4,746
Views
13
CrossRef citations to date
0
Altmetric
Review

From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection

, , , , , , & show all
Pages 1431-1446 | Received 04 Jul 2021, Accepted 13 Aug 2021, Published online: 15 Sep 2021

References

  • Organization WH. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases (World Health Organization, Geneva, 2015).
  • Maroli M, Feliciangeli Md, Bichaud L, et al. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27(2):123–147.
  • Kima PE. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int J Parasitol. 2007;37(10):1087–1096.
  • Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27(5):305–318.
  • Wilhelm TJ,Visceral leishmaniasis. Der Chirurg. 2019;90(10):833–837.
  • Pennisi MG, Persichetti MF. Feline leishmaniosis: is the cat a small dog? Vet Parasitol. 2018;251:131–137.
  • Mhadhbi M, Sassi A. Infection of the equine population by Leishmania parasites. Equine Vet J. 2020;52(1):28–33.
  • Han S, Wu W-P, Chen K, et al. Epidemiological survey of sheep as potential hosts for Leishmania in China. BMC Vet Res. 2018;14(1):378.
  • Pareyn M, Hendrickx R, Girma N, et al. Evaluation of a pan-Leishmania SL RNA qPCR assay for parasite detection in laboratory-reared and field-collected sand flies and reservoir hosts. Parasit Vectors. 2020;13(1). DOI:https://doi.org/10.1186/s13071-020-04141-y.
  • Chen H, Li J, Zhang J, et al. Multi-locus characterization and phylogenetic inference of Leishmania spp. in snakes from Northwest China. PLoS ONE. 2019;14(4).
  • Zhang J-R, Guo X-G, Liu J-L, et al. Molecular detection, identification and phylogenetic inference of Leishmania spp. in some desert lizards from Northwest China by using internal transcribed spacer 1 (ITS1) sequences. Acta Trop. 2016;162:83–94.
  • Ashford RW. Leishmaniasis reservoirs and their significance in control. Clin Dermatol. 1996;14(5):523–532.
  • Tomassone L, Berriatua E, De Sousa R, et al. Neglected vector-borne zoonoses in Europe: into the wild. Vet Parasitol. 2018;251:17–26.
  • Tabbabi A. Review of Leishmaniasis in the Middle East and North Africa. Afr Health Sci. 2019;19(1):1329–1337.
  • Ghawar W, Bettaieb J, Salem S, et al. Natural infection of Ctenodactylus gundi by Leishmania major in Tunisia. Acta Trop. 2018;177:89–93.
  • Franco AO, Davies CR, Mylne A, et al. Predicting the distribution of canine leishmaniasis in western Europe based on environmental variables. Parasitology. 2011;138(14):1878–1891.
  • Miguel DC, Gaurnier DC. Canine and Human Leishmaniasis: disease progression to Brazilian Urbanized areas. 2019 2(3); International Journal of Tropical Diseases.
  • Dantas-Torres F, Brandão-Filho SP. Visceral leishmaniasis in Brazil: revisiting paradigms of epidemiology and control. Rev Inst Med Trop Sao Paulo. 2006;48(3):151–156.
  • Gurel MS, Tekin B, Uzun S. Cutaneous leishmaniasis: a great imitator. Clin Dermatol. 2020;38(2):140–151.
  • Akilov O, Khachemoune A, Hasan T. Clinical manifestations and classification of old World cutaneous leishmaniasis. Int J Dermatol. 2007;46(2):132–142.
  • Volpedo G, Pacheco-Fernandez T, Holcomb EA, et al. Mechanisms of immunopathogenesis in Cutaneous Leishmaniasis and Post Kala-azar Dermal Leishmaniasis (PKDL). Front Cell Infect Microbiol. 2021;11. DOI:https://doi.org/10.3389/fcimb.2021.685296
  • Handler MZ, Patel PA, Kapila R, et al. Cutaneous and mucocutaneous leishmaniasis: differential diagnosis, diagnosis, histopathology, and management. J Am Acad Dermatol. 2015;73(6):911–926.
  • Srivastava P, Dayama A, Mehrotra S, et al. Diagnosis of visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2011;105(1):1–6.
  • Vega-López F. Diagnosis of cutaneous leishmaniasis. Curr Opin Infect Dis. 2003;16(2):97–101.
  • Sundar S, Singh OP. Molecular diagnosis of Visceral Leishmaniasis. Mol Diagn Ther. 2018;22(4):443–457.
  • Thakur S, Joshi J, Kaur S. Leishmaniasis diagnosis: an update on the use of parasitological, immunological and molecular methods. J Parasitic Dis. 2020;44(2):253–272.
  • Van Griensven J, Visceral Leishmaniasis: DE. Recent advances in diagnostics and treatment regimens. Infect Dis Clin North Am. 2019;33(1):79–99.
  • Moreira OC, Yadon ZE, Cupolillo E. The applicability of real-time PCR in the diagnostic of cutaneous leishmaniasis and parasite quantification for clinical management: current status and perspectives. Acta Trop. 2018;184:29–37.
  • Aronson NE, Joya CA, LeishmaniasisCutaneous Leishmaniasis: Updates in Diagnosis and Management. Infect Dis Clin North Am. 2019;33(1):101–117.
  • Rosenthal E, Marty P. Recent understanding in the treatment of visceral leishmaniasis. J Postgrad Med. 2003;49(1):61.
