159
Views
1
CrossRef citations to date
0
Altmetric
Review

The next generation of HCV vaccines: a focus on novel adjuvant development

ORCID Icon, , & ORCID Icon
Pages 839-855 | Received 14 Jan 2021, Accepted 09 Jun 2021, Published online: 28 Jun 2021

References

  • WHO. 2020. [cited 2020 Jul 37]. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c
  • Kardani K, Basimi P, Fekri M, et al. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol. 2020;13(9):1001–1046.
  • Axley P, Ahmed Z, Ravi S, et al. Hepatitis C virus and hepatocellular carcinoma: a narrative review. J Clin Transl Hepatol. 2018;6(1):79–84.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.
  • Koike K. Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. J Gastroenterol Hepatol. 2007;22(s1):S108–S11.
  • Hoofnagle J. Course and outcomes of hepatitis C. Hepatology. 2004;36:S21–S29.
  • Garcia F, Garcia F, Roldan C, et al. Detection of HCV and GBV-CHGV RNA in peripheral blood mononuclear cells of patients with chronic type C hepatitis. Microbios. 2000;103(404):7–15.
  • Lambotin M, Baumert TF, Barth H. Distinct intracellular trafficking of hepatitis C virus in myeloid and plasmacytoid dendritic cells. J Virol. 2010;84(17):8964–8969.
  • Lerat H, Rumin S, Habersetzer F, et al. In vivo tropism of hepatitis C virus genomic sequences in hematopoietic cells: influence of viral load, viral genotype, and cell phenotype. Blood. 1998;91(10):3841–3849.
  • Skardasi G, Chen AY, Michalak TI. Authentic Patient-Derived Hepatitis C Virus Infects and Productively Replicates in Primary CD4(+) CD4+ and CD8(+) CD8+T Lymphocytes in vitro. J Virol. 2018;92(3):e01790–17.
  • Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci. 2006;3:47–52.
  • Spearman CW, Dusheiko GM, Hellard M, et al. Hepatitis C. Lancet. 2019;394(10207):1451–1466.
  • Bailey JR, Barnes E, Cox AL. Approaches, progress, and challenges to hepatitis C vaccine development. Gastroenterology. 2019;156(2): 418–430. 10.1053/j.gastro.2018.08.060.
  • Duncan JD, Urbanowicz RA, Tarr AW, et al. Hepatitis C virus vaccine: challenges and prospects. Vaccines (Basel). 2020;8(1): 90. 10.3390/vaccines8010090.
  • Shoukry NH. Hepatitis C vaccines, antibodies, and T cells. Front Immunol. 2018;9:1480.
  • Choo QL, Kou G, Weiner AJ, et al. Isolation of cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359–362.
  • Borgia SM, Hedskog C, Parhy B, et al. Identification of a novel hepatitis C virus genotype from Punjab, India: expanding classification of hepatitis C virus into 8 genotypes. Infect Dis. 2018;218(11):1722–1729.
  • Smith DB, Bukh J, Kuiken C, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology. 2014;59(1):318–327.
  • Dustin LB, Bartolini B, Capobianchi MR, et al. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin Microbiol Infect. 2016;22(10):826–832.
  • Vieyres G, Pietschmann T. HCV pit stop at the lipid droplet: refuel lipids and put on a lipoprotein coat before exit. Cells. 2019;8(3):233.
  • Gerold G, Moeller R, Pietschmann T. Hepatitis C virus entry: protein interactions and fusion determinants governing productive hepatocyte invasion. Cold Spring Harb Perspect Med. 2019;8:36830.
  • Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. J Viral Hepat. 2006;13(1):34–41.
  • Poustchi H, Esmaili S, Mohamadkhani A, et al. The impact of illicit drug use on spontaneous hepatitis C clearance: experience from a large cohort population study. PLoS ONE. 2011;6(8):e23830.
  • Mosley JW, Operskalski EA, Tobler LH, et al. The course of hepatitis C viraemia in transfusion recipients prior to availability of antiviral therapy. J Viral Hepat. 2008;15(2):120–128.
  • Page K, Hahn JA, Evans J, et al. Acute hepatitis C virus infection in young adult injection drug users: a prospective study of incident infection, resolution, and reinfection. J Infect Dis. 2009;200(8):1216–1226.
