1,321
Views
3
CrossRef citations to date
0
Altmetric
Review

Current vaccine approaches and emerging strategies against herpes simplex virus (HSV)

, , , , & ORCID Icon
Pages 1077-1096 | Received 11 Mar 2021, Accepted 22 Jul 2021, Published online: 09 Aug 2021

References

  • Steiner I, Kennedy PG, Pachner AR. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. 2007;6(11):1015–1028.
  • Grinde B. Herpesviruses: latency and reactivation – viral strategies and host response. J Oral Microbiol. 2013;5(1):22766.
  • Sehrawat S, Kumar D, Rouse BT. Herpesviruses: harmonious pathogens but relevant cofactors in other diseases? Front Cell Infect Microbiol. 2018;8. DOI:https://doi.org/10.3389/fcimb.2018.00177
  • Sharma V, Mobeen F, Prakash T. Comparative genomics of herpesviridae family to look for potential signatures of human infecting strains. Int J Genomics. 2016;2016:1–10.
  • Margolis TP, Imai Y, Yang L, et al. Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than hsv-1: role of latency-associated transcripts. J Virol. 2007;81(4):1872–1878.
  • Fact Sheet: Herpes Simplex Virus [Internet]. World heal. organ. 2020 [cited 2020 Apr 6]. Available from: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus.
  • Emmert DH. Treatment of common cutaneous herpes simplex virus infections. Am Fam Physician. 2000;61:1697-1704.
  • Crimi S, Fiorillo L, Bianchi A, et al. Herpes virus, oral clinical signs and qol: systematic review of recent data. Viruses. 2019;11(5):463.
  • Fatahzadeh M, Schwartz RA. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol. 2007;57:737-763. [cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/17939933/
  • Cernik C. The treatment of herpes simplex infections an evidence-based review. Arch Intern Med. 2008;168(11):1137.
  • Goering R, Mims C. Mims’ medical microbiology. 5th editio. philadelphia (PA). Mosby Elsevier; 2013.
  • Kimberlin DW. Neonatal Herpes Simplex Infection. Clin Microbiol Rev. 2004;17(1):1–13.
  • Kim HC, Lee HK. Vaccines against genital herpes: where are we? Vaccines (Basel). 2020;8(3):420.
  • Arii J, Kawaguchi Y. The role of HSV glycoproteins in mediating cell entry. Adv Exp Med Biol. 2018;1045:3-21. [cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/29896660/
  • Kelly BJ, Fraefel C, Cunningham AL, et al. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res. 2009;145:173-186. [cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/19615419
  • Xu X, Che Y, Li Q. HSV-1 tegument protein and the development of its genome editing technology Chunfu Zheng. Virol J. 2016;13(1). https://doi.org/10.1186/s12985-016-0563-x
  • Smith G. Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66(1):153–176.
  • Whitley R, Kimberlin DW, Prober CG. Pathogenesis and disease. In: Arvin A, Campadelli-Fiume G, Mocarski E, editors. Hum herpesviruses biol ther immunoprophyl [Internet]. Cambridge University Press; 2007. [cited 2021 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21348130
  • Antinone SE, Smith GA. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J Virol. 2010;84:1504. [cited 2021 May 26]. Available from:/pmc/articles/PMC2812336/.
  • Ohashi M, Bertke AS, Patel A, et al. Spread of herpes simplex virus to the spinal cord is independent of spread to dorsal root ganglia. J Virol. 2011;85(6):3030–3032.
  • Egan KP, Wu S, Wigdahl B, et al. Immunological control of herpes simplex virus infections. J Neurovirol. 2013;19(4):328–345.
  • Sauerbrei A. Herpes genitalis: diagnosis, treatment and prevention.geburtshilfe frauenheilkd. 2016;76:1310. [cited 2021 May 26]. Available from: /pmc/articles/PMC5177552/.
  • James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. In: Bull World Health Organ. 2020;98:315. [cited 2021 May 26]. Available from: /pmc/articles/PMC7265941/.
  • Mospan CM, Cluck D Prevention and management of genital herpes [internet]. U.S.pharmacist. 2016 [cited 2021 Feb 16]. p. 30–33. Available from: https://www.uspharmacist.com/article/prevention-and-management-of-genital-herpes.
  • Lou Y, Qesmi R, Wang Q, et al. Epidemiological impact of a genital herpes type 2 vaccine for young females. PLoS One. 2012;7. [cited 2021 May 26]. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046027
  • Corey L, Wald A. Maternal and neonatal herpes simplex virus infections. N Engl J Med. 2009;361(14):1376–1385.
  • Harris JB, Holmes AP. Neonatal herpes simplex viral infections and acyclovir: an update. J Pediatr Pharmacol Ther. 2017;22:88-93. [cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/28469532/
  • Straface G, Selmin A, Zanardo V, et al. Herpes simplex virus infection in pregnancy. Infect Dis Obstet Gynecol. 2012;2012:1–6.
  • Linakis S, Reynolds M Disseminated neonatal herpes simplex virus: simplex can be very complex! case stud emerg med learn rounds learn eval adopt right now. 2019.