  • Sundar S, More DK, Singh MK, et al. Failure of Pentavalent Antimony in Visceral Leishmaniasis in India: report from the center of the Indian Epidemic. Clinl Infect Dis. 2000;31(4):1104–1107.
  • World Health Organization. Cutaneous Leishmaniasis control in selected countries of the two eastern Mediterranean and African regions. 2015. Geneva, Switzerland: World Health Organization
  • Shirzadi MR. Lipsosomal amphotericin B: a review of its properties, function, and use for treatment of cutaneous leishmaniasis. Res Rep Trop Med. 2019;10:11–18.
  • Azab AS, Kamal MS, Haggar MSE, et al. Early surgical treatment of Cutaneous Leishmaniasis. The Journal of Dermatologic Surgery and Oncology. 1983;9(12):1007–1012.
  • Bassiouny A, Meshad ME, Talaat M, et al. Cryosurgery in cutaneous leishmaniasis. Br J Dermatol. 1982;107(4):467–474.
  • Panagiotopoulos A, Stavropoulos PG, Hasapi V, et al. Treatment of cutaneous leishmaniasis with cryosurgery. Int J Dermatol. 2005;44(9):749–752.
  • Aronson NE, Wortmann GW, Byrne WR, et al. A randomized controlled trial of local heat therapy versus intravenous sodium stibogluconate for the treatment of cutaneous Leishmania major Infection. PLoS Negl Trop Dis. 2010;4(3):e628.
  • Bumb RA, Satoskar AR. Radiofrequency-induced heat therapy as first-line treatment for cutaneous leishmaniasis. Expert Rev Anti Infect Ther. 2011;9(6):623–625.
  • David JR. The successful use of radiofrequency-induced heat therapy for cutaneous leishmaniasis: a review. Parasitology. 2018;145(4):527–536.
  • Frolich S, Kaplan I. Plastic surgery in the treatment of Cutaneous Leishmaniasis of the face. Plast Reconstr Surg. 1967;40(2):157–160.
  • Rodrigues V, Cordeiro-da-Silva A, Laforge M, et al. Regulation of immunity during visceral Leishmania infection. Parasit Vectors. 2016;9:118. DOI:https://doi.org/10.1186/s13071-016-1412-x
  • Pacheco-Fernandez T, Volpedo G, Verma C, et al. Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans. 2021;49(1):297–311.
  • Nylén S, Gautam S. Immunological perspectives of leishmaniasis. J Glob Infect Dis. 2010;2(2):135–146.
  • Sharma U, Singh S. Immunobiology of leishmaniasis. In: IJEB Vol.47(06) [June 2009]. Indian Journal of Experimental Biology. 2009.
  • Kaye PM, Aebischer T. Visceral leishmaniasis: immunology and prospects for a vaccine. Clin Microbiol Infect. 2011;17(10):1462–1470.
  • Kaye PM, Svensson M, Ato M, et al. The immunopathology of experimental visceral leishmaniasis. Immunol Rev. 2004;201(1):239–253.
  • Scott P, Novais FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16(9):581–592.
  • Real F, Florentino PTV, Reis LC, et al. Cell-to-cell transfer of Leishmania amazonensis amastigotes is mediated by immunomodulatory LAMP-rich parasitophorous extrusions. Cell Microbiol. 2014;16(10):1549–1564.
  • Hohman LS, Peters NC. CD4+ T Cell-Mediated Immunity against the Phagosomal Pathogen Leishmania: implications for Vaccination. Trends Parasitol. 2019;35(6):423–435.
  • Glennie ND, Volk SW, Skin-resident SP. CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathog. 2017;13(4):e1006349.
  • Qadoumi M, Becker I, Donhauser N, et al. Expression of inducible nitric oxide synthase in skin lesions of patients with American Cutaneous Leishmaniasis | infection and immunity. ASM Journals Infection and Immunity. 2020 70(8).
  • Á G, Valério-Bolas A, Palma-Marques J, et al. Cutaneous Leishmaniasis: the complexity of host’s effective immune response against a polymorphic parasitic disease. J Immunol Res. 2019;2019.
  • Bhor R, Rafati S, Pai K. Cytokine saga in visceral leishmaniasis. Cytokine. 2020;155322. DOI:https://doi.org/10.1016/j.cyto.2020.155322
  • Alexander J, Carter KC, Al-Fasi N, et al. IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur J Immunol. 2000;30(10):2935–2943.
  • Goto H, Lindoso J. Immunity and immunosuppression in experimental visceral leishmaniasis. Braz J Med Biol Res. 2004;37(4):615–623.
  • Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions! Int Immunol. 2017;30(3):103–111.
  • Silveira FT, Lainson R, De Castro Gomes CM, et al. Immunopathogenic competences of Leishmania (V.) braziliensis and L. (L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunol. 2009;31(8):423–431.
  • Srivastava P, Gidwani K, Picado A, et al. Molecular and serological markers of Leishmania donovani infection in healthy individuals from endemic areas of Bihar, India. Trop Med Int Health. 2013;18(5):548–554.
  • Nweze JA, Nweze EI, Onoja US. Nutrition, malnutrition, and leishmaniasis. Nutrition. 2020;73:110712.
