894
Views
21
CrossRef citations to date
0
Altmetric
Review

The development of ghost vaccines trials

& ORCID Icon
Pages 549-562 | Received 12 Feb 2020, Accepted 01 Jun 2020, Published online: 15 Jun 2020

References

  • Szostak MP, Hensel A, Eko FO, et al. Bacterial ghosts: non-living candidate vaccines. J Biotechnol. 1996;44(1–3):161–170. DOI:10.1016/0168-1656(95)00123-9.
  • Ahmad TA. The development of immunization trials. Edorium J Biotechnol. 2015;1:1–6.
  • Rathore SS, Rakesh K, Mamun MAA, et al. Bacterial ghost: a novel vaccine delivery system in aquaculture. Bull Environ Pharmacol Life Sci. 2019;8(3):133–135.
  • Mayr UB, Walcher P, Azimpour C, et al. Bacterial ghosts as antigen delivery vehicles. Adv Drug Deliv Rev. 2005;57(9):1381–1391. DOI:10.1016/j.addr.2005.01.027.
  • Childs LM, Baskerville EB, Cobey S. Trade-offs in antibody repertoires to complex antigens. Philos Trans R Soc Lond B Biol Sci. 2015;370(1676):20140245.
  • Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. Trials Vaccinol. 2016;5:71–83.
  • Ahmad TA, Eweida AE, El-Sayed LH. T-cell epitope mapping for the design of powerful vaccines. Vaccine Rep. 2016;6:13–22.
  • Walcher P, Mayr UB, Azimpour-Tabrizi C, et al. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors. Expert Rev Vaccines. 2004:6:681–691
  • Krasko JA, Zilionyte K, Darinskas A, et al. Bacterial ghosts as adjuvants in syngeneic tumour cell lysate-based anticancer vaccination in a murine lung carcinoma model. Oncol Rep. 2017;37(1):171–178. DOI:10.3892/or.2016.5252.
  • Michalek J, Hezova R, Turanek-Knotigova P, et al., Oncolysate-loaded Escherichia coli bacterial ghosts enhance the stimulatory capacity of human dendritic cells. Cancer Immunol Immunother. 66(2): 149–159. 2017. .
  • Riedmann EM, Kyd JM, Cripps AW, et al. Bacterial ghosts as adjuvant particles. Expert Rev Vaccines. 2007;6(2):241–253. DOI:10.1586/14760584.6.2.241.
  • Hajam IA, Dar PA, Won G, et al. Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res. 2017;48(1):37. DOI:10.1186/s13567-017-0442-5.
  • Paton AW, Chen AY, Wang H, et al., Protection against shiga-toxigenic Escherichia coli by non-genetically modified organism receptor mimic bacterial ghosts. Infect Immun. 83(9): 3526–3533. 2015.
  • Huter V, Szostak MP, Gampfer J, et al. Bacterial ghosts as drug carrier and targeting vehicles. J Control Release. 1999;61(1–2):51–63. DOI:10.1016/S0168-3659(99)00099-1.
  • Ganeshpurkar A, Ganeshpurkar A, Pandey V, et al. Harnessing the potential of bacterial ghost for the effective delivery of drugs and biotherapeutics. Int J Pharm Investig. 2014;1:1.
  • Koller VJ, Dirsch VM, Beres H, et al. Modulation of bacterial ghosts–induced nitric oxide production in macrophages by bacterial ghost-delivered resveratrol. Febs J. 2013;280(5):1214–1225. DOI:10.1111/febs.12112.
  • Hatfaludi T, Liska M, Zellinger D, et al. Bacterial Ghost Technology for Pesticide Delivery. J Agric Food Chem. 2004;52(18):5627–5634. DOI:10.1021/jf049489w.
  • Kassmannhuber J, Rauscher M, Schoner L, et al. Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts. Bioengineered. 2017;8(5):488–500. DOI:10.1080/21655979.2017.1284712.
  • Silva AJ, Benitez JA, Wu JH. Attenuation of bacterial virulence by quorum sensing-regulated lysis. J Biotechnol. 2010;150(1):22–30.
  • Lim J, Koh VHQ, Cho SSL, et al. Harnessing the immunomodulatory properties of bacterial ghosts to boost the anti-mycobacterial protective immunity. Front Immunol. 2019;10:2737.
  • Cai K, Gao X, Li T, et al. Intragastric immunization of mice with enterohemorrhagic Escherichia coli O157: H7bacterial ghosts reduces mortality and shedding and induces a Th2-type dominated mixed immune response. Can J Microbiol. 2010;56(5):389–398. DOI:10.1139/W10-025.
  • Eko FO, Mania-Pramanik J, Pais R, et al. Vibrio cholerae ghosts (VCG) exert immunomodulatory effect on dendritic cells for enhanced antigen presentation and induction of protective immunity. BMC Immunol. 2014;15:584.
  • Won G, Eo SK, Park S-Y, et al. A Salmonella Typhi ghost induced by the E gene of phage φX174 stimulates dendritic cells and efficiently activates the adaptive immune response. J Vet Sci. 2018;19(4):536–542. DOI:10.4142/jvs.2018.19.4.536.
  • Haslberger AG, Kohl G, Felnerova D, et al., Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J Biotechnol. 83(1–2): 57–66. 2000. .
  • Kudela P, Paukner S, Mayr UB, et al. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J Immunother. 2005;28(2):136–143. DOI:10.1097/01.cji.0000154246.89630.6f.
  • Eko FO, Hensel A, Bunka S, et al. Immunogenicity of Vibrio cholerae ghosts following intraperitoneal immunization of mice. Vaccine. 1994;12(14):1330–1334. DOI:10.1016/S0264-410X(94)80061-4.
  • Ebensen T, Paukner S, Link C, et al. Bacterial ghosts are an efficient delivery system for DNA vaccines. J Immunol. 2004;172(11):6858–6865. DOI:10.4049/jimmunol.172.11.6858.
  • Igietseme JU, Eko FO, He Q, et al. Antibody regulation of Tcell immunity: implications for vaccine strategies against intracellular pathogens. Expert Rev Vaccines. 2004;3(1):23–34. DOI:10.1586/14760584.3.1.23.