  • Pinninti SG, Kimberlin DW. Neonatal herpes simplex virus infections Semin. Perinatol. 2018;42:168–175. [cited 2021 May 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/29544668/
  • Looker KJ, Magaret AS, May MT, et al. First estimates of the global and regional incidence of neonatal herpes infection. In: Lancet Glob Heal. 2017;5:e300–e309. [cited 2021 May 26]. Available from:http://www.thelancet.com/article/S2214109X1630362X/fulltext
  • Koganti R, Yadavalli T, Shukla D. Current and emerging therapies for ocular herpes simplex virus type-1 infections. Microorganisms. 2019;7(10):429.
  • Barker NH. Ocular herpes simplex. BMJ Clin. Evid. 2008;2008:0707. [cited 2021 May 26]. Available from: /pmc/articles/PMC2907955/.
  • Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf. 2019;17(1):40–49.
  • Alami Chentoufi A, Kritzer E, Yu DM, et al. Towards a rational design of an asymptomatic clinical herpes vaccine: the old, the new, and the unknown. Clin Dev Immunol. 2012;2012:1–16.
  • Ahmad B, Patel BC. Herpes simplex keratitis [internet]. statpearls. StatPearls Publishing; 2020. [cited 2021 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31424862
  • Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57(5):448–462.
  • Petti S, Lodi G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis. 2019;25(8):1850–1865.
  • Paller AS, Mancini AJ. Viral diseases of the skin. hurwitz clin pediatr dermatology [Internet]. Elsevier; 2011. p. 348–369. [cited 2021 May 26]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781437704129000150
  • Kumar R. Understanding and managing acute encephalitis [Internet]. F1000Research. F1000 Research Ltd; 2020. [cited 2021 May 26]. Available from /pmc/articles/PMC6993835/
  • Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models [Internet]. Mamm. Genome. Springer New York LLC; 2018;29:425–445. [cited 2021 May 26]. Available from /pmc/articles/PMC6132704/
  • Piret J, Boivin G. Immunomodulatory strategies in herpes simplex virus encephalitis [Internet]. clin. microbiol. rev. American Society for Microbiology; 2020. [cited 2021 May 26]. Available from /pmc/articles/PMC7018500/
  • McGrath N, Anderson NE, Croxson MC, et al. Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. J Neurol Neurosurg Psychiatry. Internet]. 1997 [cited 2021 May 26];63:321–326. (3):
  • Cooper J, Kierans C, Defres S, et al.Care beyond the hospital ward: understanding the socio-medical trajectory of herpes simplex virus encephalitis.BMC Health Serv Res.2017;cited 2021 May 26.Internet]. ;17. 1:https://doi.org/10.1186/s12913-017-2608-2
  • Looker KJ, Welton NJ, Sabin KM, et al. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: a population attributable fraction analysis using published epidemiological data. Lancet Infect Dis. 2020;20(2):240–249.
  • Dudek TE, Torres-Lopez E, Crumpacker C, et al. Evidence for differences in immunologic and pathogenesis properties of herpes simplex virus 2 strains from the united states and South Africa. J Infect Dis. 2011;203(10):1434–1441.
  • Kharsany ABM, Karim QA. HIV Infection and. AIDS in sub-saharan africa: current status, challenges and opportunities. Open AIDS J. 2016;10:34-48. [cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/27347270/
  • Rajagopal S, Magaret A, Mugo N, et al. Incidence of herpes simplex virus type 2 Infections in Africa: a systematic review. Open Forum InfectDis. 2014;1. [cited 2021 May 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/25734115/
  • Freeman EE, Weiss HA, Glynn JR, et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS. 2006;20(1):73–83.
  • STD Facts - Genital Herpes (Detailed version) [Internet]. Centers Dis. 2017. Control Prev. [cited 2021 Feb 16]. Available from: https://www.cdc.gov/std/herpes/stdfact-herpes-detailed.htm
  • Guidry JT, Scott RS The interaction between human papillomavirus and other viruses [Internet]. Virus Res. Elsevier B.V.; 2017 [cited 2021 May 26]. p. 139–147. Available from: /pmc/articles/PMC5325789/
  • Smith JS, et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. J Natl Cancer Inst. Internet]. 2002;94(21):1604–1613. [cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/12419786/
  • Cherpes TL, Meyn LA, Krohn MA, et al. Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin Infect Dis. Internet]. 2003 [cited 2021 May 26];37(3):319–325.
  • Esber A, Vicetti Miguel RD, Cherpes TL, et al. Risk of bacterial vaginosis among women with herpes simplex virus type 2 infection: a systematic review and meta-analysis [Internet]. J. Infect. Dis. Oxford University Press; 2015;212:8–17. [cited 2021 May 26]. Available from: https://academic.oup.com/jid/article/212/1/8/1844919
  • Nagot N, Ouedraogo A, Defer MC, et al. Association between bacterial vaginosis and Herpes simplex virus type-2 infection: implications for HIV acquisition studies. Sex Transm Infect. Internet]. 2007 [cited 2021 May 26];83.(5):365–368.
  • Abbai NS, Nyirenda M, Naidoo S, et al. Prevalent herpes simplex virus-2 increases the risk of incident bacterial vaginosis in women from south africa. AIDS Behav. 2018;22(7):2172–2180.Internet]. [cited 2021 May 26];:. Available from .