  • Osburn WO, Fisher BE, Dowd KA, et al. Spontaneous control of primary hepatitis C virus infection and immunity against persistent reinfection. Gastroenterology. 2010;138(1):315–324.
  • Brown KS, Keogh MJ, Owsianka AM, et al. Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry. Protein Cell. 2010;1(7):664–674.
  • Hamed MR, Brown RJ, Zothner C, et al. Recombinant human L-ficolin directly neutralizes hepatitis C virus entry. J Innate Immun. 2014;6(5):676–684.
  • Sepulveda-Crespo D, Resino S, Martinez I. Innate immune response against hepatitis C virus: targets for vaccine adjuvants. Vaccines (Basel). 2020;8(2):313.
  • Xu Y, Zhong J. Innate immunity against hepatitis C virus. Curr Opin Immunol. 2016;42:98–104.
  • Chigbu DI, Loonawat R, Sehgal M, et al. Hepatitis C virus infection: host-virus interaction and mechanisms of viral persistence. Cells. 2019;8(4):376.
  • Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines. 2012;11(2):237–256.
  • Pawlotsky JM. Diagnostic tests for hepatitis C. J Hepatol. 1999;31:71–79.
  • Walker MR, Leung P, Eltahla AA, et al. Clearance of hepatitis C virus is associated with early and potent but narrowly-directed, Envelope-specific antibodies. Sci Rep. 2019;9(1):1–4. 10.1038/s41598-019-49454-w.
  • Pestka JM, Zeisel MB, Blaser E, et al. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. PNAS. 2007;104(14):6025–6030.
  • Kinchen VJ, Massaccesi G, Flyak AI, et al. Plasma deconvolution identifies broadly neutralizingantibodies associated with hepatitis C virus clearance. J Clin Invest. 2019;129(11):4786–4796.
  • Swann RE, Cowton VM, Robinson MW, et al. Broad anti-hepatitis C virus (HCV) antibody responses are associated with improved clinical disease parameters in chronic HCV infection. J Virol. 2016;90(9):4530–4543.
  • Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res. 2014;105:100–111.
  • Logvinoff C, Major ME, Oldach D, et al. Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc Natl Acad Sci USA. 2004;101(27):10149–10154.
  • Tarr AW, Urbanowicz RA, Hamed MR, et al. Hepatitis C patient-derived glycoproteins exhibit marked differences in susceptibility to serum neutralizing antibodies: genetic subtype defines antigenic but not neutralization serotype. J Virol. 2011;85(9):4246–4257.
  • Underwood AP, Walker MR, Brasher NA, et al. Understanding the determinants of bnAb induction in acute HCV infection. Viruses. 2018;10(11):659.
  • Boisvert M, Zhang W, Elrod EJ, et al. Novel E2 glycoprotein tetramer detects hepatitis C virus-specific memory B cells. J Immunol. 2016;197(12):4848–4858.
  • Missale G, Bertoni R, Lamonaca V, et al. Different clinical behaviors of acute hepatitis C virus infection is associated with different vigor of the anti-viral cell-mediated immune response. J Clin Invest. 1996;98(3):706–714.
  • Mittrücker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch Immunol Ther Exp. 2014;62(6):449–458.
  • Thimme R, Oldach D, Chang KM, et al. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med. 2001;194(10):1395–1406.
  • Zhang J, Liu W, Wen B, et al. Circulating CXCR3+ Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients. Sci Rep. 2019;9(1):1–10.
  • Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4+ T cells in immunity to viruses. Nat Rev Immunol. 2012;12(2):136–148.
  • Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immuneresponse. Annu Rev Immunol. 2001;19(1):65–91.
  • Ashfaq UA, Javed T, Rehman S, et al. An overview of HCV molecular biology, replication and immune responses. Virol J. 2011;8(1):1–10.
  • Semmo N, Klenerman P. CD4+ T cell responses in hepatitis C virus infection. World J Gastroenterol. 2007;13(36):4831.
  • Schulze zur Wiesch J, Ciuffreda D, Lewis-Ximenez L, et al. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J Exp Med. 2012;209(1):61–75.
  • Ulsenheimer A, Gerlach JT, Gruener NH, et al. Detection of functionally altered hepatitis C virus-specific CD4+ T cells in acute and chronic hepatitis C. Hepatology. 2003;37(5):1189–1198.