  • Mayr UB, Haller C, Haidinger W, et al. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157: H7 bacterial ghosts protects mice against lethal challenge. Infect Immun. 2005;73(8):4810–4817. DOI:10.1128/IAI.73.8.4810-4817.2005.
  • Jawale CV, Lee JH. A novel approach for the generation of Salmonella Gallinarum ghosts and evaluation of their vaccine potential using a prime-booster immunization strategy. Vaccine. 2014;32(50):6776–6782.
  • Mader HJ, Szostak MP, Hensel A, et al., Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine. 15(2): 195–202. 1997. .
  • Huter V, Hensel A, Brand E, et al. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts: characterization of a genetically inactivated vaccine. J Biotechnol. 2000;83(1–2):161–172. DOI:10.1016/S0168-1656(00)00310-2.
  • Ahmad TA, Haroun M, Hussein AA, et al. Development of a new trend conjugate vaccine for the prevention of Klebsiella pneumoniae. Infect Dis Rep. 2012;4(2):e33–e33. DOI:10.4081/idr.2012.e33.
  • Amara AA, Neama AJ, Hussein A, et al. Evaluation the surface antigen of the Salmonella typhimurium ATCC 14028 ghosts prepared by “SLRP”. Sci World J. 2014;2014.
  • Haq IU, Chaudhry WN, Akhtar MN, et al. Bacteriophages and their implications on future biotechnology: a review. Virol J. 2012;9:9.
  • Young I, Wang I, Roof WD. Phages will out: strategies of host cell lysis. Trends Microbiol. 2000;8(3):120–128.
  • Young R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev. 1992;56(3):430–481.
  • Schroll G, Resch S, Gruber K, et al. Heterologous phi X174 gene E-expression in Ralstonia eutropha: E-mediated lysis is not restricted to gamma-subclass of proteobacteria. J Biotechnol. 1998;66(2–3):211–217. DOI:10.1016/S0168-1656(98)00128-X.
  • Witte A, Brand E, Mayrhofer P, et al. Mutations in cell division proteins FtsZ and FtsA inhibit φX174 protein-E-mediated lysis of Escherichia coli. Arch Microbiol. 1998;170(4):259–268. DOI:10.1007/s002030050641.
  • Witte A, Wanner G, Sulzner M, et al. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol. 1992;157(4):381–388. DOI:10.1007/BF00248685.
  • Mu W, Guan LY, Wang QY, et al. Establishment of Edwardsiella tarda ghosts system. J Microbiol. 2011;3.
  • Nakayama K, Kelly SM, Curtiss R. Construction of an ASD+ expression-cloning vector: Stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technol. 1988;6(6):693–697.
  • Tolmachov O. Designing plasmid vectors. Methods Mol Biol. 2009;542:117–129.
  • Jechlinger W, Szostak MP, Witte A, et al. Altered temperature induction sensitivity of the lambda pR/cI857 system for controlled gene E expression in Escherichia coli. FEMS Microbiol Lett. 1999;173(2):347–352. DOI:10.1111/j.1574-6968.1999.tb13524.x.
  • Fu L, Lu C. A novel dual vector coexpressing PhiX174 lysis E gene and staphylococcal nuclease A gene on the basis of lambda promoter pR and pL, respectively. Mol Biotechnol. 2013;54(2):436–444.
  • Jawale CV, Chaudhari AA, Jeon BW, et al. Characterization of a novel inactivated Salmonella enterica serovar Enteritidis vaccine candidate generated using a modified cI857/λ PR/gene E expression system. Infect Immun. 2012;80(4):1502–1509. DOI:10.1128/IAI.06264-11.
  • Jawale CV, Pawar PS, Eo SK, et al. Utilization of a modified phage E protein lysis system accounts for increased biomass in Salmonella Gallinarum ghosts. Avian Dis. 2015;59(2):269–276. DOI:10.1637/10977-111114-RegR.
  • Kloos DU, Strätz M, Güttler A, et al. Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death. J Bacteriol. 1994;176(23):7352–7361. DOI:10.1128/JB.176.23.7352-7361.1994.
  • Langemann T, Koller VJ, Muhammad A, et al. The bacterial ghost platform system: production and applications. Bioeng Bugs. 2010;1(5):326–336. DOI:10.4161/bbug.1.5.12540.
  • Blasi U, Henrich B, Lubitz W. Lysis of Escherichia coli by cloned phi X174 gene E depends on its expression. J Gen Microbiol. 1985;131(5):1107–1114.
  • Jechlinger W, Szostak MP, Lubitz W. Cold-sensitive E-lysis systems. Gene. 1998;218(1):1–7.
  • Hu M, Chang Y, Zhang Y, et al. Preparation of Haemophilus parasuis ghosts. Zhongguo Yufang Shouyi Xuebao/Chin J Prevent Vet Med. 2011;33(1):11–14.
  • Panthel K, Jechlinger W, Matis A, et al. Generation of Helicobacter pylori ghosts by PhiX protein E-mediated inactivation and their evaluation as vaccine candidates. Infect Immun. 2003;71(1):109–116. DOI:10.1128/IAI.71.1.109-116.2003.
  • Eko FO, Witte A, Huter V, et al. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine. 1999;17(13-14:1643–1649.
  • Silva AJ, Eko FO, Benitez JA. Exploiting cholera vaccines as a versatile antigen delivery platform. Biotechnol Lett. 2008;30(4):571–579.
  • Henrich B, Lubitz W, Plapp R. Lysis of Escherichia coli by induction of cloned phi X174 genes. Mol Gen Genet. 1982;185(3):493–497.
  • Witte A, Lubitz W. Biochemical characterization of phi X174-protein-E-mediated lysis of Escherichia coli. Eur J Biochem. 1989;180(2):393–398.
  • Ronchel MC, Molina L, Witte A, et al. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. J Appl Environ Microbiol. 1998;64(12):4904–4911. DOI:10.1128/AEM.64.12.4904-4911.1998.