  • Stanberry LR. Herpes simplex virus vaccines. plotkin’s vaccines [Internet]. Elsevier; 2018:393–399.e2. [cited 2021 May 26]. Available from https://linkinghub.elsevier.com/retrieve/pii/B9780323357616000286
  • Koelle DM, Ghiasi H Prospects for developing an effective vaccine against ocular herpes simplex virus infection [Internet]. curr. eye res. taylor & francis; 2005 [cited 2021 May 27]. p. 929–942. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=icey20
  • Straus SE, Wald A, Kost RG, et al. Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: results of a placebo-controlled vaccine trial. J Infect Dis. Internet]. 1997 [cited 2021 May 27];176(5):1129–1134.
  • Hoshino Y, Pesnicak L, Dowdell KC, et al. Protection from herpes simplex virus (HSV)-2 infection with replication-defective HSV-2 or glycoprotein D2 vaccines in HSV-1-seropositive and HSV-1-seronegative guinea pigs. J Infect Dis. 2009;200(7):1088–1095.
  • Bourne N, Bravo FJ, Francotte M, et al. Herpes simplex virus (HSV) type 2 glycoprotein D subunit vaccines and protection against genital HSV-1 or HSV-2 disease in guinea pigs. J Infect Dis. 2003;187(4):542–549.
  • Lachmann RH. Herpes simplex virus-based vectors. Int J Exp Pathol. 2004;85(4):177–190.
  • Srivastava R, Coulon P-GA, Prakash S, et al. Human epitopes identified from herpes simplex virus tegument protein VP11/12 (UL46) recall multifunctional effector memory CD4 + T EM cells in asymptomatic individuals and protect from ocular herpes infection and disease in “humanized” HLA-DR transgenic mice. J Virol. Internet]. 2020 [cited 2021 Feb 16];94. Available from; : https://doi.org/10.1128/JVI
  • Hosken N, McGowan P, Meier A, et al. Diversity of the CD8 + T-cell response to herpes simplex virus type 2 proteins among persons with genital herpes. J Virol. 2006;80(11):5509–5515.
  • Hensel MT, Marshall JD, Dorwart MR, et al. Prophylactic herpes simplex virus 2 (HSV-2) vaccines adjuvanted with stable emulsion and toll-like receptor 9 agonist induce a robust hsv-2-specific cell-mediated immune response, protect against symptomatic disease, and reduce the latent viral reservoir. J Virol. 2017;91(9). DOI:https://doi.org/10.1128/JVI.02257-16.
  • Srivastava R, Roy S, Coulon P-G, et al. Therapeutic mucosal vaccination of herpes simplex virus 2-infected guinea pigs with ribonucleotide reductase 2 (rr2) protein boosts antiviral neutralizing antibodies and local tissue-resident CD4 + and CD8 + T RM cells associated with protection against recurrent genital herpes Internet]. 2019 [cited 2021 May 27];93. Available from. J Virol. /pmc/articles/PMC6475797/
  • Stanberry LR, Spruance SL, Cunningham AL, et al. Glycoprotein-D–adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347(21):1652–1661.
  • Morello CS, Kraynyak KA, Levinson MS, et al. Inactivated HSV-2 in MPL/alum adjuvant provides nearly complete protection against genital infection and shedding following long term challenge and rechallenge. Vaccine. 2012;30(46):6541–6550.
  • Hook LM, Awasthi S, Dubin J, et al. A trivalent gC2/gD2/gE2 vaccine for herpes simplex virus generates antibody responses that block immune evasion domains on gC2 better than natural infection. Vaccine. 2019;37(4):664–669.
  • Patel CD, Taylor SA, Mehrbach J, et al. Trivalent glycoprotein subunit vaccine prevents neonatal herpes simplex virus mortality and morbidity. J Virol. 2020;94(11). DOI:https://doi.org/10.1128/JVI.02163-19.
  • Morello CS, Levinson MS, Kraynyak KA, et al. Immunization with Herpes Simplex Virus 2 (HSV-2) Genes plus Inactivated HSV-2 Is Highly Protective against Acute and Recurrent HSV-2 Disease. J Virol. 2011;85(7):3461–3472.
  • Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. In: Virology. academic press. 2006;344:230–239. [cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/16364753/
  • Boursnell MEG, Entwisle C, Blakeley D, et al. A genetically inactivated herpes simplex virus type 2 (HSV-2) vaccine provides effective protection against primary and recurrent HSV-2 disease. J Infect Dis. 1997;175(1):16–25.
  • Farrell HE, McLean CS, Harley C, et al. Vaccine potential of a herpes simplex virus type 1 mutant with an essential glycoprotein deleted. J Virol. 1994;68(2):927–932.
  • Beilstein F, Cohen GH, Eisenberg RJ, et al. Dynamic organization of Herpesvirus glycoproteins on the viral envelope revealed by super-resolution microscopy. In: PLoS Pathog. 2019;15:e1008209. [cited 2021 May 26]. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1008209
  • Johnson DC, Wisner TW, Wright CC. Herpes simplex virus glycoproteins gB and gD function in a redundant fashion to promote secondary envelopment. J Virol. 2011;85(10):4910–4926.
  • De Bruyn G, Vargas-Cortez M, Warren T, et al. A randomized controlled trial of a replication defective (gH deletion) herpes simplex virus vaccine for the treatment of recurrent genital herpes among immunocompetent subjects. Vaccine. 2006;24(7):914–920.
