4,222
Views
3
CrossRef citations to date
0
Altmetric
Review

Overcoming scientific barriers in the transition from in vivo to non-animal batch testing of human and veterinary vaccines

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1221-1233 | Received 12 Mar 2021, Accepted 03 Sep 2021, Published online: 22 Sep 2021

References

  • De Gregorio E, Rappuoli R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol. 2014;14(7):505–514.
  • Milstien J, Dellepiane N, Lambert S, et al. Vaccine quality—can a single standard be defined? Vaccine. 2002;20(7–8):1000–1003.
  • Commission to the European Parliament and the Council. 2019 Report on the Statistics on the Use of Animals for Scientific Purposes in the Member States of the European Union in 2015-2017.; 2020.
  • Hendriksen C, Spieser JM, Akkermans A, et al. Validation of alternative methods for the potency testing of vaccines. Altern Lab Anim. 1998;26(6):747–761.
  • Milne C, Buchheit KH. EDQM’s 3R activities in the field of quality control of vaccines. ALTEX. 2012;1/12.
  • Walker A, Srinivas GB. Opportunities and strategies to further reduce animal use for Leptospira vaccine potency testing. Biologicals. 2013;41(5):332–337.
  • Schiffelers MJ, Blaauboer B, Bakker W, et al., Replacing the NIH test for rabies vaccine potency testing: a synopsis of drivers and barriers. Biologicals. 2014;42(4): 205–217.
  • Servat A, Kempff S, Labadie A, et al. In vivo potency tests of rabies inactivated vaccines for veterinary use. A 2-year retrospective analysis of data according to the criteria of the European Pharmacopoeia. Pharmeur Bio Sci Notes. 2008;20:655–664.
  • Goris N, Merkelbach-Peters P, Diev VI, et al. European Pharmacopoeia foot-and-mouth disease vaccine potency testing in cattle: between test variability and its consequences. Vaccine. 2007;25(17):3373–3379.
  • Reed NE, Varney WC, Goddard RD, et al. The maintenance of challenge strains used in the potency test for canine leptospira vaccines. Biologicals. 2000;28(1):25–28.
  • EDQM. General chapter 5.2.14 Substitution of in vivo methods by in vitro methods for the quality control of vaccines. In: European Pharmacopoeia. 10th ed. (p. 679) Strasbourgh France: European Department for the Quality of Medicines; 2019.
  • Xing D, Das RG, O’Neill T, et al. Laboratory testing of whole cell pertussis vaccine: a WHO proficiency study using the Kendrick test. Vaccine. 2001;20(3):342–351.
  • Hendriksen C, Arciniega JL, Bruckner L, et al., The consistency approach for the quality control of vaccines. Biologicals. 2008;36(1):73–77.
  • De Mattia F, Hendriksen C, Buchheit KH, et al. The vaccines consistency approach project: an EPAA initiative. Pharmeur Bio Sci Notes. 2015;(2015):30–56.
  • Bruysters MWP, Schiffelers MJ, Hoonakker M, et al. Drivers and barriers in the consistency approach for vaccine batch release testing: report of an international workshop. Biologicals. 2017; 48:1–5.
  • The European. Parliament and the Council of the European Union. DIRECTIVE 2010/63/EU on the protection of animals used for scientific purposes. Off J Eur Union. 2010;276:33–79.
  • EDQM. European Pharmacopoeia. 10.5th ed. Strasbourgh France: European Department for the Quality of Medicines; 2020.
  • Halder M, Depraetere H, Delannois F, et al. Recommendations of the VAC2VAC workshop on the design of multi-centre validation studies. Biologicals. 2018;52:78–82.
  • Shank-Retzlaff M, Wang F, Morley T, et al., Correlation between Mouse Potency and In Vitro Relative Potency for Human Papillomavirus Type 16 Virus-Like Particles and Gardasil Vaccine Samples. Hum Vaccin. 2005;1(5):191–197.
  • Descamps J, Giffroy D, Remy E, et al. A case study of development, validation, and acceptance of a non-animal method for assessing human vaccine potency. Procedia Vaccinol. 2011;5:184–191.
  • Rosenbruch M. [The sensitivity of chicken embryos in incubated eggs]. ALTEX. 1997;14(3):111–113.
  • Settembre EC, Dormitzer PR, Rappuoli R. Bringing influenza vaccines into the 21st century. Hum Vaccin Immunother. 2014;10(3):600–604.
