821
Views
4
CrossRef citations to date
0
Altmetric
Review

Next generation live-attenuated influenza vaccine platforms

ORCID Icon & ORCID Icon
Pages 1097-1110 | Received 25 Oct 2021, Accepted 27 Apr 2022, Published online: 05 May 2022

References

  • Ciminski K, Thamamongood T, Zimmer G, et al. Novel insights into bat influenza A viruses. J Gen Virol. 2017;98(10):2393.
  • Webster RG, Guan Y, Peiris M, et al. Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. J Virol. 2002;76(1):118–126.
  • Sorrell E, Ramirez-Nieto G, Gomez-Osorio I, et al. Genesis of pandemic influenza. Cytogenet Genome Res. 2007;117(1–4):394–402.
  • Zhai S-L, Zhang H, Chen S-N, et al. Influenza D virus in animal species in Guangdong Province, southern China. Emerg Infect Dis. 2017;23(8):1392.
  • Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 2018;391(10127):1285–1300.
  • Mostafa A, Abdelwhab EM, Mettenleiter TC, et al. Zoonotic potential of influenza A viruses: a comprehensive overview. Viruses. 2018;10(9):497.
  • Hampson A, Barr I, Cox N, et al. Improving the selection and development of influenza vaccine viruses–Report of a WHO informal consultation on improving influenza vaccine virus selection, Hong Kong SAR, China, 18–20 November 2015. Vaccine. 2017;35(8):1104–1109.
  • Rajão DS, Pérez DR. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol. 2018;9:123.
  • Barberis I, Myles P, Ault S, et al. History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines. J Prev Med Hyg. 2016;57(3):E115.
  • Hoft DF, Babusis E, Worku S, et al. Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J Infect Dis. 2011;204(6):845–853.
  • Basha S, Hazenfeld S, Brady RC, et al. Comparison of antibody and T-cell responses elicited by licensed inactivated-and live-attenuated influenza vaccines against H3N2 hemagglutinin. Hum Immunol. 2011;72(6):463–469.
  • Song J-H, Nguyen HH, Cuburu N, et al. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc Nat Acad Sci. 2008;105(5):1644–1649.
  • Zielinski MR, Souza G, Taishi P, et al. Olfactory bulb and hypothalamic acute-phase responses to influenza virus: effects of immunization. Neuroimmunomodulation. 2013;20(6):323–333.
  • Alexandrova G, Budilovsky G, Koval T, et al. Study of live recombinant cold-adapted influenza bivalent vaccine of type A for use in children: an epidemiological control trial. Vaccine. 1986;4(2):114–118.
  • Zaman M, Ashraf S, Dreyer NA, et al. Human infection with avian influenza virus, Pakistan, 2007. Emerg Infect Dis. 2011;17(6):1056.
  • Pronker E, Claassen E, Osterhaus A. Development of new generation influenza vaccines: recipes for success? Vaccine. 2012;30(51):7344–7347.
  • Talbot TR, Crocker DD, Peters J, et al. Duration of virus shedding after trivalent intranasal live attenuated influenza vaccination in adults. Infect Control Hosp Epidemiol. 2005;26(5):494–500.
  • Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMist®; Fluenz™). Drugs. 2011;71(12):1591–1622.
  • Rhorer J, Ambrose CS, Dickinson S, et al. Efficacy of live attenuated influenza vaccine in children: a meta-analysis of nine randomized clinical trials. Vaccine. 2009;27(7):1101–1110.
  • Graaf H, Faust SN. Fluarix quadrivalent vaccine for influenza. Expert Rev Vaccines. 2015;14(8):1055–1063.
  • Fiore AE, Uyeki TM, Broder K, et al. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP) MMWR Recomm Rep . 2010 59(31): 1–62 .
  • Ceyhan B. Influenza and pneumococcus vaccination: current recommendations. Marmara Med J. 2016;29(3):26–31
  • Lewnard JA, Cobey S. Immune history and influenza vaccine effectiveness. Vaccines (Basel). 2018;6(2):28.
  • Manzoli L, Ioannidis JP, Flacco ME, et al. Effectiveness and harms of seasonal and pandemic influenza vaccines in children, adults and elderly: a critical review and re-analysis of 15 meta-analyses. Hum Vaccin Immunother. 2012;8(7):851–862.
  • Smith S, Demicheli V, Di Pietrantonj C, et al. Vaccines for preventing influenza in healthy children. Evidence Based Child Health Cochrane Rev J. 2006;1(2):367–522.