  • Thebeau LG, Vagvala SP, Wong YM, et al. B7 costimulation molecules expressed from the herpes simplex virus 2 genome rescue immune induction in B7-deficient mice. J Virol. 2007;81(22):12200–12209.
  • Vagvala SP, Thebeau LG, Wilson SR, et al. Virus-encoded B7-2 costimulation molecules enhance the protective capacity of a replication-defective herpes simplex virus type 2 Vaccine in immunocompetent mice. J Virol. 2009;83(2):953–960.
  • Da Costa XJ, Jones CA, Knipe DM. Immunization against genital herpes with a vaccine virus that has defects in productive and latent infection. Proc Natl Acad Sci U S A. 1999;96(12):6994–6998.
  • Diaz F, Gregory S, Nakashima H, et al. Intramuscular delivery of replication-defective herpes simplex virus gives antigen expression in muscle syncytia and improved protection against pathogenic HSV-2 strains. Virology. 2018;513:129–135.
  • McLean CS. Protective vaccination against primary and recurrent disease caused by Herpes simplex virus (HSV) type 2 using a genetically disabled HSV-1. Pediatr Infect Dis J. 1995;14(6):556.
  • Gyotoku T, Ono F, Aurelian L. Development of HSV-specific CD4+ Th1 responses and CD8+ cytotoxic T lymphocytes with antiviral activity by vaccination with the HSV-2 mutant ICP10ΔPK. Vaccine. 2002;20(21–22):2796–2807.
  • Burn Aschner C, Knipe DM, Herold BC. Model of vaccine efficacy against HSV-2 superinfection of HSV-1 seropositive mice demonstrates protection by antibodies mediating cellular cytotoxicity. Npj Vaccines. 2020;5(1). DOI:https://doi.org/10.1038/s41541-020-0184-7
  • Dropulic LK, Oestreich MC, Pietz HL, et al. A randomized, double-blinded, placebo-controlled, phase 1 study of a replication-defective Herpes Simplex Virus (HSV) Type 2 Vaccine, HSV529, in Adults with or Without HSV Infection. J Infect Dis. 2019;220(6):990–1000.
  • Rupprecht C, Nagarajan T, et al. Attenuated Vaccines for Veterinary Use. In: Vos A, Neumann G, Hundt B, editors. Curr lab tech rabies diagnosis, res prev. amsterdam. Academic Press; 2015. p. 237–244.
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–517.
  • Baxter D. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med (Chic Ill). 2007;57(8):552–556.[cited 2021 May 26]. Available from:https://pubmed.ncbi.nlm.nih.gov/18045976/
  • Vartak A, Sucheck SJ. Recent advances in subunit vaccine carriers. Vaccines (Basel). 2016;4(2):12.
  • Kemble G, Spaete R. Herpes simplex vaccines [Internet]. In: Arvin A, Campadelli-Fiume G, Mocarski E, editors. Hum. herpesviruses biol. Ther. Immunoprophyl. Cambridge University Press; 2007. [cited 2021 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21348132
  • Stanfield BA, Stahl J, Chouljenko VN, et al. A single intramuscular vaccination of mice with the HSV-1 VC2 virus with mutations in the glycoprotein K and the membrane protein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One. 2014;9(10):e109890.
  • Bernstein DI, Cardin RD, Pullum DA, et al. Duration of protection from live attenuated vs. Sub unit HSV-2 vaccines in the Guinea pig model of genital herpes: reassessing efficacy using endpoints from clinical trials. PLoS One. 2019;14(3):e0213401.
  • Gmyrek GB, Filiberti A, Montgomery M, et al. Herpes Simplex Virus 1 (HSV-1) 0ΔNLS Live-Attenuated Vaccine Protects against Ocular HSV-1 Infection in the Absence of Neutralizing Antibody in HSV-1 gB T Cell Receptor-Specific Transgenic Mice. J Virol. 2020;94(24). https://doi.org/10.1128/JVI.01000-20.
  • Bernstein DI, Pullum DA, Cardin RD, et al. The HSV-1 live attenuated VC2 vaccine provides protection against HSV-2 genital infection in the guinea pig model of genital herpes. Vaccine. 2019;37(1):61–68.
  • Meignier B, Longnecker R, Roizman B. In vivo behavior of genetically engineered herpes simplex viruses r7017 and r7020: construction and evaluation in rodents. J Infect Dis. 1988;158(3):602–614.
  • Awasthi S, Zumbrun EE, Si H, et al. Live attenuated herpes simplex virus 2 glycoprotein E deletion mutant as a vaccine candidate defective in neuronal spread. J Virol. 2012;86(8):4586–4598.
  • Spector FC, Kern ER, Palmer J, et al. Evaluation of a live attenuated recombinant virus RAV 9395 as a herpes simplex virus type 2 vaccine in guinea pigs. J Infect Dis. 1998;177(5):1143–1154.
  • Halford WP, Püschel R, Gershburg E, et al. A Live-Attenuated HSV-2 ICP0− virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS One. 2011;6(3):e17748.
  • Naidu SK, Nabi R, Cheemarla NR, et al. Intramuscular vaccination of mice with the human herpes simplex virus type-1(HSV-1) VC2 vaccine, but not its parental strain HSV-1(F) confers full protection against lethal ocular HSV-1 (McKrae) pathogenesis. PLoS One. 2020;15(2):e0228252.