  • Akuffo H, Costa C, Van Griensven J, et al. New insights into leishmaniasis in the immunosuppressed. PLoS Negl Trop Dis. 2018;12(5):e0006375.
  • Sakthianandeswaren A, Foote SJ, Handman E. The role of host genetics in leishmaniasis. Trends Parasitol. 2009;25(8):383–391.
  • Van Griensven J, Carrillo E, López-Vélez R, et al. Leishmaniasis in immunosuppressed individuals. Clin Microbiol Infect. 2014;20(4):286–299.
  • Monge-Maillo B, Norman FF, Cruz I, et al. Visceral Leishmaniasis and HIV Coinfection in the mediterranean region. PLoS Negl Trop Dis. 2014;8(8):e3021. doi: https://doi.org/10.1371/journal.pntd.0003021
  • Malafaia G. Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol. 2009;31(10):587–596.
  • Cuypers B, Berg M, Imamura H, et al. Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. Infect Genet Evol. 2018;62:170–178.
  • Urrea DA, Duitama J, Imamura H, et al. Genomic analysis of Colombian Leishmania panamensis strains with different level of virulence. Sci Rep. 2018;8(1):17336.
  • Samarasinghe SR, Samaranayake N, Kariyawasam UL, et al. Genomic insights into virulence mechanisms of Leishmania donovani: evidence from an atypical strain. BMC Genomics. 2018;19(1):843.
  • Yasur-Landau D, Jaffe CL, David L, et al. Resistance of Leishmania infantum to allopurinol is associated with chromosome and gene copy number variations including decrease in the S-adenosylmethionine synthetase (METK) gene copy number. Int J Parasitol Drugs Drug Resist. 2018;8(3):403–410.
  • Sterkers Y, Crobu L, Lachaud L, et al. Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol. 2014;30(9):429–435.
  • Rougeron V, De Meeûs T, Bañuls AL. Reproduction in Leishmania: a focus on genetic exchange. Infect Genet Evol. 2017;50:128–132.
  • Telittchenko R, Descoteaux A. Study on the occurrence of genetic exchange among parasites of the Leishmania mexicana complex. Front Cell Infect Microbiol. 2020;10(607253). DOI:https://doi.org/10.3389/fcimb.2020.607253
  • Romano A, Inbar E, Debrabant A, et al. Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc Natl Acad Sci U S A. 2014;111(47):16808–16813.
  • World Health Organization. 2016. Weekly epidemiological record. (Ed.^(Eds). 421–432.
  • World Health Organization. Leishmaniasis, status of endemicity of cutaneous leishmaniasis: 2019. (Ed.^(Eds) (2019)
  • World Health Organization. Leishmaniasis. editor. Global health observatory data repository. 2016. Available from: https://apps.who.int/gho/data/node.main.NTDLEISH?lang=en
  • Instituto Ramon y Cajal de Investigacion Sanitaria, World Health Organization. 2019. WHO collaborating centre for clinical management of leishmaniasis (spa-55). (Ed.^(Eds).
  • World Health Organization W. 2015. Investing to overcome the global impact of neglected tropical diseases. (Ed.^(Eds).
  • Valero NNH, Uriarte M. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitol Res. 2020;119(2):365–384.
  • Gadisa E, Tsegaw T, Abera A, et al. Eco-epidemiology of visceral leishmaniasis in Ethiopia. Parasit Vectors. 2015;8(1). DOI:https://doi.org/10.1186/s13071-015-0987-y.
  • Ngere I, Gufu Boru W, Isack A, et al. Burden and risk factors of cutaneous leishmaniasis in a peri-urban settlement in Kenya, 2016. PLoS ONE. 2020;15(1):e0227697. doi: https://doi.org/10.1371/journal.pone.0227697
  • Yadon ZE, Rodrigues LC, Davies CR, et al. Indoor and peridomestic transmission of American Cutaneous Leishmaniasis in Northwestern Argentina: a retrospective case-control study. Am J Trop Med Hyg. 2003;68(5):519–526.
  • Hotez PJ, Remme JHF, Buss P, et al. Combating tropical infectious diseases: report of the disease control priorities in developing countries project. Clinl Infect Dis. 2004;38(6):871–878.
  • McIlwee BE, Weis SE, Hosler GA. Incidence of endemic human cutaneous Leishmaniasis in the United States. JAMA Dermatol. 2018;154(9):1032.
  • Garrido-Jareño M, Sahuquillo-Torralba A, Chouman-Arcas R, et al. Cutaneous and mucocutaneous leishmaniasis: experience of a Mediterranean hospital. Parasit Vectors. 2020;13(1). DOI:https://doi.org/10.1186/s13071-020-3901-1.
  • Clarke CF, Bradley KK, Wright JH, et al. Emergence of Autochthonous Cutaneous Leishmaniasis in Northeastern texas and Southeastern Oklahoma. Am J Trop Med Hyg. 2013;88(1):157–161.
  • Curtin JM, Aronson NE. Leishmaniasis in the United States: emerging Issues in a Region of Low Endemicity. Microorganisms. 2021;9(3):578.
  • de Almeida M, Zheng Y, Nascimento FS, et al. Cutaneous Leishmaniasis caused by an unknown leishmania Strain, Arizona, USA. Emerg Infect Dis. 2021;27(6):1714–1717.
  • Bi K, Chen Y, Zhao S, et al. Current Visceral Leishmaniasis Research: a research review to inspire future study. Biomed Res Int. 2018;2018.