  • Zariri A, Beskers J, van de Waterbeemd B, et al. Meningococcal outer membrane vesicle composition-dependent activation of the innate immune response. Palmer GH, ed. Infect Immun. 2016;84(10): 3024LP - 3033.
  • Vrieling H, Kooijman S, de Ridder JW, et al. Activation of human monocytes by colloidal aluminum salts. J Pharm Sci. 2020;109(1):750–760.
  • Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM, et al. Powerful complex immunoadjuvant based on synergistic effect of combined TLR4 and NOD2 activation significantly enhances magnitude of humoral and cellular adaptive immune responses. PLoS One. 2016;11(5):e0155650.
  • Maas RA, Komen M, Van Diepen M, et al. Correlation of haemagglutinin-neuraminidase and fusion protein content with protective antibody response after immunisation with inactivated Newcastle disease vaccines. Vaccine. 2003;21(23):3137–3142.
  • Pay TWF, Hingley PJ. Correlation of 140S antigen dose with the serum neutralizing antibody response and the level of protection induced in cattle by foot-and-mouth disease vaccines. Vaccine. 1987;5(1):60–64.
  • Poston R, Hill R, Allen C, et al. Achieving scientific and regulatory success in implementing non-animal approaches to human and veterinary rabies vaccine testing: a NICEATM and IABS workshop report. Biologicals. 2019;60:8-14.
  • Poirier B, Morgeaux S, Variot P, et al. In vitro potency assay for hepatitis A vaccines: development of a unique economical test. Biologicals. 2000;28(4):247–256.
  • Maas PA, MPM DW, Venema S, et al. Antigen quantification as in vitro alternative for potency testing of inactivated viral poultry vaccines. Vet Q. 2000;22(4):223–227.
  • Romstad AB, Reitan LJ, Midtlyng P, et al. Antibody responses correlate with antigen dose and in vivo protection for oil-adjuvanted, experimental furunculosis (Aeromonas salmonicida subsp. salmonicida) vaccines in Atlantic salmon (Salmo salar L.) and can be used for batch potency testing of vaccin. Vaccine. 2013;31(5):791–796.
  • Coombes L, Tierney R, Rigsby P, et al. In vitro antigen ELISA for quality control of tetanus vaccines. Biologicals. 2012;40(6):466–472.
  • Riches-Duit R, Hassall L, Rigsby P, et al. Evaluation of a capture antigen ELISA for the characterisation of tetanus vaccines for veterinary use. Biologicals. 2019;61:8–14.
  • Coombes L, Stickings P, Tierney R, et al. Development and use of a novel in vitro assay for testing of diphtheria toxoid in combination vaccines. J Immunol Methods. 2009;350(1–2):142–149.
  • Westdijk J, Metz B, Spruit N, et al. Antigenic fingerprinting of diphtheria toxoid adsorbed to aluminium phosphate. Biologicals. 2017;47:69–75.
  • Minor PD. Assaying the potency of influenza vaccines. Vaccines (Basel). 2015;3(1):90–104.
  • Westdijk J, van den Ijssel J, Thalen M, et al. Quantification of cell-associated and free antigens in Bordetella pertussis suspensions by antigen binding ELISA. J Immunoassay. 1997;18(3):267–284.
  • Agnolon V, Bruno C, Galletti B, et al. Multiplex immunoassay for in vitro characterization of acellular pertussis antigens in combination vaccines. Vaccine. 2016;34(8):1040–1046.
  • Hoonakker ME, Verhagen LM, Pupo E, et al., Vaccine-mediated activation of human TLR4 is affected by modulation of culture conditions during whole-cell pertussis vaccine preparation. PLoS One. 2016;11(8): e0161428.
  • Hoonakker ME, Verhagen LM, Hendriksen CFM, et al. In vitro innate immune cell based models to assess whole cell Bordetella pertussis vaccine quality: a proof of principle. Biologicals. 2015;43(2):100–109.
  • Metz B, Hoonakker M, Uittenbogaard JP, et al., Proteome analysis is a valuable tool to monitor antigen expression during upstream processing of whole-cell pertussis vaccines. J Proteome Res. 2017;16(2):528–537.
  • Maloney T, Phelan R, Simmons N. Saving the horseshoe crab: a synthetic alternative to horseshoe crab blood for endotoxin detection. PLoS Biol. 2018;16(10):e2006607.
  • Smith DR, Beekey MA, Brockmann HJ, et al. Limulus polyphemus. IUCN Red List Threatened Species. 2016;2016:e.T11987A80159830.