  • Bernstein DI, Cardin RD, Smith GA, et al. The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. Npj Vaccines. 2020;5(1). https://doi.org/10.1038/s41541-020-00254-8.
  • Clark DP, Pazdernik NJ, Genetics B. Mol Biol. In: Elsevier. 2013. p. e641–e646. [cited 2021 Feb 16]. Available from:https://www.sciencedirect.com/science/article/pii/B9780123785947000603
  • Marintcheva B. Viruses as tools for vaccine development. harnessing the power of viruses. Elsevier; 2018. p. 217–242.
  • Evans TG, Wloch M. DNA vaccines for human herpesviruses [Internet]. In: Arvin A, Campadelli-Fiume G, Mocarski E, editors. Hum. herpesviruses biol. ther. immunoprophyl. Cambridge University Press; 2007. [cited 2021 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21348119
  • Khan KH DNA vaccines: roles against diseases [Internet]. GERMS. European Academy of HIV/AIDS and Infectious Diseases; 2013 [cited 2021 Feb 16]. p. 26–35. Available from: /pmc/articles/PMC3882840/
  • Chandra J, Woo WP, Dutton JL, et al. Immune responses to a HSV-2 polynucleotide immunotherapy COR-1 in HSV-2 positive subjects: a randomized double blinded phase I/IIa trial. PLoS One. 2019;14(12):1–20.
  • Ghiasi H, Cai S, Slanina S, et al. Vaccination of mice with herpes simplex virus type 1 glycoprotein D DNA produces low levels of protection against lethal HSV-1 challenge. Antiviral Res. 1995;28(2):147–157.
  • Cattamanchi A, Posavad CM, Wald A, et al. Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. Clin Vaccine Immunol. 2008Nov;15(11):1638-43. DOI: https://doi.org/10.1128/CVI.00167-08.
  • Kim HC, Oh DS, Park JH, et al. Multivalent DNA vaccine protects against genital herpes by T-cell immune induction in vaginal mucosa. Antiviral Res. 2020;177:104755.
  • Shlapobersky M, Marshak JO, Dong L, et al. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol. 2012;93(6):1305–1315.
  • Veselenak RL, Shlapobersky M, Pyles RB, et al. A Vaxfectin®-adjuvanted HSV-2 plasmid DNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccine. 2012;30(49):7046–7051.
  • Awasthi S, Hook LM, Shaw CE, et al. An HSV-2 trivalent vaccine is immunogenic in rhesus macaques and highly efficacious in guinea pigs. PLoS Pathog. 2017;13(1):e1006141.
  • Egan K, Hook LM, Naughton A, et al. Herpes simplex virus type 2 trivalent protein vaccine containing glycoproteins C, D and E protects guinea pigs against HSV-1 genital infection. Hum Vaccines Immunother. 2020;16(9):2109–2113. Internet]. ;:. Available from.
  • ClinicalTrials.gov. Safety of a herpes simplex candidate vaccine (gd2t) with mpl and its efficacy to prevent genital herpes disease [internet]. identifier: NCT00699764. 2016 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT00699764?term=vaccine&cond=Herpes&draw=2&rank=2
  • ClinicalTrials.gov. Evaluating new formulation of therapeutic HSV-2 Vaccine [Internet]. Identifier: NCT02515175. 2018 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT02515175?term=vaccine&cond=HSV&draw=3&rank=13
  • ClinicalTrials.gov. HerpeVac trial for young women [Internet]. Identifier: NCT00057330. 2018 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT00057330?term=vaccine&cond=HSV&draw=3&rank=14
  • ClinicalTrials.gov. Safety study of herpes simplex vaccine in HSV seronegative and seropositive females between 10 and 17 years old [internet]. identifier: NCT00224484. 2019 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT00224484?term=vaccine&cond=HSV&draw=2&rank=4.
  • Leroux-Roels G, Clément F, Vandepapelière P, et al. Immunogenicity and safety of different formulations of an adjuvanted glycoprotein D genital herpes vaccine in healthy adults A double-blind randomized trial. Hum Vaccines Immunother. 2013;9(6):1254–1262.
  • ClinicalTrials.gov. Safety and efficacy trial of DNA vaccines to treat genital herpes in adults [Internet]. Identifier: NCT02030301. 2019 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT02030301?term=vaccine&cond=HSV&draw=3&rank=15.
  • ClinicalTrials.gov. Safety and efficacy study of herpes simplex virus type 2 (HSV-2) Therapeutic DNA Vaccine (HSV-2) [Internet]. Identifier: NCT02837575. 2019 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT02837575?term=vaccine&cond=HSV&draw=3&rank=18.
  • ClinicalTrials.gov. Safety and efficacy of 4 Investigational HSV 2 vaccines in adults with recurrent genital herpes caused by HSV 2 (HSV15) [Internet]. Identifier: NCT04222985. 2020 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04222985?term=vaccine&cond=HSV&draw=3&rank=17.
  • ClinicalTrials.gov. Study of the safety of a particular herpes vaccine in adults with or without herpes infection [Internet]. Identifier: NCT01915212. 2021 [cited 2021 Feb 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT01915212?term=vaccine&cond=HSV&draw=4&rank=22.
  • Laczkó D, Hogan MJ, Toulmin SA, et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in Mice. Immunity. 2020;53(4):724–732.e7.