  • Hirve S, Kroeger A, Matlashewski G, et al. Towards elimination of visceral leishmaniasis in the Indian subcontinent—Translating research to practice to public health. PLoS Negl Trop Dis. 2017;11(10):e0005889.
  • World Health Organization. 2018. Leishmaniasis. (Ed.^(Eds)
  • Center for Disease Control and Prevention. 2013. Leishmaniasis. (Ed.^(Eds).
  • Okwor I, Social UJ. Economic burden of human Leishmaniasis. Am J Trop Med Hyg. 2016;94(3):489–493.
  • Kealey A, Smith R. Neglected tropical diseases: infection, modeling, and control. J Health Care Poor Underserved. 2010;21(1):53–69.
  • Hotez PJ,Ten failings in global neglected tropical diseases control. PLoS Negl Trop Dis. 2017;11(12):e0005896.
  • Brindha J,Balamurali M. M,and Kaushik Chanda. An overview on the therapeutics of neglected infectious diseases-Leishmaniasis and Chagas diseases. Front Chem. 2021;9:622286.
  • World Health Organization W. 2021. Neglected tropical diseases: treating more than one billion people for the fifth consecutive year. (Ed.^(Eds).
  • World Health Organization. 2020. Ending the neglect to attain the sustainable development goals. A road map for neglected tropical diseases 2021–2030. (Ed.^(Eds).
  • Ejov M, Dagne D. Strategic framework for leishmaniasis control in the WHO European Region 2014‒2020. (Ed.^(Eds) (2014)
  • Pan American Health Organization, World Health Organization. Plan of action to strengthen the surveillance and control of leishmaniasis in the Americas. (Ed.^(Eds) (2017)
  • Volpedo G, Costa L, Ryan N, et al. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J Venom Anim Toxins Incl Trop Dis. 2019;25:e144118.
  • Berry I, Berrang-Ford L. Leishmaniasis, conflict, and political terror: a spatio-temporal analysis. Soc Sci Med. 2016;167:140–149.
  • Pan American Health Organization Leishmaniasis P. (Ed.^(Eds)
  • Pavli A, Maltezou HC. Leishmaniasis, an emerging infection in travelers. Int J Infect Dis. 2010;14(12):e1032–1039.
  • Hamer DH, Rizwan A, Freedman DO, et al. GeoSentinel: past, present and future†. J Travel Med. 2020;27(8). DOI:https://doi.org/10.1093/jtm/taaa219
  • Koch LK, Kochmann J, Klimpel S, et al. Modeling the climatic suitability of leishmaniasis vector species in Europe. Sci Rep. 2017;7(1):13325.
  • Purse BV, Masante D, Golding N, et al. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS One. 2017;12(10):e0183583.
  • Charrahy Z, Yaghoobi-Ershadi MR, Shirzadi MR, et al. Climate change and its effect on the vulnerability to zoonotic cutaneous leishmaniasis in Iran. Transbound Emerg Dis. 2021. DOI:https://doi.org/10.1111/tbed.14115.
  • Ready PD. Leishmaniasis emergence and climate change. Rev Sci Tech. 2008;27(2):399–412.
  • González C, Wang O, Strutz SE, et al. Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis. 2010;4(1):e585.
  • Millán J, Ferroglio E, Solano-Gallego L. Role of wildlife in the epidemiology of Leishmania infantum infection in Europe. Parasitol Res. 2014;113(6):2005–2014.
  • Harhay MO, Olliaro PL, Costa DL, et al. Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol. 2011;27(9):403–409.
  • Moreno J. Assessment of vaccine-induced immunity against Canine Visceral Leishmaniasis. Front Vet Sci. 2019;6:168.
  • Sousa-Paula LC, Silva LGD, Sales KGDS, et al. Failure of the dog culling strategy in controlling human visceral leishmaniasis in Brazil: a screening coverage issue? PLoS Negl Trop Dis. 2019;13(6):e0007553.
  • Dantas-Torres F, Miró G, Bowman DD, et al. Culling dogs for Zoonotic Visceral Leishmaniasis control: the wind of change. Trends Parasitol. 2019;35(2):97–101.
  • Ribeiro RR, Michalick MSM, Da Silva ME, et al. Canine Leishmaniasis: an overview of the current status and strategies for control. Biomed Res Int. 2018;2018:3296893.
  • Wagner V, Douanne N, Fernandez-Prada C. Leishmania infantum infection in a dog imported from Morocco. Can Vet J. 2020;61(9):963–965.
  • Velez R, Gállego M. Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Trop Med Int Health. 2020;25(5):540–557.
  • Zhang WW, Karmakar S, Gannavaram S, et al. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat Commun. 2020;11(1):3461.
  • Mendonça SC. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasit Vectors. 2016;9(1):492.
  • Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol. 2014;5:134.
  • Le Rutte EA, Coffeng LE, Malvolti S, et al. The potential impact of human visceral leishmaniasis vaccines on population incidence. PLoS Negl Trop Dis. 2020;14(7):e0008468.
  • Michel G, Pomares C, Ferrua B, et al. Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Trop. 2011;119(2–3):69–75.