  • Etna MP, Giacomini E, Rizzo F, et al. Optimization of the monocyte-activation-test for evaluating pyrogenicity of tick-borne encephalitis virus vaccine. ALTEX. 2020;37(4):532-544.
  • Hasiwa N, Daneshian M, Bruegger P, et al. T4 Report evidence for the detection of non-endotoxin pyrogens by the whole blood monocyte activation test. ALTEX. 2013;30(2):169–208.
  • Studholme L, Sutherland J, Desai T, et al. Evaluation of the monocyte activation test for the safety testing of meningococcal B vaccine Bexsero: a collaborative study. Vaccine. 2019;37(29):3761–3769.
  • Isbrucker R, Daas A, Wagner L, et al. Transferability study of CHO cell clustering assays for monitoring of pertussis toxin activity in acellular pertussis vaccines. Pharmeur Bio Sci Notes. 2016;2015:97–114.
  • Sesardic D, Prior C, Daas A, et al. Collaborative study for establishment of the European Pharmacopoeia BRP batch 1 for diphtheria toxin. Pharmeuropa bio. (2003);2003(1):5–21
  • Daas A, Behr-Gross ME, Bruckner L, et al. Collaborative study for the validation of cell line assays for in-process toxicity and antigenicity testing of Clostridium septicum vaccine antigens - Part 1. Pharmeur Bio Sci Notes. 2020;2020:53–124.
  • Behrensdorf-Nicol HA, Weisser K, Krämer B. “BINACLE” assay for in vitro detection of active tetanus neurotoxin in toxoids. ALTEX. 2015;32(2):137–142.
  • Committee for Human Medicinal Products - European Medicines Agency. ICH guideline Q8 (R2) on pharmaceutical development. 2017:1–24
  • Clough NEC, Hauer PJ. Using polyclonal and monoclonal antibodies in regulatory testing of biological products. ILAR J. 2005;46(3):300–306.
  • Claassen I, Maas R, Daas A, et al. Feasibility study to evaluate the correlation between results of a candidate in vitro assay and established in vivo assays for potency determination of Newcastle disease vaccines. Pharmeuropa bio. 2003;2003(1):51–66
  • Stokes W, McFarland R, Kulpa-Eddy J, et al. Report on the international workshop on alternative methods for human and veterinary rabies vaccine testing: state of the science and planning the way forward. Biologicals. 2012;40(5):369–381.
  • Geeraedts F, Ter Veer W, Wilschut J. ter Veer W, Wilschut J, et al. Effect of viral membrane fusion activity on antibody induction by influenza H5N1 whole inactivated virus vaccine. Vaccine. 2012;30(45):6501–6507.
  • Jagt HJM, Bekkers MLE, SAJT VB, et al., The influence of the inactivating agent on the antigen content of inactivated Newcastle disease vaccines assessed by the in vitro potency test. Biologicals;2010;38(1):128–134.
  • Metz B, Tilstra W, van der Put R, et al. Physicochemical and immunochemical assays for monitoring consistent production of tetanus toxoid. Biologicals. 2013;41(4):231–237.
  • Stalder J, Costanzo A, Daas A, et al. Establishment of a biological reference preparation for hepatitis A vaccine (inactivated, non-adsorbed). Pharmeur Bio Sci Notes. 2020;2010(1):15–29.
  • van de Waterbeemd B, Streefland M, Pennings J, et al. Gene-expression-based quality scores indicate optimal harvest point in Bordetella pertussis cultivation for vaccine production. Biotechnol Bioeng. 2009;103(5):900–908.
  • Egger M, Jürets A, Wallner M, et al. Assessing protein immunogenicity with a dendritic cell line-derived endolysosomal degradome. PLoS One. 2011;6(2):e17278.
  • Michiels TJM, Meiring HD, Jiskoot W, et al. Formaldehyde treatment of proteins enhances proteolytic degradation by the endo-lysosomal protease cathepsin S. Sci Rep. 2020;10(1):11535.
  • Michiels TJM, Tilstra W, Hamzink MRJ, et al. Degradomics-based analysis of tetanus toxoids as a quality control assay. Vaccines (Basel). 2020;8(4):712.
  • Hagenaars N, Mastrobattista E, Glansbeek H, et al., Head-to-head comparison of four nonadjuvanted inactivated cell culture-derived influenza vaccines: effect of composition, spatial organization and immunization route on the immunogenicity in a murine challenge model. Vaccine.2008;26(51):6555–6563.
