793
Views
8
CrossRef citations to date
0
Altmetric
Review

Influenza vaccine: progress in a vaccine that elicits a broad immune response

, , ORCID Icon, , , , & show all
Pages 1097-1112 | Received 08 May 2021, Accepted 03 Aug 2021, Published online: 17 Aug 2021

References

  • Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 2018;391(10127):1285–1300.
  • Servick K. COVID-19 measures also suppress flu—for now. Science. 2021;371(6526):224.
  • Petrie JG, Malosh RE, Cheng CK, et al. The household influenza vaccine effectiveness study: lack of antibody response and protection following receipt of 2014-2015 influenza vaccine. Clin Infect Dis. 2017;65(10):1644–1651.
  • Kelvin DJ, Farooqui A. Extremely low vaccine effectiveness against influenza H3N2 in the elderly during the 2012/2013 flu season. J Infect Dev Ctries. 2013;7(3):299–301.
  • Tenforde MW, Kondor RJG, Chung JR, et al. , Effect of antigenic drift on influenza vaccine effectiveness in the United States - 2019-2020. Clin Infect Dis, 2020.
  • McElhaney JE. Influenza vaccine responses in older adults. Ageing Res Rev. 2011;10(3):379–388.
  • Beran J, Reynales H, Poder A, et al., Prevention of influenza during mismatched seasons in older adults with an MF59-adjuvanted quadrivalent influenza vaccine: a randomised, controlled, multicentre, phase 3 efficacy study. Lancet Infect Dis, 2021.
  • DiazGranados CA, Perera R, Valkenburg SA, et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N Engl J Med. 2014;371(7):635–645.
  • Cowling BJ, et al. Comparative immunogenicity of several enhanced influenza vaccine options for older adults: a randomized, controlled trial. Clin Infect Dis. 2020;71(7):1704–1714.
  • Zost SJ, Parkhouse K, Gumina ME, et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Nat Acad Sci. 2017 114;(47)12578.
  • Flannery B, Chung JR, Thaker SN, et al. Interim Estimates of 2016-17 Seasonal Influenza Vaccine Effectiveness - United States, February 2017. MMWR Morb Mortal Wkly Rep. 2017;66(6):167–171.
  • Bart S, Cannon K, Herrington D, et al. Immunogenicity and safety of a cell culture-based quadrivalent influenza vaccine in adults: a Phase III, double-blind, multicenter, randomized, non-inferiority study. Hum Vaccin Immunother. 2016;12(9):2278–2288.
  • Control. ECFDPA. Systematic review of the efficacy, effectiveness and safety of newer and enhanced seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals aged 18 years and over. Stockholm: ECDC; 2020. p. 144.
  • Barr IG, Donis RO, Katz JM, et al. Cell culture-derived influenza vaccines in the severe 2017-2018 epidemic season: a step towards improved influenza vaccine effectiveness. NPJ Vaccines. 2018;3(1):44.
  • Boikos C, Imran M, Nguyen VH, et al. Effectiveness of the cell–derived inactivated quadrivalent influenza vaccine in individuals at high risk of influenza complications in the 2018-2019 US Influenza Season. Open Forum Infectious Diseases; 2021Apr 2;8(7):ofab167.
  • Smith G, Liu Y, Flyer D, et al. Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M™ adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes. Vaccine. 2017;35(40):5366–5372.
  • Shinde V, Fries L, Wu Y, et al. Improved titers against influenza drift variants with a nanoparticle vaccine. N Engl J Med. 2018;378(24):2346–2348.
  • Shinde V, Cho I, Plested J, et al. Comparison of the safety and immunogenicity of a novel matrix-m-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomized controlled trial. Lancet Infect Dis. 2021;
  • Ueda G, Antanasijevic A, Fallas JA, et al. Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. Elife. 2020;9. https://doi.org/10.7554/eLife.57659.
  • Boyoglu-Barnum S, Ellis D, Gillespie RA, et al., Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature. 2021;592(7855): 623–628.