  • Jawale CV, Kim SW, Lee JH. Tightly regulated bacteriolysis for production of empty Salmonella Enteritidis envelope. Vet Microbiol. 2014;169(3–4):179–187.
  • Ehgartner D, Sagmeister P, Langemann T, et al. A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E. Appl Microbiol Biotechnol. 2017;101(14):5603–5614.
  • Won G, Chaudhari AA, Lee JH. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate. Clin Exp Vaccine Res. 2016;5(2):148–158.
  • Fürst-Ladani S, Redl H, Haslberger A, et al. Bacterial cell envelopes (ghosts) but not S-layers activate human endothelial cells (HUVECs) through sCD14 and LBP mechanism. Vaccine. 1999;18(5–6):440–448. DOI:10.1016/S0264-410X(99)00241-8.
  • Haidinger W, Szostak M, Jechlinger W, et al. Online monitoring of Escherichia coli ghost production. Appl Environ Microbiol. 2003;69(1):468–474. DOI:10.1128/AEM.69.1.468-474.2003.
  • Haidinger W, Szostak MP, Beisker W, et al. Green fluorescent protein (GFP)-dependent separation of bacterial ghosts from Intact cells by FACS. Cytometry. 2001;44:106–112.
  • Meitz A, Sagmeister P, Lubitz W, et al. Fed-batch production of bacterial ghosts using dielectric spectroscopy for dynamic process control. Microorganisms. 2016;4(2):18. DOI:10.3390/microorganisms4020018.
  • Yu S-Y, Peng W, Si W, et al., Enhancement of bacteriolysis of Shuffled phage PhiX174 gene E. Virol J. 8(1): 206. 2011. .
  • Won G, Kim B, Lee JH. A novel method to generate Salmonella Typhi Ty21a ghosts exploiting the lambda phage holin-endolysin system. Oncotarget. 2017;8(29):48186–48195. DOI:10.18632/oncotarget.18383.
  • Kwon SR, Kang YJ, Lee DJ, et al. Generation of Vibrio anguillarum ghost by coexpression of PhiX 174 lysis E gene and staphylococcal nuclease A gene. Mol Biotechnol. 2009;42(2):154–159. DOI:10.1007/s12033-009-9147-y.
  • Zhu W, Zhang Y, Liu X. Efficient production of safety-enhanced Escherichia coli ghosts by tandem expression of PhiX 174 mutant gene E and staphylococcal nuclease A gene. Microbiol Res. 2015;176:7–13.
  • Tian Q-F, ZHOU W, SI W, et al. Construction of Salmonella Pullorum ghost by co-expression of lysis gene E and the antimicrobial peptide SMAP29 and evaluation of its immune efficacy in specific-pathogen-free chicks. J Integrat Agri. 2018;17(1):197–209. DOI:10.1016/S2095-3119(17)61696-4.
  • Zhang C, Zhao Z, Li J, et al. Bacterial ghost as delivery vehicles loaded with DNA vaccine induce significant and specific immune responses in common carp against spring viremia of carp virus. Aquaculture. 2019;504:361–368.
  • Lv M, Qin Z, Yu J, et al. Immunogenicity of bacterial ghosts from Escherichia coli O78 isolated from ducklings. Zhongguo Yufang Shouyi Xuebao/Chin J Prev Vet Med. 2010;32(9):712–715.
  • Ran X, Meng X-Z, Geng H-L, et al. Generation of porcine Pasteurella multocida ghost vaccine and examination of its immunogenicity against virulent challenge in mice. Microb Pathog. 2019;32:208–214.
  • Witte A, Bläsi U, Halfmann G, et al. PhiX174 protein E-mediated lysis of Escherichia coli. Biochimie. 1990;72(2–3):191–200. DOI:10.1016/0300-9084(90)90145-7.
  • Harkness RE, Lubitz W. Construction and properties of a chimeric bacteriophage lysis gene. FEMS Microbiol Lett. 1987;48(1–2):19–24.
  • Mayrhofer P, Tabrizi CA, Walcher P, et al. Immobilization of plasmid DNA in bacterial ghosts. J Control Release. 2005;102(3):725–735. DOI:10.1016/j.jconrel.2004.10.026.
  • Mayr UB, Kudela P, Atrasheuskaya A, et al. Rectal single dose immunization of mice with Escherichia coli O157: H7bacterial ghosts induces efficient humoral and cellular immune responses and protects against the lethal heterologous challenge. Microb Biotechnol. 2012;5(2):283–294. DOI:10.1111/j.1751-7915.2011.00316.x.
  • Ran X, Chen X, Wang S, et al. Preparation of porcine enterotoxigenic Escherichia coli (ETEC) ghosts and immunogenic analysis in a mouse model. Microb Pathog. 2019;126:224–230.
  • Vilte D, Larzábal M, Mayr U, et al. A systemic vaccine based on Escherichia coli O157: H7 bacterial ghosts (BGs) reduces the excretion of E. coli O157: H7 in calves. Vet Immunol Immunopathol. 2012;146(2):169–176. DOI:10.1016/j.vetimm.2012.03.002.
  • Ebrahimi-Nik H, Bassami MR, Mohri M, et al. Bacterial ghost of avian pathogenic E. coli (APEC) serotype O78: K80 as a homologous vaccine against avian colibacillosis. PLoS One. 2018;13(3):e0194888.
  • Shahidi RH, Tabar GH, Bassami MR, et al. The design and application of a bacterial ghost vaccine to evaluate immune response and defense against avian pathogenic Escherichia coli O2: K1 serotype. Res Vet Sci. 2019;125:153–161.
  • Shahidi RH, Tabar GH, Bassami MR, et al. The use and evaluation of Bacterial Ghost technique to produce vaccine against Avian Pathogenic E.coli (APEC), O2K1 serotype. 7th International Poultry Veterinary Congress; 2020 February 4- 5;Tehran, Iran.
  • Tabar GH, Bassami MR, Dehghani H, et al. Assessment of cellular immune response of a candidate vaccine against Avian Pathogenic E.coli (APEC), O2K1 serotype produced by Bacterial Ghost technique. 7th International Poultry Veterinary Congress; 2020 February 4- 5; Tehran, Iran.