  • Geeraedts F, Goutagny N, Hornung V, et al. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by toll-like receptor signalling. Subbarao K, ed. PLoS Pathog. 2008;4(8):e1000138.
  • Bernstein DI, Zahradnik JM, DeAngelis CJ, et al. Clinical reactions and serologic responses after vaccination with whole-virus or split-virus influenza vaccines in children aged 6 to 36 months. Pediatrics. 1982;69:4.
  • Halbroth BR, Heil A, Distler E, et al. Superior in vitro stimulation of human CD8+ T-cells by whole virus versus split virus influenza vaccines. Stambas J, ed. PLoS One. 2014;9(7):e103392.
  • Hampson AW. Vaccines for pandemic influenza. The history of our current vaccines, their limitations and the requirements to deal with a pandemic threat. Ann Acad Med Singapore. 2008;37(6):510–517.
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787–796.
  • Reynolds DL, Maraqa AD. Protective immunity against Newcastle disease: the role of cell-mediated immunity. Avian Dis. 2000;44(1):145–154.
  • Higgins SC, Jarnicki AG, Lavelle EC, et al. TLR4 mediates vaccine-induced protective cellular immunity to bordetella pertussis : role of IL-17-producing T cells. J Immunol. 2006;177(11):7980–7989.
  • Herrera-Rodriguez J, Signorazzi A, Holtrop M, et al. Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production. Vaccine. 2019;37(12):1630–1637.
  • Viviani L, Halder M, Gruber M, et al. Global harmonization of vaccine testing requirements: making elimination of the ATT and TABST a concrete global achievement. Biologicals. 2020;63:101-105.
  • Garbe JHO, Ausborn S, Beggs C, et al. Historical data analyses and scientific knowledge suggest complete removal of the abnormal toxicity test as a quality control test. J Pharm Sci. 2014;103(11):3349–3355.
  • Spohr C, Kaufmann E, Battenfeld S, et al. A New Lymphocyte Proliferation Assay for Potency Determination of Bovine Tuberculin PPDs Supplementary Data. ALTEX. 2015;32(3):201–210.
  • Neverov A, Chumakov K. Massively parallel sequencing for monitoring genetic consistency and quality control of live viral vaccines. Proc Natl Acad Sci. 2010;107(46): 20063LP - 20068.
  • Charlton B, Hockley J, Laassri M, et al. The use of next-generation sequencing for the quality control of live-attenuated polio vaccines. J Infect Dis. 2020;222(11):1920–1927.
  • Da Costa A, Prehaud C, Khou C, et al. Innovative in cellulo method as an alternative to in vivo neurovirulence test for the characterization and quality control of human live Yellow Fever virus vaccines: a pilot study. Biologicals. 2018;53:19–29.
  • Szymkowicz L, Wilson DJ, James DA. Development of a targeted nanoLC-MS/MS method for quantitation of residual toxins from Bordetella pertussis. J Pharm Biomed Anal. 2020;188:113395.
  • Akkermans A, Chapsal JM, Coccia EM, et al. Animal testing for vaccines. Implementing replacement, reduction and refinement: challenges and priorities. Biologicals. 2020;68:92–107.
  • Vandebriel R, Hoefnagel MMN. Dendritic cell-based in vitro assays for vaccine immunogenicity. Hum Vaccin Immunother. 2012;8(9):1323–1325.
  • Stoel M, Pool J, de Vries-Idema J, et al. Innate responses induced by whole inactivated virus or subunit influenza vaccines in cultured dendritic cells correlate with immune responses in vivo. PLoS One. 2015;10(5):e0125228.
  • Tapia-Calle G, Stoel M, de Vries-Idema J, et al. Distinctive responses in an in vitro human dendritic cell-based system upon stimulation with different influenza vaccine formulations. Vaccines (Basel). 2017;5(3):21.
  • Hoefnagel MHN, Vermeulen JP, Scheper RJ, et al. Response of MUTZ-3 dendritic cells to the different components of the Haemophilus influenzae type B conjugate vaccine: towards an in vitro assay for vaccine immunogenicity. Vaccine. 2011;29(32):5114–5121.
  • Querec T, Bennouna S, Alkan S, et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med. 2006;203(2):413–424.