  • Levine MZ, Holiday C, Jefferson S, et al. Heterologous prime-boost with A(H5N1) pandemic influenza vaccines induces broader cross-clade antibody responses than homologous prime-boost. NPJ Vaccines. 2019;4(1):22.
  • Nolan T, Izurieta P, Lee B-W, et al. Heterologous Prime-Boost Vaccination Using an AS03 B -Adjuvanted Influenza A(H5N1) Vaccine in Infants and Children <3 Years of Age. J Infect Dis. 2014;210(11):1800–1810.
  • Hoft DF, Babusis E, Worku S, et al. Live and Inactivated Influenza Vaccines Induce Similar Humoral Responses, but Only Live Vaccines Induce Diverse T-Cell Responses in Young Children. J Infect Dis. 2011;204(6):845–853.
  • Rudenko L, Naykhin A, Donina S, et al. Assessment of immune responses to H5N1 inactivated influenza vaccine among individuals previously primed with H5N2 live attenuated influenza vaccine. Hum Vaccin Immunother. 2015;11(12):2839–2848.
  • Talaat KR, Luke CJ, Khurana S, et al. A live attenuated influenza A(H5N1) vaccine induces long-term immunity in the absence of a primary antibody response. J Infect Dis. 2014;209(12):1860–1869.
  • Halliley JL, Khurana S, Krammer F, et al. High-Affinity H7 Head and Stalk Domain-Specific Antibody Responses to an Inactivated Influenza H7N7 vaccine after priming with live attenuated influenza vaccine. J Infect Dis. 2015;212(8):1270–1278.
  • Sobhanie M, Matsuoka Y, Jegaskanda S, et al. Evaluation of the Safety and Immunogenicity of a Candidate Pandemic Live Attenuated Influenza Vaccine (pLAIV) Against Influenza A(H7N9). J Infect Dis. 2015;213(6):922–929.
  • Krug RM. Functions of the influenza A virus NS1 protein in antiviral defense. Curr Opin Virol. 2015;12:1–6.
  • Richt JA, Garcia-Sastre A. Attenuated influenza virus vaccines with modified NS1 proteins. Curr Top Microbiol Immunol. 2009;333:177–195.
  • Ferko B, Stasakova J, Romanova J, et al. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol. 2004;78(23):13037–13045.
  • Wressnigg N, Voss D, Wolff T, et al. Development of a live-attenuated influenza B DeltaNS1 intranasal vaccine candidate. Vaccine. 2009;27(21):2851–2857.
  • Romanova J, Krenn BM, Wolschek M, et al. Preclinical evaluation of a replication-deficient intranasal DeltaNS1 H5N1 influenza vaccine. PLoS One. 2009;4(6):e5984.
  • Steel J, Lowen AC, Pena L, et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol. 2009;83(4):1742–1753.
  • Wressnigg N, Shurygina AP, Wolff T, et al. Influenza B mutant viruses with truncated NS1 proteins grow efficiently in Vero cells and are immunogenic in mice. The Journal of general virology 2009; 90(Pt 2): 366–74.
  • Wacheck V, Egorov A, Groiss F, et al. A novel type of influenza vaccine: safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1. J Infect Dis. 2010;201(3):354–362.
  • Morokutti A, Muster T, Ferko B. Intranasal vaccination with a replication-deficient influenza virus induces heterosubtypic neutralising mucosal IgA antibodies in humans. Vaccine. 2014;32(17):1897–1900.
  • Egorov A, Brandt S, Sereinig S, et al. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol. 1998;72(8):6437–6441.
  • Wang P, Zheng M, Lau SY, et al. Generation of DelNS1 Influenza Viruses: a Strategy for Optimizing Live Attenuated Influenza Vaccines. mBio. 2019;10(5):5.
  • May M. After COVID-19 successes, researchers push to develop mRNA vaccines for other diseases. Nat Med. 2021;27(6):930–932.
  • Scorza FB, Pardi N. New Kids on the Block: RNA-Based Influenza Virus Vaccines. Vaccines (Basel). 2018;6:2.