  • Dustin BL. Innate and adaptive immune responses in chronic HCV infection. Curr Drug Targets. 2017;18(7):826–843.
  • Grakoui A, Shoukry NH, Woollard DJ, et al. HCV persistence and immune evasion in the absence of memory T cell help. Science. 2003;302(5645):659–662.
  • Shoukry NH, Grakoui A, Houghton M, et al. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J Exp Med. 2003;197(12):1645–1655.
  • Page K, Melia MT, Veenhuis RT, et al. Randomized trial of a vaccine regimen to prevent chronic HCV infection. N Engl J Med. 2021;384(6):541–549.
  • Freeman ZT, Cox AL, Dutch RE. Lessons from nature: understanding immunity to HCV to guide vaccine design. PLoS Pathog. 2016;12(6):e1005632.
  • Thomas DL, Longo DL. Global elimination of chronic hepatitis. N Engl J Med. 2019;380(21):2041–2050.
  • Keck ML, Wrensch F, Pierce BG, et al. Mapping determinants of virus neutralization and viral escape for rational design of a hepatitis C virus vaccine. Front Immunol. 2018;9:1194.
  • Lee LA, Franzel L, Atwell J, et al. The estimated mortality impact of vaccinations forecast to be administered during 2011-2020 in 73 countries supported by the GAVI Alliance. Vaccine. 2013;31:B61–72.
  • Feld JJ, Jacobson IM, Hézode C, et al. Sofosbuvir and Velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N Engl J Med. 2015;373(6):2599–2607.
  • Abravanel F, Métivier S, Chauveau M, et al. Transmission of HCV NS5A inhibitor-resistant variants among HIV-infected men who have sex with men. Clin Infect Dis. 2016;63:554.
  • Franco S, Tural C, Nevot M, et al. Detection of a sexually transmitted hepatitis C virus protease inhibitor-resistance variant in a human immunodeficiency virus-infected homosexual man. Gastroenterology. 2014;147(3):599–601.
  • Donnison T, Chinnakannan S, Cicconi P, et al. HCV vaccines: how close are we to the promised land? Clinical Dilemmas in Viral Liver Disease. 2020;36(208–15).
  • Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities. Expert Opin Ther Patents. 2012;22(4):391–415.
  • Chmielewska AM, Naddeo M, Capone S, et al. Combined adenovirus vector and hepatitis C virus envelope protein prime-boost regimen elicits T cell and neutralizing antibody immune responses. J Virol. 2014;88(10):5502–5510.
  • Zhu W, Fu J, Lu J, et al. Induction of humoral and cellular immune responses against hepatitis C virus by vaccination with replicon particles derived from Sindbis-like virus XJ-160. Arch Virol. 2013;158(5):1013–1019.
  • Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine. 2016;34(4):413–423.
  • Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines. 2020;19(8):699–726.
  • Weiland O, Ahlén G, Diepolder H, et al. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther. 2013;21(9):1796–1805.
  • Fauvelle C, Colpitts CC, Keck ZY, et al. Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies. Expert Rev Vaccines. 2016;15(12):1535–1544.
  • Harel D, Feinstone SM, Major ME. Meta-analysis of hepatitis C virus vaccine efficacy in chimpanzees indicates an importance for structural proteins. Gastroenterology. 2010;139(3):965–974.
  • Cox JC, Coulter AR. Adjuvants-a classification and review of their modes of action. Vaccine. 1997;15(3):248–256.
  • Zhang W, Cheng N, Wang Y, et al. Adjuvant activity of PCP-II, a polysaccharide from Poriacocos, on a whole killed rabies vaccine. Virus Res. 2019;270:197638.
  • Mosca F, Tritto E, Muzzi A, et al. Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci USA. 2008;105(30):10501–10506.
  • Fischetti L, Zhong Z, Pinder CL, et al. The synergistic effects of combining TLR ligand based adjuvants on the cytokine response are dependent upon p38/JNK signalling. Cytokine. 2017;99:287–296.
  • Apostólico JD, Lunardelli VA, Coirada FC, et al. Adjuvants: classification, modus operandi, and licensing. J Immunol Res. 2016;1-16:2016.
  • Mbow ML, De Gregorio E, Valiante NM, et al. New adjuvants for human vaccines. Curr Opin Immunol. 2010;22(3):411–416.