  • Walcher P, Cui X, Arrow JA, et al. Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula). Vaccine. 2008;26(52):6832–6838. DOI:10.1016/j.vaccine.2008.09.088.
  • Cui X, Duckworth JA, Lubitz P, et al. Humoral immune responses in brushtail possums (Trichosurus vulpecula) induced by bacterial ghosts expressing possum zona pellucida 3 protein. Vaccine. 2010;28(26):4268–4274. DOI:10.1016/j.vaccine.2010.04.032.
  • Park SJ, Lee S-J, Kim K-H, et al. High cell density fed-batch fermentation for the production of recombinant E. coli K-12 ghost vaccine against streptococcal disease. Biotechnol Bioprocess Eng. 2011;16(4):733.
  • Ra C-H, Kim Y-J, Park S-J, et al. Evaluation of optimal culture conditions for recombinant ghost bacteria vaccine production with the antigen of Streptococcus iniae GAPDH. J Microbiol Biotechnol Bioprocess Eng. 2009;19(9):982–986. DOI:10.4014/jmb.0901.007.
  • Ra C-H, Park S-J, Kim K-H, et al. Production of recombinant ghost bacterial vaccine against streptococcal disease of olive flounder. Process Biochem. 2010;45(3):317–322. DOI:10.1016/j.procbio.2009.10.003.
  • Jechlinger W, Haller C, Resch S, et al. Comparative immunogenicity of the hepatitis B virus core 149 antigen displayed on the inner and outer membrane of bacterial ghosts. Vaccine. 2005;23(27):3609–3617. DOI:10.1016/j.vaccine.2004.11.078.
  • Miri MR, Behzad-Behbahani A, Fardaei M, et al. Construction of bacterial ghosts for transfer and expression of a chimeric hepatitis C virus gene in macrophages. J Microbiol Methods. 2015;119:228–232.
  • Riedmann EM, Kyd JM, Smith AM, et al. Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts–a delivery system for the nontypeable Haemophilus influenzae antigen Omp26. FEMS Immunol Med Microbiol. 2003;37(2–3):185–192. DOI:10.1016/S0928-8244(03)00070-1.
  • Riedmann EM, Lubitz W, McGrath J, et al. Effectiveness of engineering the nontypeable Haemophilus influenzae antigen Omp26 as an S-layer fusion in bacterial ghosts as a mucosal vaccine delivery. Hum Vaccin. 2011;7 Suppl:99–107.
  • Tuntufye HN, Ons E, Pham AD, et al. Escherichia coli ghosts or live E. coli expressing the ferri-siderophore receptors FepA, FhuE, IroN and IutA do not protect broiler chickens against avian pathogenic E. coli (APEC). Vet Microbiol. 2012;159(3–4):470–478.
  • Cai K, Tu W, Liu Y, et al. Novel fusion antigen displayed-bacterial ghosts vaccine candidate against infection of Escherichia coli O157: H7. Sci Rep. 2015;5:17479.
  • Gong S, Nan N, Sun Y, et al. Protective immunity elicited by VP1 chimeric antigens of bacterial ghosts against hand-foot-and-mouth disease virus. Vaccines (Basel). 2020;8(1):61. DOI:10.3390/vaccines8010061.
  • Stein E, Inic-Kanada A, Belij S, et al. In vitro and in vivo uptake study of Escherichia coli Nissle 1917 bacterial ghosts: cell-based delivery system to target ocular surface diseases. Investig Ophthalmol Vis Sci. 2013;54(9):6326–6333. DOI:10.1167/iovs.13-12044.
  • Inic-Kanada A, Stojanovic M, Schlacher S, et al. Delivery of a chlamydial adhesin N-PmpC subunit vaccine to the ocular mucosa using particulate carriers. PLoS One. 2015;10(12):e0144380. DOI:10.1371/journal.pone.0144380.
  • Montanaro J, Inic-Kanada A, Ladurner A, et al. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. Drug Des Devel Ther. 2015;9:3741–3754.
  • Lagzian M, Bassami MR, Dehghani H. In vitro responses of chicken macrophage-like monocytes following exposure to pathogenic and non-pathogenic E. coli ghosts loaded with a rational design of conserved genetic materials of influenza and Newcastle disease viruses. Vet Immunol Immunopathol. 2016;176:5–17.
  • Cao J, Zhu X-C, Liu X-Y, et al. An oral double-targeted DNA vaccine induces systemic and intestinal mucosal immune responses and confers high protection against Vibrio mimicus in grass carps. Aquaculture. 2019;504:248–259.
  • Dobrovolskienė N, Pašukonienė V, Darinskas A, et al. Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines. Vaccine. 2018;36(29):4171–4180. DOI:10.1016/j.vaccine.2018.06.016.
  • Hajam IA, Dar PA, Appavoo E, et al. Bacterial ghosts of Escherichia coli drive efficient maturation of bovine monocyte-derived dendritic cells. PloS One. 2015;10(12):e0144397. DOI:10.1371/journal.pone.0144397.
  • Peng W, Si W, Yin L, et al. Salmonella enteritidis ghost vaccine induces effective protection against lethal challenge in specific-pathogen-free chicks. Immunobiology. 2011;216(5):558–565. DOI:10.1016/j.imbio.2010.10.001.
  • Si W, Yu S, Chen L, et al. Passive protection against Salmonella enterica serovar Enteritidis infection from maternally derived antibodies of hens vaccinated with a ghost vaccine. Res Vet Sci. 2014;97(2):191–193. DOI:10.1016/j.rvsc.2014.08.001.
  • Jawale CV, Lee JH. Development of a biosafety enhanced and immunogenic Salmonella Enteritidis ghost using an antibiotic resistance gene free plasmid carrying a bacteriophage lysis system. PLoS One. 2013;8(10):e78193.
  • Jawale CV, Lee JH. Characterization of adaptive immune responses induced by a new genetically inactivated Salmonella Enteritidis vaccine. Comp Immunol Microbiol Infect Dis. 2014;37(3):159–167.