  • Vasin AV, Temkina OA, Egorov VV, et al. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res. 2014;185:53–63.
  • Zhuang Q, Wang S, Liu S, et al. Diversity and distribution of type A influenza viruses: an updated panorama analysis based on protein sequences. Virol J. 2019;16(1):85.
  • Krammer F, Pica N, Hai R, et al. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol. 2013;87(12):6542–6550.
  • Eichelberger MC, Monto AS. Neuraminidase, the forgotten surface antigen, emerges as an influenza vaccine target for broadened protection. J Infect Dis. 2019;219(Supplement_1):S75–S80.
  • Monto A, Kendal A. EFFECT OF NEURAMINIDASE ANTIBODY ON HONG KONG INFLUENZA. Lancet. 1973;301(7804):623–625.
  • Monto AS, Petrie JG, Cross RT, et al. Antibody to Influenza Virus Neuraminidase: an Independent Correlate of Protection. J Infect Dis. 2015;212(8):1191–1199.
  • Memoli MJ, Shaw PA, Han A, et al. Evaluation of Antihemagglutinin and Antineuraminidase Antibodies as Correlates of Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model. mBio. 2016;7(2):e00417–16.
  • Giurgea LT, Morens DM, Taubenberger JK, et al. Influenza Neuraminidase: a Neglected Protein and Its Potential for a Better Influenza Vaccine. Vaccines (Basel). 2020;8:3.
  • Krammer F, Fouchier RAM, Eichelberger MC, et al. NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines? mBio. 2018;9(2):2.
  • Chen Y-Q, Wohlbold TJ, Zheng N-Y, et al. Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell. 2018;173(2):417–429.e10.
  • Liu WC, Lin CY, Tsou YT, et al. Cross-reactive neuraminidase-inhibiting antibodies elicited by immunization with recombinant neuraminidase Proteins of H5N1 and Pandemic H1N1 influenza a viruses. J Virol. 2015;89(14):7224–7234.
  • Strohmeier S, Carreño JM, Brito RN, et al. Introduction of Cysteines in the Stalk Domain of Recombinant Influenza Virus N1 Neuraminidase Enhances Protein Stability and Immunogenicity in Mice. Vaccines (Basel). 2021;9(4):404.
  • Smith GE, Sun X, Bai Y, et al. Neuraminidase-based recombinant virus-like particles protect against lethal avian influenza A(H5N1) virus infection in ferrets. Virology. 2017;509:90–97.
  • Kim KH, Lee YT, Park S, et al. Neuraminidase expressing virus-like particle vaccine provides effective cross protection against influenza virus. Virology. 2019;535:179–188.
  • Desheva Y, Sychev I, Smolonogina T, et al. Anti-neuraminidase antibodies against pandemic A/H1N1 influenza viruses in healthy and influenza-infected individuals. PLoS One. 2018;13(5):e0196771.
  • Desheva Y, Smolonogina T, Donina S, et al. Study of neuraminidase-inhibiting antibodies in clinical trials of live influenza vaccines. Antibodies (Basel). 2020;9:2.
  • Job ER, Ysenbaert T, Smet A, et al. Broadened immunity against influenza by vaccination with computationally designed influenza virus N1 neuraminidase constructs. NPJ Vaccines. 2018;3(1):55.
  • Doyle TM, Hashem AM, Li C, et al. Universal anti-neuraminidase antibody inhibiting all influenza A subtypes. Antiviral Res. 2013;100(2):567–574.
  • Zhu X, Turner HL, Lang S, et al. Structural Basis of Protection against H7N9 influenza virus by human anti-n9 neuraminidase antibodies. Cell Host Microbe. 2019;26(6):729–738. e4.
  • Roubidoux EK, McMahon M, Carreño JM, et al. Novel epitopes of human monoclonal antibodies targeting the influenza virus N1 neuraminidase. bioRxiv. 2021;2021:02.26.433142.