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503.
  • Glenny AT, Pope CG, Waddington H, et al. Immunological notes XVII–XXIV. J Pathol Bacteriol. 1926;29(1):31–40.
  • Hutchison S, Benson RA, Gibson VB, et al. Antigen depot is not required for alum adjuvanticity. FASEB J. 2012;26(3):1272–1279.
  • Calabro S, Tortoli M, Baudner BC, et al. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine. 2011;29(9):1812–1823.
  • Morefield GL, Sokolovska A, Jiang D, et al. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005;23(13):1588–1595.
  • Bobanga ID, Petrosiute A, Huang AY. Chemokines as cancer vaccine adjuvants. Vaccines (Basel). 2013;1(4):444–462.
  • Goto N, Akama K. Histopathological studies of reactions in mice injected with aluminum-adsorbed tetanus toxoid. Microbiol Immunol. 1982;26(12):1121–1132.
  • Li X, Wang X, Ito A. Tailoring inorganic nanoadjuvants towards nextgeneration vaccines. Chem Soc Rev. 2018;47(13):4954–4980.
  • Singh M. Recent advances in vaccine adjuvants. Pharm Res. 2002;19(6):715–728.
  • Sun B, Ji Z, Liao YP, et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano. 2013;7(12):10834–10849.
  • Leroux-Roels G, Depla E, Hulstaert F, et al. A candidate vaccine based on the hepatitis C E1 protein: tolerability and immunogenicity in healthy volunteers. Vaccine. 2004;22(23–24):3080–3086.
  • Gupta RK, Rost BE, Relyveld E, et al. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol. 1995;6:229–248.
  • Schijns VE. Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol. 2000;12(4):456–463.
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):287–293.
  • Lambrecht BN, Kool M, Willart MAM, et al. Mechanism of action of clinically approved adjuvants. Curr Opin Immunol. 2009;21(1):23–29.
  • Eisenbarth SC, Colegio OR, O’Connor W, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–1126.
  • Kool M, Soullie T, Van Nimwegen M, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008;205(4):869–882.
  • Ghimire TR, Benson RA, Garside P, et al. Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol Lett. 2012;147(1–2):55–62.
  • Goto N, Kato H, Maeyama J, et al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine. 1997;15(12–13):1364–1371.
  • Xu L, Liu Y, Chen Z, et al. Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. Adv Mater. 2013;25(41):5928–5936.
  • Liu J, Feng X, Chen Z, et al. The adjuvant effect of C60 (OH)22 nanoparticles promoting both humoral and cellular immune responses to HCV recombinant proteins. Mater Sci Eng C Mater Biol Appl. 2019;97:753–759.
  • O’Hagan DT, Ott GS, De Gregorio E, et al. The mechanism of action of MF59-An innately attractive adjuvant formulation. Vaccine. 2012;30(29):4341–4348.
  • Garcon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an Adjuvant System containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines. 2012;11(3):349–366.
  • Kong SL, Chui P, Lim B, et al. Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients. Virus Res. 2009;145(2):260–269.
  • Shi S, Zhu H, Xia X, et al. Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37(24):3167–3178.
  • Morel S, Didierlaurent A, Bourguignon P, et al. Adjuvant system AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine. 2011;29(13):2461–2473.
  • Billiau A, Matthys P. Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol. 2001;70(6):849–602461-2473.
  • CCAC. Guidelines on Antibody Production. Ottawa ON CANADA: Canadian Council on Animal Care; 2002.
  • Leenaars PP, Hendriksen CF, de Leeuw WA, et al. The production of polyclonal antibodies in laboratory animals; the report and recommendations of ECVAM workshop 35. Alternatives to Laboratory Animals. 27, 79–102 (1999)
  • Salk JE, Laurent AM. The use of adjuvants in studies on influenza immunization I. Measurements in monkeys of the dimensions of antigenicity of virus-mineral oil emulsions. J Exp Med. 1952;95:429–447.
  • Mussener A, Klareskog L, Lorentzen JC. KleinauS. TNF-α dominates cytokine mRNA expression in lymphoid tissues of rats developing collagen- and oil-induced arthritis. Scand J Immunol. 1995;42(1):128–134.