  • Molina R, Ghosh D, Carrillo E, et al. Infectivity of Post-Kala-azar Dermal Leishmaniasis patients to sand flies: revisiting a proof of concept in the context of the Kala-azar elimination program in the Indian subcontinent. Clin Infect Dis. 2017;65(1):150–153.
  • Asfaram S, Fakhar M, Mohebali M, et al. Asymptomatic human blood donors carriers of Leishmania infantum: potential reservoirs for visceral leishmaniasis in northwestern Iran. Transfus Apher Sci. 2017;56(3):474–479.
  • Singh OP, Tiwary P, Kushwaha AK, et al. Xenodiagnosis to evaluate the infectiousness of humans to sandflies in an area endemic for visceral leishmaniasis in Bihar, India: a transmission-dynamics study. Lancet Microbe. 2021;2(1):e23–e31.
  • Bacon KM, Hotez PJ, Kruchten SD, et al. The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine. 2013;31(3):480–486.
  • Lee BY, Bacon KM, Shah M, et al. The economic value of a visceral leishmaniasis vaccine in Bihar state, India. Am J Trop Med Hyg. 2012;86(3):417–425.
  • Cecílio P, Oristian J, Meneses C, et al. Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Sci Rep. 2020;10(1):18653.
  • Srivastava S, Shankar P, Mishra J, et al. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors. 2016;9(1):277.
  • Modabber F. Vaccines against leishmaniasis. Ann Trop Med Parasitol. 1995;89(Suppl 1):83–88.
  • Noazin S, Modabber F, Khamesipour A, et al. First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine. 2008;26(52):6759–6767.
  • Noazin S, Khamesipour A, Moulton LH, et al. Efficacy of killed whole-parasite vaccines in the prevention of leishmaniasis: a meta-analysis. Vaccine. 2009;27(35):4747–4753.
  • Mayrink W, Williams P, Da Costa CA, et al. An experimental vaccine against American dermal leishmaniasis: experience in the State of Espírito Santo, Brazil. Ann Trop Med Parasitol. 1985;79(3):259–269.
  • Mayrink W, Da Costa CA, Magalhães PA, et al. A field trial of a vaccine against American dermal leishmaniasis. Trans R Soc Trop Med Hyg. 1979;73(4):385–387.
  • Vélez ID, del Pilar Agudelo S, Arbelaez MP, et al. Safety and immunogenicity of a killed Leishmania (L.) amazonensis vaccine against cutaneous leishmaniasis in Colombia: a randomized controlled trial. Trans R Soc Trop Med Hyg. 2000;94(6):698–703.
  • Sharples CE, Shaw MA, Castes M, et al. Immune response in healthy volunteers vaccinated with BCG plus killed leishmanial promastigotes: antibody responses to mycobacterial and leishmanial antigens. Vaccine. 1994;12(15):1402–1412.
  • Armijos RX, Weigel MM, Aviles H, et al. Field trial of a vaccine against New World cutaneous leishmaniasis in an at-risk child population: safety, immunogenicity, and efficacy during the first 12 months of follow-up. J Infect Dis. 1998;177(5):1352–1357.
  • Armijos RX, Weigel MM, Romero L, et al. Field trial of a vaccine against new world cutaneous leishmaniasis in an at-risk child population: how long does protection last? J Infect Dis. 2003;187(12):1959–1961.
  • Armijos RX, Weigel MM, Calvopina M, et al. Safety, immunogenecity, and efficacy of an autoclaved Leishmania amazonensis vaccine plus BCG adjuvant against New World cutaneous leishmaniasis. Vaccine. 2004;22(9–10):1320–1326.
  • Vélez ID, Gilchrist K, Arbelaez MP, et al. Failure of a killed Leishmania amazonensis vaccine against American cutaneous leishmaniasis in Colombia. Trans R Soc Trop Med Hyg. 2005;99(8):593–598.
  • Sharifi I, FeKri AR, Aflatonian MR, et al. Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet. 1998;351(9115):1540–1543.
  • Alimohammadian MH, Khamesipour A, Darabi H, et al. The role of BCG in human immune responses induced by multiple injections of autoclaved Leishmania major as a candidate vaccine against leishmaniasis. Vaccine. 2002;21(3–4):174–180.
  • Bózner P, Gombosová A, Valent M, et al. Proteinases of Trichomonas vaginalis: antibody response in patients with urogenital trichomoniasis. Parasitology. 1992;105(Pt 3):387–391.
  • Khalil EA, El Hassan AM, Zijlstra EE, et al. Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet. 2000;356(9241):1565–1569.
  • Satti IN, Osman HY, Daifalla NS, et al. Immunogenicity and safety of autoclaved Leishmania major plus BCG vaccine in healthy Sudanese volunteers. Vaccine. 2001;19(15–16):2100–2106.
  • Momeni AZ, Jalayer T, Emamjomeh M, et al. A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine. 1999;17(5):466–472.
  • Mahmoodi M, Khamesipour A, Dowlati Y, et al. Immune response measured in human volunteers vaccinated with autoclaved Leishmania major vaccine mixed with low dose of BCG. Clin Exp Immunol. 2003;134(2):303–308.
  • Nagill R, Kaur S. Vaccine candidates for leishmaniasis: a review. Int Immunopharmacol. 2011;11(10):1464–1488.
  • Coutinho De Oliveira B, Duthie MS, Alves PVR. Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis. Hum Vaccin Immunother. 2020;16(4):919–930.