  • Kirkpatrick Roubidoux E, McMahon M, Carreno JM, et al. Identification and Characterization of Novel Antibody Epitopes on the N2 Neuraminidase. mSphere. 2021;6(1):1.
  • Madsen A, Dai YN, McMahon M, et al. Human Antibodies Targeting Influenza B Virus Neuraminidase Active Site Are Broadly Protective. Immunity. 2020;53(4):852–863. e7.
  • Sautto GA, Ross TM. Hemagglutinin consensus-based prophylactic approaches to overcome influenza virus diversity. Vet Ital. 2019;55(3):195–201.
  • Sautto GA, Kirchenbaum GA, Ecker JW, et al. Elicitation of Broadly Protective Antibodies following Infection with Influenza Viruses Expressing H1N1 Computationally Optimized Broadly Reactive Hemagglutinin Antigens. Immunohorizons. 2018;2(7):226–237.
  • Carter DM, Darby CA, Johnson SK, et al. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses. J Virol. 2017;91(24):24.
  • Reneer, Skarlupka AL, Jamieson PJ, ZB, et al. Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. mSphere. 2021;6(2e00052-21. DOI: https://doi.org/10.1128/mSphere.00052-21.
  • Wong TM, Allen JD, Bebin-Blackwell AG, et al. Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants. J Virol. 2017;91(24):24.
  • Giles BM, Ross TM. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine. 2011;29(16):3043–3054.
  • Giles BM, Crevar CJ, Carter DM, et al. A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5N1 infection. J Infect Dis. 2012;205(10):1562–1570.
  • Fadlallah GM, Ma F, Zhang Z, et al. Vaccination with Consensus H7 Elicits Broadly Reactive and Protective Antibodies against Eurasian and North American Lineage H7 Viruses. Vaccines (Basel). 2020;8:1.
  • Lingel A, Bullard BL, Weaver EA. Efficacy of an Adenoviral Vectored Multivalent Centralized Influenza Vaccine. Sci Rep. 2017;7(1):14912.
  • Krammer F, Palese P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol. 2013;3(5):521–530.
  • Aydillo T, Escalera A, Strohmeier S, et al. Pre-existing hemagglutinin stalk antibodies correlate with protection of lower respiratory symptoms in flu-infected transplant patients. Cell Rep Med. 2020;1(8):100130.
  • Dawson AR, Mehle A. Flu’s cues: exploiting host post-translational modifications to direct the influenza virus replication cycle. PLoS Pathog. 2018;14(9):9.
  • Lin SC, et al. Broader Neutralizing Antibodies against H5N1 Viruses Using Prime-Boost Immunization of Hyperglycosylated Hemagglutinin DNA and Virus-Like Particles. PLoS One. 2012;7:6.
  • Lin SC, Liu WC, Jan JT, et al. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS One. 2014;9(3):e92822.
  • Eggink D, Goff PH, Palese P. Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyperglycosylation of the globular head domain. J Virol. 2014;88(1):699–704.
  • Sagawa H, Ohshima A, Kato I, et al. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J Gen Virol. 1996;77(7):1483–1487.
  • Steel J, et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio. 2010;1(1):1.
  • Bommakanti G, Citron MP, Hepler RW, et al. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. PNAS. 2010;107(31):13701–13706.
  • Bommakanti G, Lu X, Citron MP, et al. Design of Escherichia coli-expressed stalk domain immunogens of H1N1 hemagglutinin that protect mice from lethal challenge. J Virol. 2012;86(24):13434–13444.
  • Impagliazzo A, Milder F, Kuipers H, et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science. 2015;349(6254):1301–1306.
  • Yassine HM, Boyington JC, McTamney PM, et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat Med. 2015;21(9):1065–1070.
  • Corbett KS, Boyington JC, McTamney PM, et al. Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. mBio. 2019;10(1):1.
  • Wang TT, Tan GS, Hai R, et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci U S A. 2010;107(44):18979–18984.
  • Zheng D, Chen S, Qu D, et al. Influenza H7N9 LAH-HBc virus-like particle vaccine with adjuvant protects mice against homologous and heterologous influenza viruses. Vaccine. 2016;34(51):6464–6471.