  • Jawale CV, Lee JH. An immunogenic Salmonella ghost confers protection against internal organ colonization and egg contamination. Vet Immunol Immunopathol. 2014;162(1–2):41–50.
  • Chaudhari AA, Jawale CV, Kim SW, et al. Construction of a Salmonella Gallinarum ghost as a novel inactivated vaccine candidate and its protective efficacy against fowl typhoid in chickens. J Vet Res. 2012;43(1):44. DOI:10.1186/1297-9716-43-44.
  • Jawale CV, Chaudhari AA, Lee JH. Generation of a safety enhanced Salmonella Gallinarum ghost using antibiotic resistance free plasmid and its potential as an effective inactivated vaccine candidate against fowl typhoid. Vaccine. 2014;32(9):1093–1099.
  • Guo R, Geng S, Jiao H, et al. Evaluation of protective efficacy of a novel inactivated Salmonella Pullorum ghost vaccine against virulent challenge in chickens. Vet Immunol Immunopathol. 2016;173:27–33.
  • Won G, Kim B, Lee JH. A novel approach for construction of an inactivated typhoid vaccine candidate that effectively augments both humoral and cellular immune responses. Vaccine. 2017;35(25):3333–3341.
  • Zeng L. Mucosal adjuvants: Opportunities and challenges. Hum Vaccin Immunother. 2016;12(9):2456–2458.
  • Jawale CV, Lee JH. Characterization of a Salmonella Typhimurium ghost carrying an adjuvant protein as a vaccine candidate for the protection of chickens against virulent challenge. Avian Pathol. 2014;43(6):506–513.
  • Jawale CV, Lee JH. Evaluation of immunogenicity and protective efficacy of adjuvanted Salmonella Typhimurium ghost vaccine against salmonellosis in chickens. Vet Q. 2016;36(3):130–136.
  • Jawale CV, Lee JH. Comparative evaluation of Salmonella Enteritidis ghost vaccines with a commercial vaccine for protection against internal egg contamination with Salmonella. Vaccine. 2014;32(45):5925–5930.
  • Jawale CV, Somsanith N, Eo SK, et al. Evaluation of Salmonella Gallinarum ghost formulated with Montanide™ ISA 70 VG adjuvant as a vaccine against fowl typhoid. Acta Vet Hung. 2015;63(4):401–412. DOI:10.1556/004.2015.038.
  • Kim B, Won G, Lee JH. Construction of an inactivated typhoid vaccine candidate expressing Escherichia coli heat-labile enterotoxin B subunit and evaluation of its immunogenicity in a murine model. J Med Microbiol. 2017;66(8):1235–1243.
  • Hajam IA, Kim JH, Lee JH. Incorporation of membrane-anchored flagellin into Salmonella Gallinarum bacterial ghosts induces early immune responses and protection against fowl typhoid in young layer chickens. Vet Immunol Immunopathol. 2018;199:61–69.
  • Xia S-L, Lei J-L, Du M, et al. Enhanced protective immunity of the chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever in pigs by a Salmonella bacterial ghost adjuvant. Vet Res. 2016;47(1):64. DOI:10.1186/s13567-016-0346-9.
  • Si W, Yu S, Liu H, et al. A bacterial ghost improves the immunological efficacy of a Newcastle disease virus inactivated vaccine. Vet Microbiol. 2017;203:189–195.
  • Kamble N, Jawale C, Lee J. Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate. Poult Sci. 2016;95(10):2274–2280.
  • Hur J, Kim CS, Eo SK, et al. Salmonella ghosts expressing enterotoxigenic Escherichia coli k88ab, k88ac, k99, and fasa fimbrial antigens induce robust immune responses in a mouse model. Vet Q. 2015;35(3):125–132. DOI:10.1080/01652176.2015.1029598.
  • Kim CS, Hur J, Eo SK, et al. Generation of Salmonella ghost cells expressing fimbrial antigens of enterotoxigenic Escherichia coli and evaluation of their antigenicity in a murine model. Can J Vet Res. 2016;80(1):40–48.
  • Kim SW, Gal SW, Lee JH, et al. Immune responses of BALB/c mice orally immunized with Salmonella Typhimurium ghost cells carrying antigens of enterotoxigenic Escherichia coli. Veterinarski Archiv. 2017;87(1):87–101.
  • Hur J, Lee JH. A new enterotoxigenic Escherichia coli vaccine candidate constructed using a Salmonella ghost delivery system: comparative evaluation with a commercial vaccine for neonatal piglet colibacillosis. Vet Immunol Immunopathol. 2015;164(3–4):101–109.
  • Hur J, Lee JH. Protective efficacy by various doses of Salmonella ghost vaccine candidate carrying enterotoxigenic Escherichia coli fimbrial antigen against neonatal piglet colibacillosis. Can J Vet Res. 2016;80(3):245–249.
  • Won G, Lee JH. Multifaceted immune responses and protective efficacy elicited by a recombinant autolyzed Salmonella expressing FliC flagellar antigen of F18(+)Escherichia coli. Vaccine. 2016;34(50):6335–6342.
  • Won G, Kim TH, Lee JH. A novel Salmonella strain inactivated by a regulated autolysis system and expressing the B subunit of Shiga toxin 2e efficiently elicits immune responses and confers protection against virulent Stx2e-producing Escherichia coli. BMC Vet Res. 2017;13(1):40.
  • Won G, John Hwa L. Potent immune responses induced by a Salmonella ghost delivery system that expresses the recombinant Stx2eB, FedF, and FedA proteins of the Escherichia coli-producing F18 and Shiga toxin in a murine model and evaluation of its protective effect as a porcine vaccine candidate. Vet Q. 2017;37(1):81–90.
  • Won G, Lee JH. F18(+)Escherichia coli flagellin expression in Salmonella has immunoadjuvant effects in a ghost vaccine candidate containing E. coli Stx2eB, FedF and FedA against porcine edema disease. Comp Immunol Microbiol Infect Dis. 2018;58:44–51.