  • Peacock CS, Seeger K, Harris D, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39(7):839–847.
  • Kumari S, Kumar A, Samant M, et al. Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics. Curr Drug Targets. 2008;9(11):938–947.
  • De Brito RCF, Cardoso JMO, Reis LES, et al. Peptide Vaccines for Leishmaniasis. Front Immunol. 2018;9:1043.
  • Alvar J, Croft SL, Kaye P, et al. Case study for a vaccine against leishmaniasis. Vaccine. 2013;31(Suppl 2):B244–249.
  • Singh B, Sundar S. Leishmaniasis: vaccine candidates and perspectives. Vaccine. 2012;30(26):3834–3842.
  • Gillespie PM, Beaumier CM, Strych U, et al. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 2016;34(26):2992–2995.
  • Bertholet S, Goto Y, Carter L, et al. Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine. 2009;27(50):7036–7045.
  • Coler RN, Duthie MS, Hofmeyer KA, et al. From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3+GLA-SE. Clin Transl Immunology. 2015;4(4):e35.
  • Raman VS, Duthie MS, Fox CB, et al. Adjuvants for Leishmania vaccines: from models to clinical application. Front Immunol. 2012;3:144.
  • Askarizadeh A, Jaafari MR, Khamesipour A, et al. Liposomal adjuvant development for leishmaniasis vaccines. Ther Adv Vaccines. 2017;5(4–5):85–101.
  • Vogel FR, Hem SL. Chapter 5 - Immunologic adjuvants. In: Vaccines. (editor) Elsevier;2008. p. 59–71.
  • Carvalho EM, Johnson WD, Barreto E, et al. Cell mediated immunity in American cutaneous and mucosal leishmaniasis. J Immunol. 1985;135(6):4144–4148.
  • Rogers ME. The role of leishmania proteophosphoglycans in sand fly transmission and infection of the Mammalian host. Front Microbiol. 2012;3:223.
  • Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691–703.
  • Gomes R, Oliveira F. The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol. 2012;3:110.
  • Giraud E, Svobodová M, Müller I, et al. Promastigote secretory gel from natural and unnatural sand fly vectors exacerbate. Parasitology. 2019;146(14):1796–1802.
  • Martin-Martin I, Chagas AC, Guimaraes-Costa AB, et al. Immunity to LuloHya and Lundep, the salivary spreading factors from Lutzomyia longipalpis, protects against Leishmania major infection. PLoS Pathog. 2018;14(5):e1007006.
  • Gomes R, Teixeira C, Teixeira MJ, et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci U S A. 2008;105(22):7845–7850.
  • Oliveira F, Rowton E, Aslan H, et al. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. 2015;7(290):290ra290.
  • Tavares NM, Silva RA, Costa DJ, et al. Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leishmania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis. 2011;5(5):e1169.
  • Gomes R, Oliveira F, Teixeira C, et al. Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J Invest Dermatol. 2012;132(12):2735–2743.
  • Collin N, Gomes R, Teixeira C, et al. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog. 2009;5(5):e1000441.
  • Reed SG, Coler RN, Mondal D, et al. Leishmania vaccine development: exploiting the host-vector-parasite interface. Expert Rev Vaccines. 2016;15(1):81–90.
  • Duthie MS, Van Hoeven N, MacMillen Z, et al. Heterologous immunization with defined RNA and subunit vaccines enhances T cell responses that protect against. Front Immunol. 2018;9(2420). DOI:https://doi.org/10.3389/fimmu.2018.02420.
  • Liu MA, Wahren B, Karlsson Hedestam GB. DNA vaccines: recent developments and future possibilities. Hum Gene Ther. 2006;17(11):1051–1061.
  • Gurunathan S, Sacks DL, Brown DR, et al. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med. 1997;186(7):1137–1147.
  • Solioz N, Blum-Tirouvanziam U, Jacquet R, et al. The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine. 1999;18(9–10):850–859.
  • Xu D, Liew FY. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology. 1995;84(2):173–176.
  • Campos-Neto A, Webb JR, Greeson K, et al. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect Immun. 2002;70(6):2828–2836.
  • Aguilar-Be I, da Silva Zardo R, Paraguai de Souza E, et al. Cross-protective efficacy of a prophylactic Leishmania donovani DNA vaccine against visceral and cutaneous murine leishmaniasis. Infect Immun. 2005;73(2):812–819.
  • Sukumaran B, Tewary P, Saxena S, et al. Vaccination with DNA encoding ORFF antigen confers protective immunity in mice infected with Leishmania donovani. Vaccine. 2003;21(11–12):1292–1299.
  • Borja-Cabrera GP, Santos FB, Picillo E, et al. Nucleoside hydrolase DNA vaccine against canine visceral leishmaniasis. Procedia Vaccinol. 2009;1(1):104–109.
  • Rafati S, Salmanian AH, Taheri T, et al. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine. 2001;19(25–26):3369–3375.
  • Iborra S, Soto M, Carrión J, et al. Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis. Vaccine. 2004;22(29–30):3865–3876.
  • Rodríguez-Cortés A, Ojeda A, López-Fuertes L, et al. Vaccination with plasmid DNA encoding KMPII, TRYP, LACK and GP63 does not protect dogs against Leishmania infantum experimental challenge. Vaccine. 2007;25(46):7962–7971.