  • Brummelman J, Veerman RE, Hamstra HJ, et al.Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells.Ba M,editor.Infect Immun. 2015;83(1):227–238
  • Hovingh ES, Van Gent M, Hamstra H-J, et al. Emerging Bordetella pertussis strains induce enhanced signaling of human pattern recognition receptors TLR2, NOD2 and secretion of IL-10 by dendritic cells. Hozbor DF, ed. PLoS One. 2017;12(1):e0170027.
  • Hoffmann S, Peterbauer A, Schindler S, et al. International validation of novel pyrogen tests based on human monocytoid cells. J Immunol Methods. 2005;298(1–2):161–173.
  • Zaitseva M, Romantseva T, Blinova K, et al., Use of human MonoMac6 cells for development of in vitro assay predictive of adjuvant safety in vivo. Vaccine. 30(32): 4859–4865. 2012.
  • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4+ T cell populations. Annu Rev Immunol. 2010;28(1):445–489.
  • Bent R, Moll L, Grabbe S, et al. Interleukin-1 beta—A friend or foe in malignancies. Int J Mol Sci. 2018;19(8):2155.
  • Hoonakker ME, Verhagen LM, van der Maas L, et al., Adaptive immune response to whole cell pertussis vaccine reflects vaccine quality: a possible complementation to the pertussis serological potency test. Vaccine. 2016;34(37): 4429–4436.
  • Joffret ML, Zanetti C, Morgeaux S, et al. Appraisal of rabies vaccine potency by determination of in vitro, specific interleukin-2 production. Biologicals. 1991;19(2):113–123.
  • Moser JM, Sassano ER, Leistritz DC, et al. Optimization of a dendritic cell-based assay for the in vitro priming of naïve human CD4+ T cells. J Immunol Methods. 2010;353(1–2):8–19.
  • Tapia-Calle G, Born PA, Koutsoumpli G, et al. A PBMC-based system to assess human T cell responses to influenza vaccine candidates in vitro. Vaccines (Basel). 2019;7(4):181.
  • Kangethe RT, Pichler R, Chuma FNJ, et al. Bovine monocyte derived dendritic cell based assay for measuring vaccine immunogenicity in vitro. Vet Immunol Immunopathol. 2018;197:39–48.
  • Yu SCT, Nag B. Application of murine T-T hybridoma cells to in vitro potency assay of human synthetic peptide vaccines. Vaccine. 1996;14(14):1313–1321.
  • Ise W, Inoue T, McLachlan JB, et al. Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. Proc Natl Acad Sci U S A. 2014;111(32):11792–11797.
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):287–293.
  • Spickler AR, Roth JA. Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med. 2003;17(3):273–281.
  • Freund J, Casals J, Hosmer EP. Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc Soc Exp Biol Med. 1937;37(3):509–513.
  • Di Pasquale A, Preiss S, Da Silva FT, et al. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel). 2015;3(2):320–343.
  • Van Doorn E, Liu H, Huckriede A, et al. Safety and tolerability evaluation of the use of Montanide ISA™51 as vaccine adjuvant: a systematic review. Hum Vaccines Immunother. 2016;12(1):159–169.
  • O’Hagan DT, Ott GS, Van Nest G, et al. The history of MF59 ® adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines. 2013;12(1):13–30.
  • Misquith A, Fung HWM, Dowling QM, et al. In vitro evaluation of TLR4 agonist activity: formulation effects. Colloids Surf B Biointerfaces. 2014;113:312–319.
  • Stokes W, Srinivas G, McFarland R, et al. Report on the international workshop on alternative methods for Leptospira vaccine potency testing: state of the science and the way forward. Biologicals. 2013;41(5):279–294.
  • Claassen I, Maas R, Oei H, et al. Validation study to evaluate the reproducibility of a candidate in vitro potency assay of newcastle disease vaccines and to establish the suitability of a candidate biological reference preparation. Pharmeuropa bio. 2004;2004(1):1–15
  • van den Biggelaar RHGA, van Eden W, Rutten VPMG, et al. Macrophage activation assays to evaluate the immunostimulatory capacity of Avibacterium paragallinarum in a multivalent poultry vaccine. Vaccines (Basel). 2020;8(4):671.
  • Saravanan P, Iqbal Z, Selvaraj DPR, et al., Comparison of chemical extraction methods for determination of 146S content in foot-and-mouth disease oil-adjuvanted vaccine. J Appl Microbiol. 2020;128(1): 65–73.