  • Kim E, Won G, Lee JH. Construction of a novel tetravalent dengue vaccine with a Salmonella Typhimurium bacterial ghost and evaluation of its immunogenicity and protective efficacy using a murine model. Vaccine. 2020;38(4):916–924.
  • Jiao H, Yang H, Zhao D, et al. Design and immune characterization of a novel Neisseria gonorrhoeae DNA vaccine using bacterial ghosts as vector and adjuvant. Vaccine. 2018;36(30):4532–4539. DOI:10.1016/j.vaccine.2018.06.006.
  • Chen J, Li N, She F. Helicobacter pylori outer inflammatory protein DNA vaccine-loaded bacterial ghost enhances immune protective efficacy in C57BL/6 mice. Vaccine. 2014;32(46):6054–6060.
  • Liu G, Fan M, Guo J. Efficacy of immune responses induced by anti-caries DNA vaccine-loaded bacterial ghost in mice. Zhonghua kou qiang yi xue za zhi. 49(1):37–41.; 2014.
  • Kamble NM, Senevirathne A, Koh HB, et al. Self-destructing Salmonella via temperature induced gene E of phage PhiX174 improves influenza HA DNA vaccine immune protection against H1N1 infection in mice model. J Immunol Methods. 2019;472:7–15.
  • Eko FO, Mayr UB, Attridge SR, et al. Characterization and immunogenicity of Vibrio cholerae ghosts expressing toxin-coregulated pili. J Biotechnol. 2000;83(1–2):115–123. DOI:10.1016/S0168-1656(00)00315-1.
  • Eko FO, Schukovskaya T, Lotzmanova EY, et al. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine. 2003;21(25–26):3663–3674. DOI:10.1016/S0264-410X(03)00388-8.
  • Cao J, Huang A-L, Zhu X-C, et al. Construction of Vibrio mimicus ghosts as a novel inactivated vaccine candidate and its protective efficacy against ascites disease in grass carps (Ctenopharyngodon idella). Aquaculture. 2018;485:147–153.
  • Eko FO, Szostak MP, Wanner G, et al. Production of Vibrio cholerae ghosts (VCG) by expression of a cloned phage lysis gene: potential for vaccine development. Vaccine. 1994;12(13):1231–1237. DOI:10.1016/0264-410X(94)90249-6.
  • Eko FO, Barisani-Asenbauer T. Development of a Chlamydia trachomatis bacterial ghost vaccine to fight human blindness. Hum Vaccines. 2008;4(3):176–183.
  • Eko FO, Lubitz W, McMillan L, et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine. 2003;21(15):1694–1703. DOI:10.1016/S0264-410X(02)00677-1.
  • Eko FO, He Q, Brown T, et al. A novel recombinant multisubunit vaccine against Chlamydia. J Immunol. 2004;173(5):3375–3382. DOI:10.4049/jimmunol.173.5.3375.
  • Macmillan L, Ifere GO, He Q, et al. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS Immunol Med Microbiol. 2007;49(1):46–55. DOI:10.1111/j.1574-695X.2006.00165.x.
  • Ifere GO, He Q, Igietseme JU, et al. Immunogenicity and protection against genital Chlamydia infection and its complications by a multisubunit candidate vaccine. J Microbiol Immunol Infect (Wei Mian Yu Gan Ran Za Zhi). 2007;40(3):188–200.
  • Eko F, Okenu D, Singh U, et al. Evaluation of a broadly protective Chlamydia–cholera combination vaccine candidate. Vaccine. 2011;29(21):3802–3810. DOI:10.1016/j.vaccine.2011.03.027.
  • Pais R, Omosun Y, He Q, et al. Rectal administration of a chlamydial subunit vaccine protects against genital infection and upper reproductive tract pathology in mice. PLoS One. 2017;12(6):e0178537. DOI:10.1371/journal.pone.0178537.
  • Eko FO, Ekong E, He Q, et al. Induction of immune memory by a multisubunit chlamydial vaccine. Vaccine. 2011;29(7):1472–1480. DOI:10.1016/j.vaccine.2010.12.024.
  • Ekong EE, Okenu DN, Mania-Pramanik J, et al. A Vibrio cholerae ghost-based subunit vaccine induces cross-protective chlamydial immunity that is enhanced by CTA2B, the nontoxic derivative of cholera toxin. FEMS Immunol Med Microbiol. 2009;55(2):280–291. DOI:10.1111/j.1574-695X.2008.00493.x.
  • Pais R, Omosun Y, Igietseme JU, et al. Route of vaccine administration influences the impact of Fms-like tyrosine kinase 3 Ligand (Flt3L) on Chlamydial-specific protective immune responses. Front Immunol. 2019;10:1577.
  • Pan Q, Pais R, Ohandjo A, et al. Comparative evaluation of the protective efficacy of two formulations of a recombinant Chlamydia abortus subunit candidate vaccine in a mouse model. Vaccine. 2015;33(15):1865–1872. DOI:10.1016/j.vaccine.2015.02.007.
  • Pan Q, Zhang Q, Chu J, et al. Chlamydia abortus Pmp18.1 Induces IL-1beta Secretion by TLR4 Activation through the MyD88, NF-kappaB, and Caspase-1 Signaling Pathways. Front Cell Infect Microbiol. 2017;7:514.
  • Ramey K, Eko FO, Thompson WE, et al. Immunolocalization and challenge studies using a recombinant Vibrio cholerae ghost expressing Trypanosoma brucei Ca2+ ATPase (TBCA2) antigen. Am J Trop Med Hyg. 2009;81(3):407–415. DOI:10.4269/ajtmh.2009.81.407.
  • Angen O, Mutters R, Caugant DA, et al. Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. Int J Syst Bacteriol. 1999;49(Pt 1):67–86.
  • Ahmad TA, Rammah SS, Sheweita SA, et al. Development of immunization trials against Pasteurella multocida. Vaccine. 2014;32(8):909–917.
  • Marchart J, Rehagen M, Dropmann G, et al. Protective immunity against pasteurellosis in cattle, induced by Pasteurella haemolytica ghosts. Vaccine. 2003;21(13–14):1415–1422. DOI:10.1016/S0264-410X(02)00635-7.
