202
Views
1
CrossRef citations to date
0
Altmetric
Review

Is there a potential for novel, nasal pertussis vaccines?

Pages 415-423 | Received 06 Jan 2021, Accepted 04 Mar 2021, Published online: 19 Mar 2021

References

  • Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to bordetella pertussis and other bordetella subspecies. Clin Microbiol Rev. 2005;18:326-382.
  • Bordet J, Gengou O. Le microbe de la coqueluche. Ann Inst Pasteur. 1906;20:731–741.
  • Mascart F, Dirix V, Locht C. The human immune responses to pertussis and pertussis vaccines. In: Rohani P, Scarpino SV, editors. Pertussis epidemiology, immunology and evolution. Oxford, UK: Oxford University Press; 2019. p. 112–132.
  • Council MR. Vaccination against whooping cough – final report. BMJ. 1959;1:994–1000.
  • Rohani P, Drake JM. The decline and resurgence of pertussis in the US. Epidemics. 2011;3(3–4):183–188.
  • Romanus V, Jonsell R, Bergquist SO. Pertussis in Sweden after the cessation of general immunization in 1979. Pediatr Infect Dis J. 1987;6(4):364–371.
  • Edwards KM, Meade BD, Decker MD, et al. Comparison or 13 acellular pertussis vaccines: overview and serologic responses. Pediatrics. 1995;96(3 Pt 2):548–557.
  • Decker MD, Edwards KM, Steinhoff MC, et al. Comparison of 13 acellular pertussis vaccines: adverse reactions. Pediatrics. 1995;96(3 Pt 2):557–566.
  • Gustafsson L, Hallander HO, Olin P, et al. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med. 1996;334(6):349–355.
  • Greco D, Salmaso S, Mastrantonio P, et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. N Engl J Med. 1996;334(6):341–349.
  • World Health Organization. 2015. Immunization coverage with DTP3 vaccines in infants (from <50%). [cited 2021 Jan 5]. Avaialble from: http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/passive/big_dtp3_map_global_coverage.jpg.
  • Yeung KHT, Duclos P, Nelson EAS, et al. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis. 2017;17(9):974–980.
  • Chiappini E, Stival A, Galli L, et al. Pertussis re-emergence in the post-vaccination era. BMC Infect Dis. 2013;13(1):151.
  • Cherry JD. Epidemic pertussis in 2012 – the resurgence of a vaccine-preventable disease. N Engl J Med. 2012;367:785–787.
  • Choi YH, Campbell H, Amirthalingam G, et al. Investigating the pertussis resurgence in England and Wales, and options for future control. BMC Med. 2016;14(1):121.
  • Galanis E, King AS, Varughese P, et al. Changing epidemiology and emerging risk groups for pertussis. CMAJ. 2006;174(4):451–452.
  • Tan T, Dalby T, Forsyth K, et al. Pertussis across the globe: recent epidemiologic trends from 2000 to 2013. Pediatr Infect Dis J. 2015;34(9):e222–e232.
  • Burns DL, Meade BD, Messionnier NE. Pertussis resurgence: perspectives from the working group meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge. J Infect Dis. 2014;209(suppl 1):S32–S35.
  • Esposito S, Stefanelli P, Fry N, et al. Pertussis prevention: reasons for resurgence, and differences in the current acellular pertussis vaccines. Front Immunol. 2019;10:1344.
  • Preston NW. Prevalent serotypes of Bordetella pertussis in non-vaccinated communities. J Hyg. 1976;77(1):85–91.
  • Preston NW. Effectiveness of pertussis vaccines. Br Med J. 1965;2(5452):11–13.
  • WHO expert committee on biological standardizationThirtieth report. WHO Tech Rep Ser. 1979;638:61–65.
  • Robinson A, Ashworth LA, Irons LI. Serotyping bordetella pertussis strains. Vaccine. 1989;7(6):491–494.
  • Willems RJ, Paul A, Van Der Heide HG, et al. Fimbrial phase variation in bordetella pertussis: a novel mechanism for transcriptional regulation. Embo J. 1990;9(9):2803–2809.
  • Chen Q, Decker KB, Boucher PE, et al. Novel architectural features of bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA. Mol Microbiol. 2010;77(5):1326–1340.
  • Debrie AS, Coutte L, Raze D, et al. Construction and evaluation of bordetella pertussis live attenuated vaccine strain BPZE1 producing Fim3. Vaccine. 2018;36(11):1345–1352.