  • Egan KP, Hook LM, Naughton A, et al. An HSV-2 nucleoside-modified mRNA genital herpes vaccine containing glycoproteins gC, gD, and gE protects mice against HSV-1 genital lesions and latent infection. PLoS Pathog. 2020;16(7):e1008795.
  • LaTourette PC, Awasthi S, Desmond A, et al. Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine. Vaccine. 2020;38(47):7409–7413.
  • Freyn AW, Ramos da Silva J, VC R, et al. A multi-targeting, nucleoside-modified mrna influenza virus vaccine provides broad protection in mice. Mol Ther. 2020;28(7):1569–1584.
  • Saunders KO, Pardi N, Parks R, et al. Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. In bioRxiv. 2021 Apr 9;6(1):50.
  • Dutta K. Multi valent DNA vaccine against group A human rotavirus: an in-silico investigation. In bioRxiv. 2020. Available from:https://www.biorxiv.org/content/10.1101/2020.01.13.903781v2
  • Ramsey NLM, Visciano M, Hunte R, et al. A Single-Cycle Glycoprotein D deletion viral vaccine candidate, ΔgD-2, Elicits polyfunctional antibodies that protect against ocular herpes simplex virus. J Virol. Internet]. 2020 [cited 2021 May 27];94. Available from. ;(21–22):2796–2807.
  • Caputo A, Marconi P Vaccine development for herpes simplex viruses: a commentary of special issue editors [Internet] Vaccines. MDPI AG; 2021 [cited 2021 May 26]. p. 1–4. Available from:https://www.mdpi.com/journal/vaccines
  • Aschner CB, Pierce C, Knipe DM, et al. Vaccination route as a determinant of protective antibody responses against herpes simplex virus. Vaccines (Basel). 2020;8:1–14.
  • Bernstein DI, Flechtner JB, McNeil LK, et al. Therapeutic HSV-2 vaccine decreases recurrent virus shedding and recurrent genital herpes disease. Vaccine. 2019;37:3443–3450.
  • Genocea Announces Material Transfer and License Option [Internet]. [ cited 2021 May 26]. Available from: https://www.globenewswire.com/news-release/2020/05/19/2035543/0/en/Genocea-Announces-Material-Transfer-and-License-Option-Agreement-with-Shionogi-for-Proprietary-GEN-003-HSV-2-Antigens.html
  • Bernstein D Glycoprotein D adjuvant herpes simplex virus vaccine [Internet]. expert rev. vaccines. taylor & Francis; 2005 [cited 2021 May 26]. p. 615–627. Available from: https://www.tandfonline.com/doi/abs/10.1586/14760584.4.5.615
  • Gottlieb SL, Johnston C Future prospects for new vaccines against sexually transmitted infections [Internet]. curr. opin. infect. dis. lippincott williams and wilkins; 2017 [cited 2021 May 26]. p. 77–86. Available from: /pmc/articles/PMC5325242/
  • Davies MN, Flower DR. Harnessing bioinformatics to discover new vaccines. In: Drug discov. today. elsevier current trends. 2007May;12(9-10):389-95. DOI: https://doi.org/10.1016/j.drudis.2007.03.010. Available from:https://pubmed.ncbi.nlm.nih.gov/17467575/
  • Sadat SM, Aghadadeghi MR, Yousefi M, et al. Bioinformatics Analysis of SARS-CoV-2 to approach an effective vaccine candidate against COVID-19. Mol Biotechnol. 2021;63(5):389–409.Internet]. [cited 2021 May 26];:. Available from .
  • Nandy A, Basak SC. Bioinformatics in design of antiviral vaccines. Encycl Biomed Eng [Internet]. Elsevier; 2019 cited 2021 May 26. p. 280–290. Available from: /pmc/articles/PMC7149942/
  • María RR, Arturo CJ, Alicia JA, et al. 2017. The impact of bioinformatics on vaccine design and development. Vaccines (Basel). Internet]. InTech; [cited 2021 May 26]. Available from https://doi.org/10.5772/intechopen.69273
  • Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer [Internet]. Expert Rev. Vaccines. Taylor and Francis Ltd; 2020. [cited 2021 May 26]. Available from https://www.tandfonline.com/action/journalInformation?journalCode=ierv20
  • Sarkar B, Ullah MA, Araf Y, et al. Designing novel epitope-based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the immunoinformatics approach. J Biomol Struct Dyn. 2020; Internet]. [cited 2021 May 26]; 1–21. https://doi.org/10.1080/07391102.2020.1803969.
  • Hasan M, Islam S, Chakraborty S, et al. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): an exploratory immunoinformatic approach. J Biomol Struct Dyn. 2020;38(10):2898–2915. Internet]. ;:. Available from.
  • Ma Y, He B Recognition of herpes simplex viruses: toll-like receptors and beyond. bone [Internet]. 2014;23:1–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.
  • Reinert LS, Harder L, Holm CK, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest. 2012;122(4):1368–1376.
  • Sironi M, Peri AM, Cagliani R, et al. TLR3 mutations in adult patients with herpes simplex virus and varicella-zoster virus encephalitis. J Infect Dis. 2017;215(9):1430–1434.
  • Mielcarska MB, Bossowska-Nowicka M, Toka FN. Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis. J Neuroimmunol Internet]. 2018;316:65–73. Available from. ;:.