  • Miller LH, Saul A, Mahanty S. Revisiting Freund’s incomplete adjuvant for vaccines in the developing world. Trends Parasitol. 2005;21(9):412–414.
  • O’Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines. 2007;6(5):699–710.
  • Dupuis M, McDonald DM, Ott G. Distribution of adjuvant MF59 and antigen gD2 after intramuscular injection in mice. Vaccine. 1999;18(5–6):434–439.
  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114.
  • Stephenson I, Bugarini R, Nicholson KG, et al. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infect Dis. 2005;191(8):1210–1215.
  • O’Hagan DT, Ott GS, Van Nest G, et al. The history of MF59® adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines. 2013;12(1):13–30.
  • De Gregorio E, Caproni E, Ulmer JB. Vaccine adjuvants: mode of action. Front Immunol. 2013;4:214.
  • Seubert A, Monaci E, Pizza M, et al. The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol. 2008;180(8):5402–5412.
  • Frey SE, Houghton M, Coates S, et al. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine. 2010;28(38):6367–6373.
  • Koyama S, Coban C, Aoshi T, et al. Innate immune control of nucleic acid-based vaccine immunogenicity. Expert Rev Vaccines. 2009;8(8):1099–1107.
  • Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388(4):621–625.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
  • Steinhagen F, Kinjo T, Bode C, et al. TLR-based immune adjuvants. Vaccine. 2011;29:3341–3355.
  • Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochim Biophys Acta Mol Cell Res. 2002;1589(1):1–13.
  • Durand V, Wong SY, Tough DF, et al. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-α/β. Immunol Cell Biol. 2004;82(6):596–602.
  • Jones GJ, Steinbach S, Clifford D, et al. Immunization with ID83 fusion protein induces antigen-specific cell mediated and humoral immune responses in cattle. Vaccine. 2013;31(45):5250–5255.
  • Cardoso EC, Pereira NZ, Mitsunari GE, et al. TLR7/TLR8 activation restores defective cytokine secretion by myeloid dendritic cells but not by plasmacytoid dendritic cells in HIV-infected pregnant women and newborns. PloS One. 2013;8(6):e67036.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.
  • Zähringer U, Lindner B, Inamura S, et al. TLR2–promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology. 2008;213(3–4):205–224.
  • Brzezinska-Blaszczyk E, Wierzbicki M. Mast cell toll-like receptors (TLRs). Postepy Hig Med Dosw. 2010;64:11–21.
  • Flo TH, Halaas O, Torp S, et al. Differential expression of toll-like receptor 2 in human cells. J Leukoc Biol. 2001;69(3):474–481.
  • de Oliviera Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol. 2012;3:79.
  • Basto AP, Leitao A. Targeting TLR2 for vaccine development. J Immunol Res. 2014;1-22:2014.
  • Zaman M, Toth I. Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure-activity relationships. Front Immunol. 2013;4:318.
  • Chua BY, Eriksson EM, Brown LE, et al. A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine. 2008;26(37):4866–4875.
  • Christiansen D, Earnest-Silveira L, Grubor-Bauk B, et al., Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep. 9(1): 9251. 2019.
  • Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732–738.
  • Smith M, Garcia-Martinez E, Pitter MR, et al. Trial Watch: toll-like receptor agonists in cancer immunotherapy. Oncoimmunology. 2018;7(12):e1526250.
  • Griffiths EA, Srivastava P, Matsuzaki J, et al. NY-ESO-1 vaccination in combination with Decitabine induces antigen-specific T-lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer Res. 2018;24(5):1019–1029.
  • Sabbatini P, Tsuji T, Ferran L, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497–6508.
  • Korsholm KS, Hansen J, Karlsen K, et al. Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine. 2014;32(31):3927–3935.
  • Filskov J, Mikkelsen M, Hansen PR, et al. Broadening CD4 (+) and CD8(+) T cell responses against hepatitis C virus by vaccination with NS3 overlapping peptide panels in cross-priming liposomes. J Virol. 2017;91(14). doi: 10.1128/JVI.00130-17.
  • Filskov J, Andersen P, Agger EM, et al. HCV p7 as a novel vaccine-target inducing multifunctional CD4(+) and CD8(+) T-cells targeting liver cells expressing the viral antigen. Sci Rep. 2019;9(1):14085.