  • Schmidtke AJ, Boney KO, Martin SW, et al. Population diversity among bordetella pertussis isolates, United States, 1935–2009. Emerg Infect Dis. 2012;18(8):1248–1255.
  • Mooi FR. Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. Infect Genet Evol. 2010;10(1):36–49.
  • Bouchez V, Brun D, Cantinelli T, et al. First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. Vaccine. 2009;27:6034–6041.
  • Barkoff AM, Mertsola J, Pierard D, et al. Pertactin-deficient bordetella pertussis isolates: evidence of increased circulation in Europe, 1998 to 2015. Euro Surveill. 2019;24(7): pii= 1700832.
  • Stefanelli P, Fazio C, Fedele G, et al. A natural pertactin deficient strain of bordetella pertussis shows improved entry in human monocyte-derived dendritic cells. New Microbiol. 2009;32(2):159–166.
  • Zeddeman A, Van Gent M, Heuvelman CJ, et al. Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries, 1996 to 2012. Euro Surveill. 2014;19(33): pii=20881.
  • Pawloski LC, Queenan AM, Cassiday PK, et al. Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. Clin Vaccine Immunol. 2014;21(2):119–125.
  • Tsang RSW, Shuel M, Jamieson FB, et al. Pertactin-negative bordetella pertussis strains in Canada: characterization of a dozen isolates based on a survey of 224 samples collected in different parts of the country over the last 20 years. Intl J Infect Dis. 2014;28:65–69.
  • Lam C, Octavia S, Ricafort L, et al. Rapid increase in pertactin-deficient bordetella pertussis Isolates, Australia. Emerg Infect Dis. 2014;20(4):626–633.
  • Otsuka N, Han HJ, Toyoizumi-Ajisaka H, et al. Prevalence and genetic characterization of pertactin-deficient bordetella pertussis in Japan. PLoS One. 2012;7(2):e31985.
  • Carriquiriborde F, Regidor V, Aispuro PM, et al. Rare detection of bordetella pertussis pertactin-deficient strains in Argentina. Emerg Infect Dis. 2019;25(11):2048–2054.
  • Lesne E, Cavell BE, Freire-Martin I, et al. Acellular pertussis vaccines induce anti-pertactin bactericidal antibodies which drives the emergence of pertactin-negative strains. Front Microbiol. 2020;11:2108.
  • Hegerle N, Dore G, Guiso N. Pertactin deficient bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine. Vaccine. 2014;32(49):6597–6600.
  • Safarchi A, Octavia S, Luu LDW, et al. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine. 2015;33(46):6277–6281.
  • Lacombe K, Yam A, Simondon F, et al., Risk factors for acellular and whole-cell pertussis vaccine failure in Senegalese children. Vaccine. 23(5): 623–628. 2004 .
  • Bell CA, Russell ML, Drews SJ, et al. Acellular pertussis vaccine effectiveness and waning immunity in Alberta, Canada: 2010-2015, a Canadian immunization research network (CIRN) study. Vaccine. 2019;37(30):4140–4146.
  • Sheridan SL, Ware RS, Grimwood K, et al. Number and order of whole cell pertussis vaccines in infancy and disease protection. JAMA. 2012;308(5):454–456.
  • Witt MA, Katz PH, Witt DJ. Unexpectedly limited durability of immunity following acellular pertussis vaccination in preadolescents in a North American outbreak. Clin Infect Dis. 2012;54(12):1730–1735.
  • Klein NP, Bartlett J, Rowhani-Rahbar A, et al. Waning protection after fifth dose of acellular pertussis vaccine in children. N Engl J Med. 2012;367(11):1012–1019.
  • McGirr A, Fisman DN. Duration of pertussis immunity after DTaP immunization: a meta-analysis. Pediatrics. 2015;135(2):331–343.
  • Burdin N, Handy LK, Plotkin SA. What is wrong with pertussis vaccine immunity. The problem of waning effectiveness of pertussis vaccines. Cold Spring Harb Perspect Biol. 2017;9(12):a029454.
  • Havers FP, Moro PL, Hunter P, et al. Use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccines: updated recommendations of the advisory committee on immunization practices – united States, 2019. MMWR Morb Mortal Wkly Rep. 2020;69(3):77–83.
  • Klein NP, Bartlett J, Fireman B, et al. Waning Tdap effectiveness in adolescents. Pediatrics. 2016;137(3):e20153326.
  • Hamer WHE. Epidemic disease in England – the evidence of variability and of persistence of type. Lancet. 1906;ii:733–739.