  • Lu IN, Kirsteina A, Farinelle S, et al. Structure and applications of novel influenza HA tri-stalk protein for evaluation of HA stem-specific immunity. PLoS One. 2018;13(9):e0204776.
  • Kirsteina A, Akopjana I, Bogans J, et al. Construction and Immunogenicity of a Novel Multivalent Vaccine Prototype Based on Conserved Influenza Virus Antigens. Vaccines (Basel). 2020;8:2.
  • Hai R, Krammer F, Tan GS, et al. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol. 2012;86(10):5774–5781.
  • Goff PH, Eggink D, Seibert CW, et al. Adjuvants and immunization strategies to induce influenza virus hemagglutinin stalk antibodies. PLoS One. 2013;8(11):e79194.
  • Nachbagauer R, et al. A chimeric haemagglutinin-based influenza split virion vaccine adjuvanted with AS03 induces protective stalk-reactive antibodies in mice. NPJ Vaccines. 2016;1(1). https://doi.org/10.1038/npjvaccines.2016.15.
  • Ryder AB, Nachbagauer R, Buonocore L, et al. Vaccination with Vesicular Stomatitis Virus-Vectored Chimeric Hemagglutinins Protects Mice against Divergent Influenza Virus Challenge Strains. J Virol. 2015;90(5):106–114.
  • Nachbagauer R, Miller MS, Hai R, et al. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets. J Virol. 2015;90(6):3268–3273.
  • Krammer F, Hai R, Yondola M, et al. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J Virol. 2014;88(6):3432–3442.
  • Isakova-Sivak I, Matyushenko V, Kotomina T, et al. Sequential Immunization with Universal Live Attenuated Influenza Vaccine Candidates Protects Ferrets against a High-Dose Heterologous Virus Challenge. Vaccines (Basel). 2019;7(3):61.
  • Isakova-Sivak I, Korenkov D, Smolonogina T, et al. Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin. Virology. 2018;518:313–323.
  • Nachbagauer R, Liu WC, Choi A, et al. A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines. 2017;2(1):26.
  • Nachbagauer R, Krammer F, Albrecht RA. A Live-Attenuated Prime, Inactivated Boost Vaccination Strategy with Chimeric Hemagglutinin-Based Universal Influenza Virus Vaccines Provides Protection in Ferrets: a Confirmatory Study. Vaccines (Basel). 2018;6:3.
  • Liu WC, et al. Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines (Basel). 2021;9:1.
  • Nachbagauer R, Feser J, Naficy A, et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat Med. 27(1): 106–114. 2021.
  • Bernstein DI, Guptill J, Naficy A, et al. Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infect Dis. 2020;20(1):80–91.
  • Ermler ME, Kirkpatrick E, Sun W, et al. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model. J Virol. 2017;91(12):12.
  • Stepanova E, Krutikova E, Wong P-F, et al. Safety, Immunogenicity, and Protective Efficacy of a Chimeric A/B Live Attenuated Influenza Vaccine in a Mouse Model. Microorganisms. 2021;9(2):259.
  • Sun W, Kirkpatrick E, Ermler M, et al. Development of Influenza B Universal Vaccine Candidates Using the “Mosaic” Hemagglutinin Approach. J Virol. 2019;93(12):12.
  • Mezhenskaya D, Isakova-Sivak I, Rudenko L. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J Biomed Sci. 2019;26(1):76.
  • Zhong W,  Reed C, Blair PJ, et al. Serum antibody response to matrix protein 2 following natural infection with 2009 pandemic influenza A(H1N1) virus in humans. J Infect Dis. 2014;209(7):986–994.
  • Ramos EL, Mitcham JL, Koller TD, et al. Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza. J Infect Dis. 2015;211(7):1038–1044.
  • Neirynck S, Deroo T, Saelens X, et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med. 1999;5(10):1157–1163.
