:e01892.
  • Wang HH, Teel PD, Grant WE, et al. Simulation tools for assessment of tick suppression treatments of Rhipicephalus (Boophilus) microplus on non-lactating dairy cattle in puerto rico. Parasit Vectors. 2019;12:185.
  • Estrada-Peña A, Ruiz-Fons F, Acevedo P, et al. Factors driving the circulation and possible expansion of Crimean-Congo hemorrhagic fever virus in the western palearctic. J Appl Microbiol. 2013;114:278–286.
  • Bente DA, Forrester NL, Watts DM, et al. Crimean-congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–189.
  • Wahid B, Altaf S, Naeem N, et al. Scoping review of Crimean-Congo hemorrhagic fever (CCHF) literature and implications of future research. J Coll Physicians Surg Pak. 2019;29:563–573.
  • Willadsen P, Riding GA, McKenna RV, et al. Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J Immunol. 1989;143:1346–1351.
  • de la Fuente J, Rodríguez M, Redondo M, et al. Field studies and cost-effectiveness analysis of vaccination with GavacTM against the cattle tick Boophilus microplus. Vaccine. 1998;16:366–373.
  • Tellam RL, Dmith D, Kemp DH, et al. Vaccination against ticks. In: Yong WK, editor. Animal parasite control utilizing biotechnology. Boca Raton: CRC Press; 1992. p. 303–331.
  • Contreras M, Kasaija PD, Merino O, et al. Oral vaccination with a formulation combining Rhipicephalus microplus Subolesin with heat inactivated Mycobacterium bovis reduces tick infestations in cattle. Front Cell Infect Microbiol. 2019;9:45.
  • Tabor AE, Ali A, Rehman G, et al. Cattle Tick Rhipicephalus microplus-host interface: a review of resistant and susceptible host responses. Front Cell Infect Microbiol. 2017;7:506.
  • Aguirre Ade A, Garcia MV, Szabó MP, et al. Formula to evaluate efficacy of vaccines and systemic substances against three-host ticks. Int J Parasitol. 2015;45:357–359.
  • Moreno-Cid JA, Pérez de la Lastra JM, Villar M, et al. Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine. 2013;31:1187–1196.
  • Artigas-Jerónimo S, Pastor Comín JJ, Villar M, et al. A novel combined scientific and artistic approach for advanced characterization of interactomes: the Akiri/Subolesin model. Vaccines (Basel). 2020;8:77.
  • Schetters T, Bishop R, Crampton M, et al. Cattle tick vaccine researchers join forces in CATVAC. Parasit Vectors. 2016;9:105.
  • Floyd RB, Sutherst RW, Hungerford J. Modelling the field efficacy of a genetically engineered vaccine against the cattle tick, Boophilus microplus. Int J Parasitol. 1995;25:285–291.
  • Lodos J, Ochagavia ME, Rodriguez M, et al. A simulation study of the effects of acaricides and vaccination on Boophilus cattle–tick populations. Prev Vet Med. 1999;38:47–63.
  • Miller R, Estrada-Peña A, Almazán C, et al. Exploring the use of an anti-tick vaccine as a tool for the integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus. Vaccine. 2012;30:5682–5687.
  • De la Vega R, Díaz G Aplicacion de las constantes térmicas en el control de la garrapata del ganado vacuno (Boophilus microplus). I. Calculo de las constantes térmicas. Centro Nacional de Sanidad Agropecuaria, La Habana, Cuba, 1985.
  • Uusitalo L. Advantages and challenges of Bayesian networks in environmental modelling. Ecol Model. 2007;203:312–318.
  • Teel PD, Marin SL, Grant WE, et al. Simulation of host-parasite-landscape interactions: influence of season and habitat on cattle fever tick (Boophilus sp.) population dynamics in rotational grazing systems. Ecol Mod. 1997;97:87–97.
  • Teel PD, Marin SL, Grant WE. Simulation of host-parasite-landscape interactions: influence of season and habitat on cattle fever tick (Boophilus sp.) population dynamics. Ecol Mod. 1996;84: 19–30.
  • Corson MS, Teel PD, Grant WE. Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics. Ecol Mod. 2004;180:487–514.
  • Wang HH, Corson MS, Grant WE, et al. Quantitative models of Rhipicephalus (Boophilus) ticks: historical review and synthesis. Ecosphere. 2017;8:e01942.
  • Estrada-Peña A, Carreón D, Almazán C, et al. Modeling the impact of climate and landscape on the efficacy of white tailed deer vaccination for cattle tick control in northeastern Mexico. PloS One. 2014;9:e102905.
  • Carreón D, de la Lastra JMP, Almazán C, et al. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine. 2012;30:273–279.