  • Fine PEM, Clarkson JA. Distribution of immunity to pertussis in the population of England and Wales. J Hyg. 1984;92(1):21–26.
  • Fine PE, Clarkson JA. The recurrence of whooping cough: possible implications for assessment of vaccine efficacy. Lancet. 1982;319(8273):666–669.
  • Rohani P, Earn DJ, Grenfell BT. Impact of immunization on pertussis transmission in England and Wales. Lancet. 2000;355(9200):285–286.
  • Domenech De Cellès M, Riolo MA, Magpantay FMG, et al. Epidemiological evidence for herd immunity induced by acellular pertussis vaccines. Proc Natl Acad Sci USA. 2014;11(7):E716–E717.
  • Fine PE. Herd immunity: history, theory, practice. Epidemiol Rev. 1993;15(2):265–302.
  • Healy CM, Rench MA, Wooton SH, et al. Evaluation of the impact of a pertussis cocooning program on infant pertussis infection. Pediatr Infect Dis J. 2015;43(1):22–26.
  • Castagnini LA, Healy CM, Rench MA, et al. Impact of maternal postpartum tetanus and diphtheria toxoids and acellular pertussis immunization on infant pertussis infection. Clin Infect Dis. 2012;54(1):78–84.
  • Carcione D, Regan AK, Tracey L, et al. The impact of parental postpartum pertussis vaccination on infection in infants: a population-based study of cocooning in Western Australia. Vaccine. 2015;33(42):5654–5661.
  • Rowe SL, Tay EL, Franklin LJ, et al. Effectiveness of parental cocooning as a vaccination strategy to prevent pertussis infection in infants: a case-control study. Vaccine. 2018;36(15):2012–2019.
  • Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci USA. 2014;111(2):787–792.
  • Zeddeman A, Van Schuppen E, Kok KA, et al. Effect of FHA and Prn on Bordetella pertussis colonization of mice is dependent on vaccine type and anatomical site. PLoS One. 2020;15(8):e0237394.
  • Holubova J, Stanek O, Brazdilova L, et al. Acellular pertussis vaccine inhibits Bordetella pertussis clearance from the nasal mucosa of mice. Vaccines (Basel). 2020;8(4):695..
  • Dubois V, Chatagnon J, Thiriard A, et al. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. Npj Vaccines. 2020;6(1):6.
  • Althouse BM. ScarpinoAsymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015;13:146.
  • Chow MY, Khandaker G, McIntyre P. Global childhood deaths from pertussis: a historical review. Clin Infect Dis. 2016;63(suppl 4):S134–S141.
  • Provenzano RW, Wetterlow LH, Sullivan CL. Immunization and antibody response in the newborn infant, Ipertussis inoculation within twenty-four hours of birth . N Engl J Med. 1965;273:959–965.
  • Abayomi I, Woodland M, Morley D. Whooping cough vaccine at birth. J Trop Pediatr Environ Child Health. 1973;19(1):3–4.
  • Halasa NB, O’Shea A, Shi JR, et al. Poor immune responses to a birth dose of diphtheria, tetanus and acellular pertussis vaccine. J Pediatr. 2008;153(3):327–332.
  • Wood N, Nolan T, Marshall H, et al. Immunogenicity and safety of monovalent acellular pertussis vaccine at birth. A randomized clinical trial. JAMA Pediatr. 2018;172:1045–1052.
  • Kharbanda EO, Vazquez-Benitez G, Lipkind HS, et al. Evaluation of the association of maternal pertussis vaccination with obstetric events and birth outcomes. JAMA 2014;312(18):1897–1904.
  • Amirthalingam G, Andrews N, Campbell H, et al., Effectiveness of maternal pertussis vaccination in England: and observational study. Lancet 384(9953): 1521–1528. 2014 .
  • Sandman F, Jit M, Andrews N, et al. Infant hospitalizations and fatalities averted by the maternal pertussis vaccination program in England, 2012-2017: post-implementation economic evaluation. Clin Infect Dis. 2020;71(8):1984–1987.
  • Drezner D, Youngster M, Klainer H, et al. Maternal vaccinations coverage and reasons for non-compliance – a cross-sectional observational study. BMC Pregnancy Childbirth. 2020;20(1):541.
  • Englund JA, Anderson EL, Reed GF, et al. The effect of maternal antibody on the serologic response and the incidence of adverse reactions after primary immunization with acellular and whole-cell pertussis vaccines combined with diphtheria and tetanus toxoids. Pediatrics. 1995;96(3 Pt 2):580–584.