  • Marchart J, Dropmann G, Lechleitner S, et al. Pasteurella multocida-and Pasteurella haemolytica-ghosts: new vaccine candidates. Vaccine. 2003;21(25–26):3988–3997. DOI:10.1016/S0264-410X(03)00383-9.
  • Katinger A, Lubitz W, Szostak MP, et al. Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody responses. J Biotechnol. 1999;73(2–3):251–260. DOI:10.1016/S0168-1656(99)00143-1.
  • Felnerova D, Kudela P, Bizik J, et al. T cell-specific immune response induced by bacterial ghosts. Med Sci Monit. 2004;10(10):Br362–370.
  • Kwon SR, Nam YK, Kim SK, et al. Generation of Edwardsiella tarda ghosts by bacteriophage PhiX174 lysis gene E. Aquaculture. 2005;250(1):16–21. DOI:10.1016/j.aquaculture.2005.02.052.
  • Wang X, Lu C. Mice orally vaccinated with Edwardsiella tarda ghosts are significantly protected against infection. Vaccine. 2009;27(10):1571–1578.
  • Yan M, Liu J, Li Y, et al. Different concentrations of Edwardsiella tarda ghost vaccine induces immune responses in vivo and protects Sparus macrocephalus against a homologous challenge. Fish Shellfish Immunol. 2018;80:467–472.
  • Wang R-H, Xiao T-Y, Zeng L-B, et al. Generation and use of Edwardsiella ictaluri ghosts as a vaccine against enteric septicemia of catfish (ESC). Aquaculture. 2016;456:9–15.
  • Chu W, Zhuang X, Lu C. Generation of Aeromonas hydrophila ghosts and their evaluation as oral vaccine candidates in Carassius auratus gibelio. J Wei Sheng Wu Xue Bao. 48(2):202–206. 2008.
  • Tu FP, Chu WH, Zhuang XY, et al. Effect of oral immunization with Aeromonas hydrophila ghosts on protection against experimental fish infection. Lett Appl Microbiol. 2010;50(1):13–17. DOI:10.1111/j.1472-765X.2009.02746.x.
  • Jiang N, Luo L, Xing W, et al. Generation and immunity effect evaluation of biotechnology-derived Aeromonas veronii ghost by PhiX174 gene E-mediated inactivation in koi (Cyprinus carprio koi). Fish Shellfish Immunol. 2019;86:327–334.
  • Agarwal K, Agarwal S Helicobacter pylori vaccine: from past to future. In: Mayo Clinic Proceedings:Elsevier. 2008;p.169–175.
  • Talebkhan Y, Bababeik M, Esmaeili M, et al. Helicobacter pylori bacterial ghost containing recombinant Omp18 as a putative vaccine. J Microbiol Methods. 2010;82(3):334–337. DOI:10.1016/j.mimet.2010.07.001.
  • Zhu W, Yang G, Zhang Y, et al. Generation of biotechnology-derived Flavobacterium columnare ghosts by PhiX174 gene E-mediated inactivation and the potential as vaccine candidates against infection in grass carp. J Biomed Biotechnol. 2012;2012:760730.
  • Cai K, Zhang Y, Yang B, et al. Yersinia enterocolitica ghost with msbB mutation provides protection and reduces proinflammatory cytokines in mice. Vaccine. 2013;31(2):334–340. DOI:10.1016/j.vaccine.2012.11.004.
  • Liu J, Li Y, Sun Y, et al. Immune responses and protection induced by Brucella suis S2 bacterial ghosts in mice. Vet Immunol Immunopathol. 2015;166(3–4):138–144. DOI:10.1016/j.vetimm.2015.04.008.
  • Qian J, Bu Z, Lang X, et al. A safe and molecular-tagged Brucella canis ghosts confers protection against virulent challenge in mice. Vet Microbiol. 2017;204:121–128.
  • Muhammad A, Kassmannhuber J, Raucher M, et al. Subcutaneous immunization of dogs with Bordetella bronchiseptica bacterial ghost vaccine. Front Immunol. 2019. 10.
  • Hu M, Zhang Y, Xie F, et al. Protection of piglets by a Haemophilus parasuis ghost vaccine against homologous challenge. Clin Vaccine Immunol. 2013;20(6):795–802. DOI:10.1128/CVI.00676-12.
  • Amara AA, Salem-Bekhit MM, Alanazi FK. Sponge-like: a new protocol for preparing bacterial ghosts. Sci World J. 2013;2013.
  • Amara AA, Salem-Bekhit MM, Alanazi FK. Preparation of bacterial ghosts for E. coli JM109 using sponge-like reduced protocol. Asian J Biol Sci. 2013;6(8):363–369.
  • Amara AA, Salem-Bekhit MM, Alanazi FK. Plackett–Burman randomization method for Bacterial Ghosts preparation form E. coli JM109. Saudi Pharm J. 2014;22(3):273–279.
  • Plachett RL, Burman JP. The design of optimum multifactorial experients. Biometrika. 1946;33(4):305–325.
  • Amara A. Kostenlos viral ghosts, bacterial ghosts, microbial ghosts and more. Muenster, Germany: Schüling Verlag. 2015.
  • Amara AA. Lysozymes, proteinase K, bacteriophage E lysis proteins, and some chemical compounds for microbial ghosts preparation: a review and food for thought. SOJ Biochem. 2016;2(1):16.
  • El-Baky NA, Amara AA. Newcastle disease virus (LaSota strain) as a model for virus Ghosts preparation using H2O2 bio-critical concentration. Int Sci Invest J. 2014;3(5):38–50.
  • Amara A. Saccharomyces cerevisiae Ghosts using the sponge-like re-reduced protocol. SOJ Biochem. 2015;1(1):1–4.
  • Menisy MM, Hussein A, Ghazy AA, et al. Klebsiella pneumoniae ghosts as vaccine using sponge like reduced protocol. Cell Mol Med. 2017;3(2):11–17.