  • Wang HH, Teel PD, Grant WE, et al. Simulated interactions of white-tailed deer (Odocoileus virginianus), climate variation and habitat heterogeneity on southern cattle tick (Rhipicephalus (Boophilus) microplus) eradication methods in south Texas, USA. Ecol Model. 2016;342:82–96.
  • Carrera-Pineyro D, Hanes H, Litzler A, et al. Cost analysis of vaccination in tick-mouse transmission of Lyme disease. J Theor Biol. 2020;10:110245.
  • Costantini M, Callegaro A, Beran J, et al. Predicted long-term antibody persistence for a tick-borne encephalitis vaccine: results from a modeling study beyond 10 years after a booster dose following different primary vaccination schedules. Hum Vaccin Immunother. 2020;17:1–6.
  • Gargili A, Estrada-Peña A, Spengler JR, et al. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res. 2017;144:93–119.
  • Estrada-Peña A, Jameson L, Medlock J, et al. Unraveling the ecological complexities of tick-associated Crimean-Congo hemorrhagic fever virus transmission: a gap analysis for the western Palearctic. Vector Borne Zoonotic Dis. 2012;12:743–752.
  • Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine. 2017;35:6015–6023. .
  • Capek M, Literak I, Kocianova E, et al. Ticks of the Hyalomma marginatum complex transported by migratory birds into Central Europe. Ticks Tick Borne Dis. 2014;5:489–493.
  • Hartemink NA, Purse BV, Meiswinkel R, et al. Mapping the basic reproduction number (R0) for vector-borne diseases: a case study on bluetongue virus. Epidemics. 2009;1:153–161.
  • Villar M, Marina A, de la Fuente J. Applying proteomics to tick vaccine development: where are we? Expert Rev Proteomics. 2017;14:211–221.
  • Artigas-Jerónimo S, de la Fuente J, Villar M. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. Expert Rev Proteomics. 2018;15:627–635.
  • Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, et al. Functional evolution of Subolesin/Akirin. Front Physiol. 2018;9:1612.
  • Manjunathachar HV, Kumar B, Saravanan BC, et al. Identification and characterization of vaccine candidates against Hyalomma anatolicum-vector of Crimean Congo hemorrhagic fever virus. Transbound Emerg Dis. 2019;66:422–434.
  • Torina A, Moreno-Cid JA, Blanda V, et al. Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant subolesin-major surface protein 1a chimeric antigen. Parasit Vectors. 2014;7:10.
  • Estrada-Peña A, Szabó M, Labruna M, et al. Towards an effective, rational and sustainable approach for the control of cattle ticks in the Neotropics. Vaccines (Basel). 2020;8:9.
  • Estrada-Peña A. de la Fuente J. Species interactions in occurrence data for a community of tick-transmitted pathogens. Sci Data. 2016;3:160056.
  • Artigas-Jerónimo S, Estrada-Peña A, Cabezas-Cruz A, et al. Modeling modulation of the tick regulome in response to Anaplasma phagocytophilum for the identification of new control targets. Front Physiol. 2019;10:462.
  • Gulia-Nuss M, Nuss AB, Meyer JM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:10507.
  • Murgia MV, Bell-Sakyi L, de la Fuente J, et al. Meeting the challenge of tick-borne disease control: A proposal for 1000 Ixodes genomes. Ticks Tick Borne Dis. 2019;10:213–218.
  • de la Fuente J, Waterhouse RM, Sonenshine DE, et al. Tick genome assembled: new opportunities for research on tick-host-pathogen interactions. Front Cell Infect Microbiol. 2016;6:103.
  • Shaw DK, Wang X, Brown LJ, et al. Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nat Commun. 2017;8:14401.
  • de la Fuente J, Antunes S, Bonnet S, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114.
  • Bonnet SI, Nijhof AM, de la Fuente J, Eds. Tick-host-pathogen interactions. Lausanne: Frontiers Media; 2018. ISBN 978-2-88945-542-3. doi: 10.3389/978-2-88945-542-3. https://www.frontiersin.org/research-topics/4991/tick-host-pathogen-interactions
  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–355.
  • Beare PA, Sandoz KM, Omsland A, et al. Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front Microbiol. 2011;2:97.
  • Kurtti TJ, Burkhardt NY, Heu CC, et al. Fluorescent protein expressing Rickettsia buchneri and Rickettsia peacockii for tracking symbiont-tick cell interactions. Vet Sci. 2016;3:E34.
  • McClure EE, Chávez ASO, Shaw DK, et al. Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nat Rev Microbiol. 2017;15:544–558.
  • Díaz-Sánchez S, Estrada-Peña A, Cabezas-Cruz A, et al. Evolutionary insights into the tick hologenome. Trends Parasitol. 2019; S1471-4922(19)30165-5. doi:10.1016/j.pt.2019.06.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.