  • Dowling DJ. Recent advances in the discovery and delivery of TLR7/8 agonists as vaccine adjuvants. ImmunoHorizons. 2018;2(6):185–197.
  • Vasilakos JP, Tomai MA. The use of toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev Vaccines. 2013;12(7):809–819.
  • Wille-Reece U, Flynn BJ, Lore K, et al. HIV Gag protein conjugated to a toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc Natl Acad Sci USA. 2005;102(42):15190–15194.
  • Wille-Reece U, CY W, BJ F, et al. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J Immunol. 2005;174:7676–7683.
  • Firbas C, Jilma B, Tauber E, et al. Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects. Vaccine. 2006;24(20):4343–4353.
  • Firbas C, Boehm T, Buerger V, et al. Immunogenicity and safety of different injection routes and schedules of IC41, a hepatitis C virus (HCV) peptide vaccine. Vaccine. 2010;28(12):2397–2407.
  • Klade CS, Schuller E, Boehm T, et al. Sustained viral load reduction in treatment-naive HCV genotype 1 infected patients after therapeutic peptide vaccination. Vaccine. 2012;30(19):2943–2950.
  • Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745.
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20(1):709–760.
  • Tokunaga T, Yamamoto H, Shimada S, et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCGI. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst. 1984;72:955–962.
  • Hartmann G, Weiner GJ, Krieg AM, et al. a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA. 1999;96(16):9305–9310.
  • Klinman DM, Yi AK, Beaucage SL, et al. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc Natl Acad Sci USA. 1996;93(7):2879–2883.
  • Sparwasser T, Miethke T, Lipford G, et al. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-α-mediated shock. Eur J Immunol. 1997;27(7):1671–1679.
  • Nishikawa M, Matono M, Rattanakiat S, et al. Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology. 2008;124(2):247–255.
  • Speiser DE, Lienard D, Rufer N, et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Investig. 2005;115(3):739–746.
  • Krieg AM, Efler SM, Wittpoth M, et al. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J Immunother. 2004;27(6):460–471.
  • Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol. 2001;31(10):3026–3037.
  • Tighe H, Takabayashi K, Schwartz D, et al. Conjugation of immunostimulatory DNA to the short ragweed allergen amba 1 enhances its immunogenicity and reduces its allergenicity. J. Allergy Clin Immunol. 2000;106(1):124–134.
  • Kobayashi H, Horner AA, Takabayashi K, et al. Immunostimulatory DNA pre-priming: a novel approach for prolonged Th1-biased immunity. Cell Immunol. 1999;198(1):69–75.
  • Saito T, Owen DM, Jiang F, et al. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature. 2008;454(7203):523–527.
  • Bolhassani A, Rafati S. Mini-chaperones: potential immuno-stimulators in vaccine design. Hum Vaccin Immunother. 2013;9:153–161.
  • Bolhassani A, Rafati S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines. 2008;7(8):1185–1199.
  • Colaco CA, Bailey CR, Walker KB, et al. Heat shock proteins: stimulators of innate and acquired immunity. Biomed Res Int. 2013:11. Available from:http://dx.doi.org/10.1155/2013/461230
  • Segal BH, Wang XY, Dennis CG, et al. Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discov Today. 2006;11(11–12):534–540.
  • Wan T, Zhou X, Chen G, et al., Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood. 2004;103(5): 1747–1754.
  • Manjili MH, Wang XY, MacDonald IJ, et al. Cancer immunotherapy and heat-shock proteins: promises and challenges. Expert Opin Biol Ther. 2004;4(3):363–373.
  • Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2(3):185–194.
  • Ullrich SJ, Robinson EA, Law LW, et al. A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci USA. 1986;83(10):3121–3125.
  • Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90 and hsp70. J Immunol. 1994;152(11):5398–5403.
  • Tamura Y, Peng P, Liu K, et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997;278(5335):117–120.
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22(1):631–677.
  • Clarke AR. Molecular chaperones in protein folding and translocation. Curr Opin Struct Biol. 1996;6(1):43–50.
  • Bohen SP, Kralli A, Yamamoto KR. Holdem and foldem: chaperones and signal transduction. Science. 1995;268(5215):1303–1305.
  • Przepiorka D, Srivastava PK. Heat shock protein-peptide complexes as immunotherapy for human cancer. Mol Med Today. 1998;4(11):478–484.
  • Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med. 2000;6(4):435–442.
  • Vidyasagar A, Wilson NA, Djamali A. Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair. 2012;5(1):7.
  • Alizadeh S, Irani S, Bolhassani A, et al. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunol Lett. 2019;212:70–80.
  • Basirnejad M, Bolhassani A. Development of HCV therapeutic vaccines using Hp91 peptide and small heat shock protein 20 as an adjuvant. Protein Pept Lett. 2018;25(10):924–932.
  • Pishraft-Sabet L, Kosinska AD, Rafati S, et al. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96. Arch Virol. 2015;160(1):141–152.
  • Roopngam PE, Wannatung T. Polymer-based nanoadjuvants for hepatitis C vaccine: the perspectives of immunologists. Nanomed J. 2020;7(2):98–107.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522.
  • Elamanchili P, Lutsiak CME, Hamdy S, et al. Pathogen-mimicking’ nanoparticles for vaccine delivery to dendritic cells. J Immunother. 2007;30(4):378–395.
  • Peres C, Matos AI, Conniot J, et al. Poly (lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater. 2017;48:41–57.
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 2012;64:72–82.
  • Pagels RF, Prudhomme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release. 2015;219:519–535.
  • Gutjahr A, Phelip C, Coolen AL, et al. Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines (Basel). 2016;4(4):34.
  • Vasir JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2007;59(8):718–728.
  • de Jong S, Chikh G, Sekirov L, et al. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol Immunother. 2007;56(8):1251–1264.
  • Roopngam P, Liu K, Mei L, et al. Hepatitis C virus E2 protein encapsulation into poly D, l-lactic-co-glycolide microspheres could induce mice cytotoxic T-cell response. Int J Nanomedicine. 2016;11:5361.
  • Alonso MJ, Gupta RK, Min C, et al. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine. 1994;12(4):299–306.
  • Abd Ellah NH, Tawfeek HM, John J, et al. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond). 2019;14(11):1471–1491.
  • Morelli AB, Becher D, Koernig S, et al. ISCOMATRIX: a novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J Med Microbiol. 2012;61(7):935–943.
  • Drane D, Maraskovsky E, Gibson R, et al. Priming of CD4+ and CD8+ T cell responses using a HCV core ISCOMATRIXTM vaccine: a phase I study in healthy volunteers. Hum Vaccin. 2009;5(3):151–157.
  • Akache B, Deschatelets L, Harrison BA, et al. Effect of different adjuvants on the longevity and strength of humoral and cellular immune responses to the HCV envelope glycoproteins. Vaccines (Basel). 2019;7(4):204.
  • Muratori C, Bona R, Federico M. Lentivirus-based virus like particles as a new protein delivery tool. Methods Mol Biol. 2010;614:111–124.
  • Huret C, Desjardins D, Miyalou M, et al. Recombinant retrovirus-derived virus-like particle-based vaccines induce hepatitis C virus-specific cellular and neutralizing immune responses in mice. Vaccine. 2013;31(11):1540–1547.
  • Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31:58–83.
  • Da Silva DM, Fausch SC, Verbeek JS, et al. Uptake of human papillomavirus virus-like particles by dendritic cells is mediated by Fcγ receptors and contributes to acquisition of T cell immunity. J Immunol. 2007;178(12):7587–7597.
  • Bosio CM, Moore BD, Warfield KL, et al. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology. 2004;326(2):280–287.
  • Buonaguro L, Racioppi L, Tornesello ML, et al. Induction of neutralizing antibodies and cytotoxic T lymphocytes in Balb/c mice immunized with virus-like particles presenting a gp120 molecule from a HIV-1 isolate of clade A. Antiviral Res. 2002;54(3):189–201.
  • Smith DM, Simon JK, Baker JR. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605.
  • Baumert TF, Ito S, Wong DT, et al. Hepatitis C virus structural proteins assemble into virus like particles in insect cells. J Virol. 1998;72(5):3827–3836.
  • Baumert TF, Vergalla J, Satoi J, et al. Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology. 1999;117(6):1397–1407.
  • Lechmann M, Murata K, Satoi J, et al. Hepatitis C virus–like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology. 2001;34(2):417–423.
  • Jeong SH, Qiao M, Nascimbeni M, et al. Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J Virol. 2004;78(13):6995–7003.