  • Campbell K, Diao H, Ji J, et al. DNA immunization with the gene encoding P4 nuclease of Leishmania amazonensis protects mice against cutaneous Leishmaniasis. Infect Immun. 2003;71(11):6270–6278.
  • Xu D, McSorley SJ, Chatfield SN, et al. Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (AroA- AroD-). Immunology. 1995;85(1):1–7.
  • Walker PS, Scharton-Kersten T, Rowton ED, et al. Genetic immunization with glycoprotein 63 cDNA results in a helper T cell type 1 immune response and protection in a murine model of leishmaniasis. Hum Gene Ther. 1998;9(13):1899–1907.
  • Dumonteil E, Andrade-Narvarez F, Escobedo-Ortegon J, et al. Comparative study of DNA vaccines encoding various antigens against Leishmania mexicana. Dev Biol (Basel). 2000;104:135–141.
  • Dumonteil E, Maria Jesus RS, Javier EO. Maria del Rosario GM. DNA vaccines induce partial protection against Leishmania mexicana. Vaccine. 2003;21(17–18):2161–2168.
  • López-Fuertes L, Pérez-Jiménez E, Vila-Coro AJ, et al. DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine. 2002;21(3–4):247–257.
  • Gomes DC, Pinto EF, de Melo LD, et al. Intranasal delivery of naked DNA encoding the LACK antigen leads to protective immunity against visceral leishmaniasis in mice. Vaccine. 2007;25(12):2168–2172.
  • Marques-da-silva EA, Coelho EA, Gomes DC, et al. Intramuscular immunization with p36(LACK) DNA vaccine induces IFN-gamma production but does not protect BALB/c mice against Leishmania chagasi intravenous challenge. Parasitol Res. 2005;98(1):67–74.
  • Melby PC, Yang J, Zhao W, et al. Leishmania donovanip36(LACK) DNA vaccine is highly immunogenic but not protective against experimental Visceral Leishmaniasis. Infect Immun. 2001;69(8):4719–4725.
  • Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunol. 2016;38(5):273–281.
  • Gonzalo RM, Del Real G, Rodriguez JR, et al. A heterologous prime-boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum P36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine. 2002;20(7–8):1226–1231.
  • Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine. 2016;34(4):413–423.
  • Ramiro MJ, Zárate JJ, Hanke T, et al. Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK. Vaccine. 2003;21(19–20):2474–2484.
  • Xiao-wen H, Shu-han S, Zhen-lin H, et al. Augmented humoral and cellular immune responses of a hepatitis B DNA vaccine encoding HBsAg by protein boosting. Vaccine. 2005;23(14):1649–1656.
  • Cui Z. DNA vaccine. Adv Genet. 2005;54:257–289.
  • Restifo NP, Ying H, Hwang L, et al. The promise of nucleic acid vaccines. Gene Ther. 2000;7(2):89–92.
  • Hobernik D, Bros M, Vaccines-How Far DNA. From Clinical Use? Int J Mol Sci. 2018;19(11):3605. doi: https://doi.org/10.3390/ijms19113605
  • Pandey SC, Kumar A, Samant M. Genetically modified live attenuated vaccine: a potential strategy to combat visceral leishmaniasis. Parasite Immunol. 2020;42(9):e12732.
  • Zabala-Peñafiel A, Todd D, Daneshvar H, et al. The potential of live attenuated vaccines against Cutaneous Leishmaniasis. Exp Parasitol. 2020;210:107849.
  • Titus RG, Gueiros-Filho FJ, de Freitas LA, et al. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci U S A. 1995;92(22):10267–10271.
  • Muyombwe A, Olivier M, Harvie P, et al. Protection against Leishmania major challenge infection in mice vaccinated with live recombinant parasites expressing a cytotoxic gene. J Infect Dis. 1998;177(1):188–195.
  • Kumari S, Samant M, Khare P, et al. Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis. Eur J Immunol. 2009;39(1):178–191.
  • Davoudi N, Tate CA, Warburton C, et al. Development of a recombinant Leishmania major strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine. 2005;23(9):1170–1177.
  • Mitchell GF, Handman E, Spithill TW. Vaccination against cutaneous leishmaniasis in mice using nonpathogenic cloned promastigotes of Leishmania major and importance of route of injection. Aust J Exp Biol Med Sci. 1984;62(Pt 2):145–153.
  • Gorczynski RM. Immunization of susceptible BALB/c mice against Leishmania braziliensis. II. Use of temperature-sensitive avirulent clones of parasite for vaccination purposes. Cell Immunol. 1985;94(1):11–20.
  • Rivier D, Shah R, Bovay P, et al. Vaccine development against cutaneous leishmaniasis. Subcutaneous administration of radioattenuated parasites protects CBA mice against virulent Leishmania major challenge. Parasite Immunol. 1993;15(2):75–84.
  • Kimsey PB, Theodos CM, Mitchen TK, et al. An avirulent lipophosphoglycan-deficient Leishmania major clone induces CD4+ T cells which protect susceptible BALB/c mice against infection with virulent L. major. Infect Immun. 1993;61(12):5205–5213.
  • Daneshvar H, Coombs GH, Hagan P, et al. Leishmania mexicana and Leishmania major: attenuation of wild-type parasites and vaccination with the attenuated lines. J Infect Dis. 2003;187(10):1662–1668.