  • Sheweita S, Batah A, Ghazy A, et al. A new strain of Acinetobacter baumannii and characterization of its ghost as a candidate vaccine. J Infect Public Health. 2019;12(6):831–842. DOI:10.1016/j.jiph.2019.05.009.
  • Zhou P, Wu H, Chen S, et al. MOMP and MIP DNA-loaded bacterial ghosts reduce the severity of lung lesions in mice after Chlamydia psittaci respiratory tract infection. Immunobiology. 2019;224(6):739–746. DOI:10.1016/j.imbio.2019.09.002.
  • Wu X, Ju X, Du L, et al. Production of bacterial ghosts from Gram-positive pathogen Listeria monocytogenes. Foodborne Pathog Dis. 2017;14(1):1–7. DOI:10.1089/fpd.2016.2184.
  • Vinod N, Oh S, Kim S, et al. Chemically induced Salmonella enteritidis ghosts as a novel vaccine candidate against virulent challenge in a rat model. Vaccine. 2014;32(26):3249–3255. DOI:10.1016/j.vaccine.2014.03.090.
  • Vinod N, Oh S, Park HJ, et al. Generation of a novel Staphylococcus aureus ghost vaccine and examination of its immunogenicity against virulent challenge in rats. Infect Immun. 2015;83(7):2957–2965. DOI:10.1128/IAI.00009-15.
  • Vinod N, Noh HB, Oh S, et al. A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges. PloS One. 2017;12(9):e0185488. DOI:10.1371/journal.pone.0185488.
  • Park H, Oh S, Vinod N, et al. Characterization of chemically-Induced bacterial ghosts (BGs) using sodium hydroxide-induced Vibrio parahaemolyticus ghosts (VPGs). Int J Mol Sci. 2016;17(11):1904. DOI:10.3390/ijms17111904.
  • Li L, Lei L, Zhang S, et al. Preparation and experimental immunity of Actinobacillus pleuropneumoniae ghost vaccine. Chin J Vet Sci. 2012;32(10):1461–1467.
  • Kwon AJ, Moon JY, Kim WK, et al. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. J Vet Med Sci. 2016;78(10):1541–1548. DOI:10.1292/jvms.16-0036.
  • Amara AA. The critical activity for the cell wall degrading enzymes: Could the use of the lysozyme for Microbial Ghosts preparation establish emergence oral vaccination protocol? Int Sci Invest J. 2016;5(2):351–369.
  • Moon JY, Kim SY, Kim WK, et al. Protective efficacy of a Salmonella Typhimurium ghost vaccine candidate constructed with a recombinant lysozyme‐PMAP36 fusion protein in a murine model. Can J Vet Res. 2017;81(4):297–303.
  • Wang Q, Wang X, Wang X, et al. Generation of a novel Streptococcus agalactiae ghost vaccine and examination of its immunogenicity against virulent challenge in tilapia. Fish Shellfish Immunol. 2018;81:49–56.
  • Choi CW, JI SM, Park HJ, et al. Method of preparing bacterial ghosts from gram-positive bacteria by hydrochloric acid treatment. US Patent App 15/549,325. 2018.
  • Rabea S, Salem-Bekhit MM, Alanazi FK, et al. A novel protocol for bacterial ghosts’ preparation using tween 80. Saudi Pharm J. 2018;26(2):232–237. DOI:10.1016/j.jsps.2017.12.006.
  • Lubitz P, Mayr UB, Lubitz W. Applications of bacterial ghosts in biomedicine. In: In: Pharmaceutical Biotechnology. Springer. 2009. p. 159–170.
  • Haidinger W, Mayr U, Szostak M, et al. Escherichia coli ghost production by expression of lysis gene E and staphylococcal nuclease. Appl Environ Microbiol. 2003;69(10):6106–6113. DOI:10.1128/AEM.69.10.6106-6113.2003.
  • Zhang X, Lan Y, Jiao W, et al. Isolation and characterization of a novel virulent phage of Lactobacillus casei ATCC 393. Food Env Virol. 2015;7(4):333–341. DOI:10.1007/s12560-015-9206-4.
  • Hou R, Li M, Tang T, et al., Construction of Lactobacillus casei ghosts by Holin-mediated inactivation and the potential as a safe and effective vehicle for the delivery of DNA vaccines. BMC Microbiol. 18(1): 80. 2018.
  • Jalava K, Eko FO, Riedmann E, et al. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev Vaccines. 2003;2(1):45–51.
  • Wang LZ, Lei LC, Han WY. Construction of prokaryotic coexpression vector for lysis gene E and staphylococcus nuclease gene and preparation of E. coli bacterial ghost. Chin J Biol. 2007;20:557–561. .
  • Lee DJ, Kwon SR, Zenke K, et al. Generation of safety enhanced Edwardsiella tarda ghost vaccine. Dis Aquat Organ. 2008;81(3):249–254. DOI:10.3354/dao01964.
  • Choi SH, Nam YK, Kim KH. Novel expression system for combined vaccine production in Edwardsiella tarda ghost and cadaver cells. J Mol Biotechnol. 2010;46(2):127–133.
  • Liu J, Wang WD, Liu YJ, et al. Mice vaccinated with enteropathogenic Escherichia coli ghosts show significant protection against lethal challenges. Lett Appl Microbiol. 2012;54(3):255–262. DOI:10.1111/j.1472-765X.2011.03202.x.
  • Hao K, Chen X-H, Qi X-Z, et al. Protective immunity of grass carp induced by DNA vaccine encoding capsid protein gene (vp7) of grass carp reovirus using bacterial ghost as delivery vehicles. Fish Shellfish Immunol. 2017;64:414–425.
  • Won G, Hajam IA, Lee JH. Improved lysis efficiency and immunogenicity of Salmonella ghosts mediated by co-expression of λ phage holin-endolysin and ɸX174 gene E. Sci Rep. 2017;7:45139.
  • Hu J, Zuo J, Chen Z, et al. Use of a modified bacterial ghost lysis system for the construction of an inactivated avian pathogenic Escherichia coli vaccine candidate. Vet Microbiol. 2019;229:48–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.