  • Wanlapakorn N, Maertens K, Vongpunsawad S, et al. Quantity and quality of antibodies after acellular versus whole-cell pertussis vaccines in infants born to mothers who received tetanus, diphtheria, and acellular pertussis vaccine during pregnancy: a randomized trial. Clin Infect Dis. 2020;71(1):72–80.
  • Ladhani SN, Andrews NJ, Southern J, et al. Antibody responses after primary immunization in infants born to women receiving a pertussis-containing vaccine during pregnancy: single arm observational study with a historical comparison. Clin Infect Dis. 2015;61(11):1637–1644.
  • Maertens K, Hoang TTH, Nguyen TD, et al. The effect of maternal pertussis immunization on infant vaccine responses to a booster pertussis-containing vaccine in Vietnam. Clin Infect Dis. 2016;63(suppl 4):S197–S204.
  • Feunou PF, Mielcarek N, Locht C. Reciprocal interference of maternal and infant immunization in protection against pertussis. Vaccine 2016;34(8):1062–1069.
  • Merkel TJ. Toward a controlled human infection model of pertussis. Clin Infect Dis. 2020;71(2):412–414.
  • Locht C. Will we have new pertussis vaccines? Vaccine 2018;36(36):5460–5469.
  • Chasaide CN, Mills KHG. Next-generation pertussis vaccines based on the induction of protective T cells in the respiratory tract. Vaccines (Basel). 2020;8(4):621.
  • Hozbor D. New pertussis vaccines: a need and a challenge. Adv Exp Med Biol. 2019;1183:115–126.
  • Mielcarek N, Debrie AS, Raze D, et al. Live attenuated Bpertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog. 2006;2:e65.
  • Solans L, Debrie AS, Borkner L, et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol. 2018;11(6):1753–1762.
  • Locht C, Papin JE, Lecher S, et al. Live attenuated pertussis vaccine BPZE1 protects baboons against Bordetella pertussis disease and infection. J Infect Dis. 2017;216(1):117–124.
  • Feunou PF, Ismaili J, Debrie AS, et al. Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1. Vaccine 2008;26(45):5722–5727.
  • Thalen M, Debrie AS, Coutte L, et al. Manufacture or a stable lyophilized formulation of the live attenuated pertussis vaccine BPZE1. Vaccines 2020;8(3):523.
  • Thorstensson R, Trollfors B, Al-Tawil N, et al., A phase i clinical study of a live attenuated bordetella pertussis vaccine - BPZE1; A single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male volunteers. PLoS One. 9(1): e83449. 2014 .
  • Jahnmatz M, Richert L, Al-Tawil N, et al. Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: a phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infect Dis. 2020;20(11):1290–1301.
  • Lin A, Apostolovic D, Jahnmatz M, et al. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J Clin Invest. 2020;130(5):2332–2346.
  • Solans L, Locht C. The role of mucosal immunity in pertussis. Front Immunol. 2019;9:3068.
  • Meade BD, Plotkin SA, Locht C. Possible options for new pertussis vaccines. J Infect Dis. 2014;209(suppl 1):S24–7.
  • De Graaf H, Ibrahim M, Hill AR, et al. Controlled human infection with Bordetella pertussis induces asymptomatic, immunizing colonization. Clin Infect Dis. 2020;71(2):403–411.
  • Feunou PF, Kammoun H, Debrie AS, et al. Heterologous prime-boost immunization with live attenuated B. pertussis BPZE1 followed by acellular pertussis vaccine in mice. Vaccine. 2014;32(34):4281–4288.
  • Mascart F, Verscheure V, Malfroot A, et al. Bordetella pertussi infection in 2-month-old infants promotes type 1 T cell responses. J Immunol. 2003;170(3):1504–1509.
  • Taddio A, Ipp M, Thivakaran S, et al. Survey of the prevalence of immunization non-compliance due to needle fears in children and adults. Vaccine. 2012;30(32):4807–4812.
  • Dubé E, Gagnon D, Kiely M, et al. Acceptability of live attenuated influenza vaccine by vaccine providers in Quebec, Canada. Hum Vaccin Immunother. 2015;11(4):956–960.
  • Shono A, Kondo M. Parents’ preferences for seasonal influenza vaccine for their children in Japan. Vaccine. 2014;32(39):5071–5076.
  • Marien AG, Hochart A, Lagrée M, et al. Parental acceptance of an intranasal vaccine: example of influenza vaccine. Arch Pediatr. 2019;26(2):71–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.