  • Lim HK, Seppänen M, Hautala T, et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology. 2014;83(21):1888–1897.
  • Gao D, Ciancanelli MJ, Zhang P, et al. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J Clin Invest. 2021;5. [cited 2021 May 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/25309527/
  • Ariza ME, Glaser R, Williams MV. Human herpesviruses-1 encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity. Front Microbiol. 2005;175(7):4189–4193. [cited 2021 May 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/16177057/
  • Aravalli RN, Hu S, Rowen TN, et al. Cutting Edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol. 2005;175(7):4189–4193.
  • Lund J, Sato A, Akira S, et al. Toll-like Receptor 9–mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 2003;198(3):513–520.
  • Ashkar AA, Yao XD, Gill N, et al. Toll-like receptor (TLR)-3, but not TLR4, agonist protects against genital herpes infection in the absence of inflammation seen with CpG DNA. J Infect Dis. 2004;190(10):1841–1849.
  • Lima GK, Zolini GP, Mansur DS, et al. Toll-Like Receptor (TLR) 2 and TLR9 expressed in trigeminal ganglia are critical to viral control during herpes simplex virus 1 infection. Am J Pathol. 2010;177(5):2433–2445.
  • Uyangaa E, Choi JY, Patil AM, et al. Dual TLR2/9 recognition of herpes simplex virus infection is required for recruitment and activation of monocytes and NK cells and restriction of viral dissemination to the central nervous system. Front Immunol. 2018;9. [cited 2021 May 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/29760708/
  • Sørensen LN, Reinert LS, Malmgaard L, et al. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol. 2008;181(12):8604–8612.
  • Lucinda N, Figueiredo MM, Pessoa NL, et al. Dendritic cells, macrophages, NK and CD8+ T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virol J. 2017;14(1):1–15.
  • Merkl PE, Orzalli MH, Knipe DM. Mechanisms of Host IFI16, PML, and daxx protein restriction of herpes simplex virus 1 replication. J Virol. 2018;92(10):1–19.
  • Johnson KE, Bottero V, Flaherty S, et al. IFI16 Restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog. 2014;10.[cited 2021 May 27]. Available from:https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004503
  • Triantafilou K, Eryilmazlar D, Triantafilou M. Herpes simplex virus 2-induced activation in vaginal cells involves Toll-like receptors 2 and 9 and DNA sensors DAI and IFI16. Am J Obstet Gynecol. 2014;210(2):122.e1–122.e10. Internet]. ;:. Available from.
  • Danastas K, Miranda-Saksena M, Cunningham AL. Herpes simplex virus type 1 interactions with the interferon system. Int J Mol Sci. 2020;21(14):1–31.
  • Li X-D, Wu J, Gao D, et al. Pivotal Roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. 2013;341:1390–1394. Available from:https://pubmed.ncbi.nlm.nih.gov/23989956/
  • Reinert LS, Lopušná K, Winther H, et al. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun. 2016;7. [cited 2021 May 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/27830700/
  • Orzalli MH, Broekema NM, Diner BA, et al. CGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci U S A. 2015;112(14):E1773–E1781.
  • Zhang J, Zhao J, Xu S, et al. Species-Specific Deamidation of cGAS by herpes simplex virus UL37 protein facilitates viral replication. In: Cell host microbe. 2009;1(3):979–1002. [cited 2021 May 26]. Available from: /pmc/articles/PMC3185534/.
  • Chew T, Taylor KE, Mossman KL. Innate and adaptive immune responses to herpes simplex virus. Viruses. 2009;1(3):979–1002.
  • Gierynska M, Kumaraguru U, Eo S-K, et al. Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with cpg-peptide complexes. J Virol. 2002;76(13):6568–6576.
  • Ďurmanová V, Adamkov M, Rajčáni J. Hepes Simplex Virus 1 and 2 vaccine design: what can we learn from the past? Intechopen. Internet]. 2016;1–15. Available fromhttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
  • Ando M, Ito M, Srirat T, et al. Memory T cell, exhaustion, and tumor immunity. Immunol Med. 2020;43(1):1–9. Internet]. ;:. Available from.
  • Coulon P-G, Roy S, Prakash S, et al. Upregulation of Multiple CD8 + T Cell exhaustion pathways is associated with recurrent ocular herpes simplex virus type 1 infection. J Immunol. 2020;205(2):454–468.
  • Aurelian L. Herpes simplex virus type 2 vaccines: new ground for optimism? Clin Diagn Lab Immunol. 2004;11:437–445.
  • Sloan DD, Jerome KR. Herpes simplex virus remodels t-cell receptor signaling, resulting in p38-dependent selective synthesis of interleukin-10. J Virol. 2007;81(22):12504–12514.
  • Tang VA, Rosenthal KL. Intravaginal infection with herpes simplex virus type-2 (HSV-2) generates a functional effector memory T cell population that persists in the murine genital tract. J Reprod Immunol. 2010;87(1–2):39–44. Internet]. ;:. Available from.
  • Zhang J, Liu H, Wei B. Immune response of T cells during herpes simplex. J Zhejiang Univ B. 2017;18(4):277–288.
  • Roychoudhury P, Swan DA, Duke E, et al. Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J Clin Invest. 2020;130(6):2903–2919.