  • Papadopoulou B, Roy G, Breton M, et al. Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination. Infect Immun. 2002;70(1):62–68.
  • Dey R, Meneses C, Salotra P, et al. Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol. 2010;77(2):399–414.
  • Dey R, Dagur PK, Selvapandiyan A, et al. Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J Immunol. 2013;190(5):2138–2149.
  • Carrión J, Folgueira C, Soto M, et al. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation. Parasit Vectors. 2011;4(1):150.
  • Solana JC, Ramírez L, Cook EC, et al. Subcutaneous Immunization of Leishmania HSP70-II null mutant line reduces the severity of the experimental Visceral Leishmaniasis in BALB/c mice. Vaccines (Basel). 2020;8(1).
  • Soto M, Ramírez L, Solana JC, et al. Inoculation of the Leishmania infantum HSP70-II null mutant induces long-Term protection against L. amazonensis Infection in BALB/c mice. Microorganisms. 2021;9(2):363. doi: https://doi.org/10.3390/microorganisms9020363.
  • Solana JC, Ramírez L, Corvo L, et al. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl Trop Dis. 2017;11(5):e0005644.
  • Santi AMM, Lanza JS, Tunes LG, et al. Growth arrested live-attenuated Leishmania infantum KHARON1 null mutants display cytokinesis defect and protective immunity in mice. Sci Rep. 2018;8(1):11627.
  • Selvapandiyan A, Dey R, Nylen S, et al. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol. 2009;183(3):1813–1820.
  • Karmakar S, Ismail N, Oliveira F, et al. Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Commun Biol. 2021;4(1):1–14.
  • Zijlstra EE, el-Hassan AM, Ismael A, et al. Endemic kala-azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg. 994;51(6):826–836.
  • Bern C, Amann J, Haque R, et al. Loss of leishmanin skin test antigen sensitivity and potency in a longitudinal study of visceral leishmaniasis in Bangladesh. Am J Trop Med Hyg. 2006;75(4):744–748.
  • Montenegro J. 1926. A cutis-reação na leishmaniose. Anais da Faculdade de Medicina de São Paulo. 1:323–330.
  • Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951–970.
  • Poulter LW, Seymour GJ, Duke O, et al. Immunohistological analysis of delayed-type hypersensitivity in man. Cell Immunol. 1982;74(2):358–369.
  • Cher DJ, Mosmann TR. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol. 1987;138(11):3688–3694.
  • Pacheco-Fernandez T, Volpedo G, Gannavaram S, et al. Revival of Leishmanization and Leishmanin. Front Cell Infect Microbiol. 2021;11:639801.
  • Mohebali M, Nadim A, Khamesipour A. An overview of leishmanization experience: a successful control measure and a tool to evaluate candidate vaccines. Acta Trop. 2019;200:105173.
  • Nadim A, Javadian E, Tahvildar-Bidruni G, et al. Effectiveness of leishmanization in the control of cutaneous leishmaniasis. Bull Soc Pathol Exot Filiales. 1983;76(4):377–383.
  • Nadim AJ, Mohebali E. The experience of leishmanization in the Islamic Republic of Iran. East Mediterr Health J. 1997;3(2): 284–289. M.
  • Fatemi M, Yaghoobi-Ershadi MR, Mohebali M, et al. The potential role of humans in the transmission cycle of leishmania major (Kinetoplastida: trypanosomatidae), the causative agent of the old World Zoonotic Cutaneous Leishmaniasis. J Med Entomol. 2018;55(6):1588–1593.
  • Denise H, Coombs GH, Mottram JC. Generation of Leishmania mutants lacking antibiotic resistance genes using a versatile hit-and-run targeting strategy. FEMS Microbiol Lett. 2004;235(1):89–94.
  • Seyed N, Peters NC, Rafati S. Translating observations from leishmanization into Non-Living Vaccines: the potential of dendritic cell-based vaccination strategies against. Front Immunol. 2018;9:1227.
  • Lestinova T, Rohousova I, Sima M, et al. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11(7):e0005600.
  • Peters NC, Kimblin N, Secundino N, et al. Vector transmission of leishmania abrogates vaccine-induced protective immunity. PLoS Pathog. 2009;5(6):e1000484.
  • Peters NC, Bertholet S, Lawyer PG, et al. Evaluation of recombinant Leishmania polyprotein plus glucopyranosyl lipid A stable emulsion vaccines against sand fly-transmitted Leishmania major in C57BL/6 mice. J Immunol. 2012;189(10):4832–4841.
  • Stamper LW, Patrick RL, Fay MP, et al. Infection parameters in the sand fly vector that predict transmission of Leishmania major. PLoS Negl Trop Dis. 2011;5(8):e1288.
  • Halioua C. 2018OWJC: Why are drugs more profitable than vaccines? (Health economics working paper). (Ed.^(Eds) (Medium).
  • Dey R, Natarajan G, Bhattacharya P, et al. Characterization of cross-protection by genetically modified live-attenuated Leishmania donovani parasites against Leishmania mexicana. J Immunol. 2014;193(7):3513–3527.
  • Cooper MM, Loiseau C, McCarthy JS, et al. Human challenge models: tools to accelerate the development of malaria vaccines. Expert Rev Vaccines. 2019;18(3):241–251.
  • Ives A, Ronet C, Prevel F, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331(6018):775–778.