  • Stepanova LA, Mardanova ES, Shuklina MA, et al. Flagellin-fused protein targeting M2e and HA2 induces potent humoral and T-cell responses and protects mice against various influenza viruses a subtypes. J Biomed Sci. 2018;25(1):33.
  • Huleatt JW, Nakaar V, Desai P, et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine. 2008;26(2):201–214.
  • Blokhina EA, Mardanova ES, Stepanova LA, et al. Plant-Produced Recombinant Influenza A Virus Candidate Vaccine Based on Flagellin Linked to Conservative Fragments of M2 Protein and Hemagglutintin. Plants (Basel). 2020;9:2.
  • Turley CB, Rock MT, Johnson C, et al. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine. 2011;29(32):5145–5152.
  • Talbot HK, et al. Immunopotentiation of trivalent influenza vaccine when given with VAX102, a recombinant influenza M2e vaccine fused to the TLR5 ligand flagellin. PLoS One. 2010;5(12):e14442.
  • Zottig X, Al-Halifa S, Cote-Cyr M, et al. Self-assembled peptide nanorod vaccine confers protection against influenza A virus. Biomaterials. 2021;269:120672.
  • Laliberte-Gagne ME, Bolduc M, Garneau C, et al. Modulation of Antigen Display on PapMV Nanoparticles Influences Its Immunogenicity. Vaccines (Basel). 2021;9:1.
  • Ding P, Zhang G, Chen Y, et al. Reasonable permutation of M2e enhances the effect of universal influenza nanovaccine. Int J Biol Macromol. 2021;173:244–250.
  • Petukhova N, Gasanova T, Stepanova L, et al. Immunogenicity and Protective Efficacy of Candidate Universal Influenza A Nanovaccines Produced in Plants by Tobacco Mosaic Virus-based Vectors. Curr Pharm Des. 2013;19(31):5587–5600.
  • Zykova AA,  Blokhina EA, Kotlyarov RY, et al. Highly Immunogenic Nanoparticles Based on a Fusion Protein Comprising the M2e of Influenza A Virus and a Lipopeptide. Viruses. 2020;12(10):10.
  • Korenkov D, Isakova-Sivak I, Rudenko L. Basics of CD8 T-cell immune responses after influenza infection and vaccination with inactivated or live attenuated influenza vaccine. Expert Rev Vaccines. 2018;17(11):977–987.
  • Mezhenskaya D, Isakova-Sivak I, Kotomina T, et al. A Strategy to Elicit M2e-Specific Antibodies Using a Recombinant H7N9 Live Attenuated Influenza Vaccine Expressing Multiple M2e Tandem Repeats. Biomedicines. 2021;9(2):2.
  • Park BR, Kim KH, Kotomina T, et al. Broad cross protection by recombinant live attenuated influenza H3N2 seasonal virus expressing conserved M2 extracellular domain in a chimeric hemagglutinin. Sci Rep. 2021;11(1):4151.
  • Kotomina T, Isakova-Sivak I, Kim KH, et al. Generation and Characterization of Universal Live-Attenuated Influenza Vaccine Candidates Containing Multiple M2e Epitopes. Vaccines (Basel). 2020;8:4.
  • Mezhenskaya D, Isakova-Sivak I, Matyushenko V, et al. Universal Live-Attenuated Influenza Vaccine Candidates Expressing Multiple M2e Epitopes Protect Ferrets against a High-Dose Heterologous Virus Challenge. Viruses 2021; 13(7):1280.
  • Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines 2019; 7(3).
  • Kim KH, Jung YJ, Lee Y, et al. Cross protection by inactivated recombinant influenza viruses containing chimeric hemagglutinin conjugates with a conserved neuraminidase or M2 ectodomain epitope. Virology. 2020;550:51–60.
  • Sridhar S, Begom S, Bermingham A, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 2013;19(10):1305–1312.
  • McElhaney JE, Kuchel GA, Zhou X, et al. T-Cell Immunity to Influenza in Older Adults: a Pathophysiological Framework for Development of More Effective Vaccines. Front Immunol. 2016;7:41.