  • Heilingloh CS, Lull C, Kleiser E, et al. Herpes simplex virus type 2 is more difficult to neutralize by antibodies than herpes simplex virus type 1. Vaccines (Basel). Internet]. 2020 [cited 2021 May 27];8:1–11. Available from. ;:. . : https://pubmed.ncbi.nlm.nih.gov/32867086/
  • Christensen D Vaccine adjuvants: why and how. Hum Vaccines Immunother [Internet]. 2016;12:2709–2711. Available from: https://10.1080/21645515.2016.1219003.
  • Pirahmadi S, Zakeri S, Mehrizi AA, et al. Combining Monophosphoryl Lipid A (MPL), CpG Oligodeoxynucleotide (ODN), and QS-21 adjuvants induces strong and persistent functional antibodies and t cell responses against cell-traversal protein for ookinetes and sporozoites (celtos) of plasmodium falcip. 2019;87:1–22.
  • Gnjatic S, Sawhney NB, Bhardwaj N. Toll-like receptor agonists are they good adjuvants? Cancer J. 2010;16(4):382–391.
  • Marinaik CB, Kingstad-Bakke B, Lee W, et al. Programming multifaceted pulmonary T cell immunity by combination adjuvants. Cell Reports Med [Internet]. 2020;1:100095. [cited 2021 May 27]. Available from:https://pubmed.ncbi.nlm.nih.gov/32984856/
  • Tan X, Sande JL, Pufnock JS, et al. Retinoic Acid as a Vaccine Adjuvant Enhances CD8 + T cell response and mucosal protection from viral challenge. J Virol. 2011;85(16):8316–8327.
  • Schellack C, Prinz K, Egyed A, et al. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine. 2006;24(26):5461–5472.
  • Wizel B, Persson J, Thörn K, et al. Nasal and skin delivery of IC31 ®-adjuvanted recombinant HSV-2 gD protein confers protection against genital herpes. Vaccine. 2012;30(4361–4368):4361–4368. Internet]. ;:. Available from.
  • Pavot V, Bisceglia H, Guillaume F, et al. A novel vaccine adjuvant based on straight polyacrylate potentiates vaccine-induced humoral and cellular immunity in cynomolgus macaques. Hum Vaccines Immunother. 2020;1–13. https://doi.org/10.1080/21645515.2020.1855956
  • Orr MT, Khandhar AP, Seydoux E, et al. Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. npj. Vaccines (Basel). 4 Internet]. 2019;. Available from… https://doi.org/10.1038/s41541-018-0094-0.
  • Finessi V, Nicoli F, Gallerani E, et al. Effects of different routes of administration on the immunogenicity of the Tat protein and a Tat-derived peptide. Hum Vaccines Immunother. 2015;11(6):1489–1493.
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol. 2009;183(11):6883–6892.
  • Kaufman DR, Liu J, Carville A, et al. Trafficking of Antigen-Specific CD8 + T lymphocytes to mucosal surfaces following intramuscular vaccination. J Immunol. 2008;181(6):4188–4198.
  • Sato A, Suwanto A, Okabe M, et al. Vaginal Memory T cells induced by intranasal vaccination are critical for protective T cell recruitment and prevention of genital HSV-2 Disease. J Virol. 2014;88(23):13699–13708.
  • Bernstein DI, Cardin RD, Bravo FJ, et al. Intranasal nanoemulsion-adjuvanted HSV-2 subunit vaccine is effective as a prophylactic and therapeutic vaccine using the guinea pig model of genital herpes. Vaccine. 2019;37(43):6470–6477. Internet]. ;:. Available from.
  • Pais R, Omosun Y, Igietseme JU, et al. Route of vaccine administration influences the impact of Fms-like tyrosine kinase 3 ligand (Flt3L) on chlamydial-specific protective immune responses. Front Immunol. 2019;10:1–13.
  • Pais R, Omosun Y, He Q, et al. Rectal administration of a chlamydial subunit vaccine protects against genital infection and upper reproductive tract pathology in mice. PLoS One. 2017;12:1–18. Internet]. ;:. Available from.
  • Knipe DM, Corey L, Cohen JI, et al. Summary and recommendations from a National Institute of Allergy and Infectious Diseases (NIAID) workshop on “next generation herpes simplex virus vaccines” [Internet]. Vaccine. cited 2021 May 26. 2014;3214:1561–1562.
  • Joyce JD, Patel AK, Murphy B, et al. Assessment of two novel live-attenuated vaccine candidates for herpes simplex virus 2 (Hsv-2) in guinea pigs. Vaccines (Basel). 2021;9(3):258.Internet]. [cited 2021 May 26];:.Available from .
  • Truong NR, Smith JB, Sandgren KJ, et al. Mechanisms of immune control of mucosal HSV infection: a guide to rational vaccine design [Internet]. Front. Immunol. Frontiers Media S.A; 2019 [cited 2021 May 27]. p. 373. Available from: www.frontiersin.org.
  • Bernstein DI, Cardin RD, Bravo FJ, et al. Successful application of prime and pull strategy for a therapeutic HSV vaccine. npj. Vaccines (Basel) Internet]. 2019 [cited 2021 May 26];4:1–10. Available from. ;(). . Doi: https://doi.org/10.1038/s41541-019-0129-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.