  • Morgenroth A, Jakel V, Hanke-Robinson H, et al. A novel electrophoretic immunoblot as antigen desorption and quantification method for alum-adjuvanted veterinary rabies vaccines. Vaccine. 2020;38(27):4281–4287.
  • Rinella JV, Workman RF, Hermodson MA, et al. Elutability of proteins from aluminum-containing vaccine adjuvants by treatment with surfactants. J Colloid Interface Sci. 1998;197(1):48–56.
  • Wood D, Sands D, Heath A. Collaborative study for the establishment of three product specific European Pharmacopoeia biological reference preparations for inactivated adsorbed hepatitis A vaccines. Pharmeur Bio Sci Notes. 2000;2000(1):51–80.
  • Byrne-Nash RT, Miller DF, Bueter KM, et al. VaxArray potency assay for rapid assessment of “pandemic” influenza vaccines. Npj Vaccines. 2018;3(1):43.
  • Song Y, Yang Y, Lin X, et al. In-situ and sensitive stability study of emulsion and aluminum adjuvanted inactivated foot-and-mouth disease virus vaccine by differential scanning fluorimetry analysis. Vaccine. 2020;38(14):2904–2912.
  • Nouchikian L, Roque C, Song JY, et al. An intrinsic fluorescence method for the determination of protein concentration in vaccines containing aluminum salt adjuvants. Vaccine. 2018;36(38):5738–5746.
  • Zhu D, Saul A, Huang S, et al. Use of o-phthalaldehyde assay to determine protein contents of Alhydrogel-based vaccines. Vaccine. 2009;27(43):6054–6059.
  • Amari JV, Levesque P, Lian Z, et al. Concentration determination of a recombinant vaccine antigen adsorbed onto an alum adjuvant by chemiluminescent nitrogen detection. Pharm Res. 2005;22(1):33–37.
  • van den Biggelaar RHGA, van Eden W, Rutten VPMG, et al. Nitric oxide production and Fc receptor-mediated phagocytosis as functional readouts of macrophage activity upon stimulation with inactivated poultry vaccines in vitro. Vaccines (Basel). 2020;8(2):332.
  • Da Silva M, Labas V, Nys Y, et al. Investigating proteins and proteases composing amniotic and allantoic fluids during chicken embryonic development. Poult Sci. 2017;96(8):2931–2941.
  • Katz JB, Hanson SK, Patterson PA, et al. In vitro assessment of viral antigen content in inactivated aluminum hydroxide adjuvanted vaccines. J Virol Methods. 1989;25(1):101–108.
  • Necchi F, Carducci M, Pisoni I, et al. Development of FAcE (Formulated Alhydrogel competitive ELISA) method for direct quantification of OAg present in Shigella sonnei GMMA-based vaccine and its optimization using Design of Experiments approach. J Immunol Methods. 2019;471:11–17.
  • Zhu D, Huang S, Gebregeorgis E, et al. Development of a direct alhydrogel formulation immunoassay (DAFIA). J Immunol Methods. 2009;344(1):73–78.
  • Li M, Wang X, Cao L, et al. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants. Vaccine. 2016;34(37):4422–4428.
  • Ugozzoli M, Laera D, Nuti S, et al. Flow cytometry: an alternative method for direct quantification of antigens adsorbed to aluminum hydroxide adjuvant. Anal Biochem. 2011;418(2):224–230.
  • Gibert R, Alberti M, Poirier B, et al. A relevant in vitro ELISA test in alternative to the in vivo NIH test for human rabies vaccine batch release. Vaccine. 2013;31(50):6022–6029.
  • Stalpers CAL, Retmana IA, Pennings JLA, et al. Variability of in vivo potency tests of Diphtheria, Tetanus and acellular Pertussis (DTaP) vaccines. Vaccine. 2021;39(18):2506–2516.
  • Chabaud-Riou M, Moreno N, Guinchard F, et al. G-protein based ELISA as a potency test for rabies vaccines. Biologicals. 2017;46:124–129.
  • Toinon A, Moreno N, Chausse H, et al. Potency test to discriminate between differentially over-inactivated rabies vaccines: agreement between the NIH assay and a G-protein based ELISA. Biologicals. 2019;60:49–54.
  • Vac2vac.eu [Internet]. London, UK: Manta Ray Media; [2021 August 03]. Available from: http://www.vac2vac.eu/
  • Schiffelers MJWA, Blaauboer BJ, Bakker WE, et al. Regulatory acceptance and use of serology for inactivated veterinary rabies vaccines. ALTEX. 2015;32(3):211–221.