  • Wang Z, Chua BY, Ramos JV, et al. Establishment of functional influenza virus-specific CD8(+) T cell memory pools after intramuscular immunization. Vaccine. 2015;33(39):5148–5154.
  • Skibinski DAG, Jones LA, Zhu YO, et al. Induction of Human T-cell and Cytokine Responses Following Vaccination with a Novel Influenza Vaccine. Sci Rep. 2018;8(1):18007.
  • Mohn KG, Brokstad KA, Islam S, et al. Early Induction of Cross-Reactive CD8+ T-Cell Responses in Tonsils After Live-Attenuated Influenza Vaccination in Children. J Infect Dis. 2020;221(9):1528–1537.
  • Pizzolla A, Wakim LM. Memory T Cell Dynamics in the Lung during Influenza Virus Infection. J Immunol. 2019;202(2):374–381.
  • Topham DJ, Reilly EC. Tissue-Resident Memory CD8(+) T Cells: from Phenotype to Function. Front Immunol. 2018;9:515.
  • Zens KD, Chen JK, Farber DL. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight. 2016;1(10):10.
  • Grant E, Wu C, Chan KF, et al. Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ T-cell responses. Immunol Cell Biol. 2013;91(2):184–194.
  • Chen L, Zanker D, Xiao K, et al. Immunodominant CD4+ T-cell responses to influenza A virus in healthy individuals focus on matrix 1 and nucleoprotein. J Virol. 2014;88(20):11760–11773.
  • van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses. 2012;4(9):1438–1476.
  • Isakova-Sivak I, Korenkov D, Rudenko L. Reassortant viruses for influenza vaccines: is it time to reconsider their genome structures? Expert Rev Vaccines. 2016;15(5):565–567.
  • Isakova-Sivak I, Korenkov D, Smolonogina T, et al. Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology. 2017;500:209–217.
  • Rekstin A, Isakova-Sivak I, Petukhova G, et al. Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein. Biomed Res Int. 2017;2017:9359276.
  • Korenkov DA, Laurie KL, Reading PC, et al. Safety, immunogenicity and protection of A(H3N2) live attenuated influenza vaccines containing wild-type nucleoprotein in a ferret model. Infect Genet Evol. 2018;64:95–104.
  • Assarsson E, Bui HH, Sidney J, et al. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol. 2008;82(24):12241–12251.
  • Koutsakos M, Illing PT, Nguyen THO, et al. Human CD8(+) T cell cross-reactivity across influenza A,B and C viruses. Nat Immunol. 2019;20(5):613–625.
  • Berthoud TK, Hamill M, Lillie PJ, et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin Infect Dis. 2011;52(1):1–7.
  • Lillie PJ, Berthoud TK, Powell TJ, et al. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis. 2012;55(1):19–25.
  • Antrobus RD, Coughlan L, Berthoud TK, et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens. Mol Ther. 2014;22(3):668–674.
  • Coughlan L, Sridhar S, Payne R, et al. Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults. EBioMedicine. 2018;29:146–154.
  • McMahon M, Asthagiri Arunkumar G, et al. Vaccination With Viral Vectors Expressing Chimeric Hemagglutinin, NP and M1 Antigens Protects Ferrets Against Influenza Virus Challenge. Front Immunol. 2019;10:2005.
  • Lee SY, Kang JO, Chang J. Nucleoprotein vaccine induces cross-protective cytotoxic T lymphocytes against both lineages of influenza B virus. Clin Exp Vaccine Res. 2019;8(1):54–63.
  • Del Campo J, Pizzorno A, Djebali S, et al. OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. NPJ Vaccines. 2019;4(1):4.
  • Atsmon J, Kate-Ilovitz E, Shaikevich D, et al. Safety and immunogenicity of multimeric-001–a novel universal influenza vaccine. J Clin Immunol. 2012;32(3):595–603.
  • Lowell GH, Ziv S, Bruzil S, et al. Back to the future: immunization with M-001 prior to trivalent influenza vaccine in 2011/12 enhanced protective immune responses against 2014/15 epidemic strain. Vaccine. 2017;35(5):713–715.