  • Elmowalid GA, Qiao M, Jeong SH, et al. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc Natl Acad Sci USA. 2007;104(20):8427–8432.
  • Chua BY, Johnson D, Tan A, et al. Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. PLoS ONE. 2012;7(10):e47492.
  • Bolhassani A, Davoudi N, Motevalli F, et al. Comparison of HCV core and coreE1E2 virus-like particles generated by stably transfected Leishmania tarentolae for the stimulation of Th1 immune responses in mice. Curr Drug Deliv. 2017;14(7):1040–1049.
  • Qiao M, Murata K, Davis AR, et al. Hepatitis C virus-like particles combined with novel adjuvant systems enhance virus-specific immune responses. Hepatology. 2003;37(1):52–59.
  • Zurbriggen R. Immunostimulating reconstituted influenza virosomes. Vaccine. 2003;21(9–10):921–924.
  • Morse MA, Chapman R, Powderly J, et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with toll-like receptor stimulation to induce immunity to self antigens in cancer patients. Clin Cancer Res. 2011;17(14):4844–4853.
  • Copland MJ, Rades T, Davies NM, et al. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol. 2005;83(2):97–105.
  • Hunziker IP, Grabscheid B, Zurbriggen R, et al. In vitro studies of core peptide-bearing immunopotentiating reconstituted influenza virosomes as a non-live prototype vaccine against hepatitis C virus. Int Immunol. 2002;14(6):615–626.
  • Amacker M, Engler O, Kammer AR, et al. Peptide-loaded chimeric influenza virosomes for efficient in vivo induction of cytotoxic T cells. Int Immunol. 2005;17(6):695–704.
  • Tan K, Li R, Huang X, et al. Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Front Microbiol. 2018;9:783.
  • Hekmat S, Sadat SM, Aslani MM, et al. Truncated core/NS3 fusion protein of HCV adjuvanted with outer membrane vesicles of Neisseria meningitidis Serogroup B: potent inducer of the murine immune system. Iran Biomed J. 2019;23(4):235–245.
  • Borhani K, Bamdad T, Hashempour T. Lenalidomide acts as an adjuvant for HCV DNA vaccine. Int Immunopharmacol. 2017;48:231–240.
  • Belz TF, Olson ME, Giang E, et al. Evaluation of a series of lipidated tucaresol adjuvants in a hepatitis C virus vaccine model. ACS Med Chem Lett. 2020;11(12):2428–2432.
  • Naderi M, Saeedi A, Moradi A, et al. Interleukin-12 as a genetic adjuvant enhances hepatitis C virus NS3 DNA vaccine immunogenicity. Virol Sin. 2013;28(3):167–173.
  • Matsui M, Moriya O, Belladonna ML, et al. Adjuvant activities of novel cytokines, interleukin-23 (IL-23) and IL-27 for induction of hepatitis C virus-specific cytotoxic T lymphocytes in HLA-A*0201 transgenic mice. J Virol. 2004;78(17):9093–9104.
  • Lee H, Jeong M, Oh J, et al. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of Hepatitis C virus infection. Sci Rep. 2017;7(1):43531.
  • Han JW, Sung PS, Hong SH, et al. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. In: J Hepatol. 2020;73(1):72-83. DOI: 10.1016/j.jhep.2020.02.009.
  • Kuprianov VV, Nikolaeva LI, Zykova AA, et al. Combination of three adjuvants enhances the immunogenicity of a recombinant protein containing the CTL epitopes of non-structural proteins of hepatitis C virus. Virus Res. 2020;284:197984.
  • Masalova OV, Lesnova EI, Onishchuk AA, et al. Polyprenyl phosphates induce a high humoral and cellular response to immunization with recombinant proteins of the replicative complex of the hepatitis C virus. Dokl Biochem Biophys. 2018;482:261–263.
  • Masavuli MG, Wijesundara DK, Underwood A, et al. A hepatitis C virus DNA vaccine encoding a secreted, oligomerized form of envelope proteins is highly immunogenic and elicits neutralizing antibodies in vaccinated mice. Front Immunol. 2019;10:1145.
  • Olivera S, Perez A, Falcon V, et al. Protective cellular immune response against hepatitis C virus elicited by chimeric protein formulations in BALB/c mice. Arch Virol. 2020;165(3):593–607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.