  • Stoloff GA, Caparros-Wanderley W. Synthetic multi-epitope peptides identified in silico induce protective immunity against multiple influenza serotypes. Eur J Immunol. 2007;37(9):2441–2449.
  • Pleguezuelos O, Robinson S, Stoloff GA, et al. Synthetic Influenza vaccine (FLU-v) stimulates cell mediated immunity in a double-blind, randomised, placebo-controlled Phase I trial. Vaccine. 2012;30(31):4655–4660.
  • Pleguezuelos O, Robinson S, Fernandez A, et al. A Synthetic Influenza Virus Vaccine Induces a Cellular Immune Response That Correlates with Reduction in Symptomatology and Virus Shedding in a Randomized Phase Ib Live-Virus Challenge in Humans. Clin Vaccine Immunol. 2015;22(7):828–835.
  • Pleguezuelos O, Dille J, de Groen S, et al. Immunogenicity, Safety, and Efficacy of a Standalone Universal Influenza Vaccine, FLU-v, in Healthy Adults: a Randomized Clinical Trial. Ann Intern Med. 2020;172(7):453–462.
  • Francis JN, Bunce CJ, Horlock C, et al. A novel peptide-based pan-influenza A vaccine: a double blind, randomised clinical trial of immunogenicity and safety. Vaccine. 2015;33(2):396–402.
  • Bianchi E, Liang X, Ingallinella P, et al. Universal influenza B vaccine based on the maturational cleavage site of the hemagglutinin precursor. J Virol. 2005;79(12):7380–7388.
  • Landscape of universal influenza vaccines (Unifluvac landscape). Available at: https://www.cidrap.umn.edu/sites/default/files/public/downloads/unifluvac_landscape_03312021_print.pdf Accessed 2021 Apr 28. 2020.
  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, et al. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405–414.
  • Susukida T, Aoki S, Shirayanagi T, et al. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev. 2020;52(4):540–567.
  • Pajot A, Pancre V, Fazilleau N, et al. Comparison of HLA-DR1-restricted T cell response induced in HLA-DR1 transgenic mice deficient for murine MHC class II and HLA-DR1 transgenic mice expressing endogenous murine MHC class II molecules. Int Immunol. 2004;16(9):1275–1282.
  • Ureta-Vidal A, Firat H, Perarnau B, et al. Phenotypical and functional characterization of the CD8+ T cell repertoire of HLA-A2.1 transgenic, H-2KbnullDbnull double knockout mice. J Immunol. 1999;163(5):2555–2560.
  • Pajot A, Michel ML, Fazilleau N, et al. A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. European journal of immunology 2004; 34(11): 3060–9.
  • Zhong W,  Liu F, Dong L, et al. Significant impact of sequence variations in the nucleoprotein on CD8 T cell-mediated cross-protection against influenza A virus infections. PLoS One. 2010;5(5):e10583.
  • Sant S, Quinones-Parra SM, Koutsakos M, et al. HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathog. 2020;16(8):e1008714.
  • Kim A, Boronina TN, Cole RN, et al. Distorted Immunodominance by Linker Sequences or other Epitopes from a Second Protein Antigen During Antigen-Processing. Sci Rep. 2017;7(1):46418.
  • Steers NJ,  Currier JR, Jobe O, et al. Designing the epitope flanking regions for optimal generation of CTL epitopes. Vaccine. 2014;32(28):3509–3516.
  • Le Gall S, Stamegna P, Walker BD. Portable flanking sequences modulate CTL epitope processing. J Clin Invest. 2007;117(11):3563–3575.
  • Yang J, Jing L, James EA, et al. A Novel Approach of Identifying Immunodominant Self and Viral Antigen Cross-Reactive T Cells and Defining the Epitopes They Recognize. Front Immunol. 2018;9:2811.
  • Schmidt A, Lapuente D. T cell immunity against influenza: the long way from animal models towards a real-life universal flu vaccine. Viruses. 2021;13(2):2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.