  • Chung JR, Flannery B, Thompson MG, et al. Seasonal effectiveness of live attenuated and inactivated influenza vaccine. Pediatrics. 2016;137(2). 10.1542/peds.2015-3279.
  • McLean HQ, Caspard H, Griffin MR, et al. Effectiveness of live attenuated influenza vaccine and inactivated influenza vaccine in children during the 2014–2015 season. Vaccine. 2017;35(20):2685–2693.
  • Poehling KA, Caspard H, Peters TR, et al. 2015–2016 vaccine effectiveness of live attenuated and inactivated influenza vaccines in children in the United States. Clinl Infect Dis. 2018;66(5):665–672.
  • Skowronski DM, Chambers C, Sabaiduc S, et al. Beyond antigenic match: possible agent-host and immuno-epidemiological influences on influenza vaccine effectiveness during the 2015–2016 season in Canada. J Infect Dis. 2017;216(12):1487–1500.
  • Caspard H, Mallory RM, Yu J, et al., editors Live-attenuated influenza vaccine effectiveness in children from 2009 to 2015–2016: a systematic review and meta-analysis. Open forum infectious diseases. 4(3). Oxford University Press; 2017 ofx111 .
  • Grohskopf LA, Sokolow LZ, Broder KR, et al. Prevention and control of seasonal influenza with vaccines recommendations of the Advisory Committee on Immunization Practices—United States, 2016–17 influenza season. MMWR. 2016;65(5):1–52.
  • Grohskopf L, Sokolow L, Broder K, et al. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices—United States, 2017–18 influenza season 66(2) . CDC: Wiley Online Library; 2017 (1–20) .
  • Grohskopf LA, Sokolow LZ, Fry AM, et al. Update: ACIP recommendations for the use of quadrivalent live attenuated influenza vaccine (LAIV4)—United States, 2018–19 influenza season. Morbidity Mortality Weekly Rep. 2018;67(22):643.
  • Caspard H, Coelingh KL, Mallory RM, et al. Association of vaccine handling conditions with effectiveness of live attenuated influenza vaccine against H1N1pdm09 viruses in the United States. Vaccine. 2016;34(42):5066–5072.
  • Gould PS, Easton AJ, Dimmock NJ. Live attenuated influenza vaccine contains substantial and unexpected amounts of defective viral genomic RNA. Viruses. 2017;9(10):269.
  • Elderfield RA, Watson SJ, Godlee A, et al. Accumulation of human-adapting mutations during circulation of A (H1N1) pdm09 influenza virus in humans in the United Kingdom. J Virol. 2014;88(22):13269–13283.
  • Laurie KL, Guarnaccia TA, Carolan LA, et al. Interval between infections and viral hierarchy are determinants of viral interference following influenza virus infection in a ferret model. J Infect Dis. 2015;212(11):1701–1710.
  • Kroger AT, Atkinson WL, Marcuse EK, et al. General recommendations on immunization; recommendations of the advisory committee on immunization practices (ACIP). MMWR. Recommendations and Reports: Morbidity and Mortality Weekly Report. Recommendations and Reports. 2006;55:1–48.
  • Sridhar S, Brokstad KA, Cox RJ. Influenza vaccination strategies: comparing inactivated and live attenuated influenza vaccines. Vaccines (Basel). 2015;3(2):373–389.
  • Nogales A, Rodriguez L, Chauché C, et al. Temperature-sensitive live-attenuated canine influenza virus H3N8 vaccine. J Virol. 2017;91(4):e02211–16.
  • Friede M, Palkonyay L, Alfonso C, et al. WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: supporting developing country production capacity through technology transfer. Vaccine. 2011;29(Suppl 1):A2–7.
  • Murphy BR, Coelingh K. Principles underlying the development and use of live attenuated cold-adapted influenza A and B virus vaccines. Viral Immunol. 2002;15(2):295–323.
  • Abramson JS. Intranasal, cold-adapted, live, attenuated influenza vaccine. Pediatr Infect Dis J. 1999;18(12):1103–1104.
  • Jin H, Chen Z. Production of live attenuated influenza vaccines against seasonal and potential pandemic influenza viruses. Curr Opin Virol. 2014;6:34–39.
  • Treanor J. History of live, attenuated influenza vaccine. J Pediatric Infect Dis Soc. 2020;9(Supplement_1):S3–S9.
  • Mills J, Chanock RM, Nusinoff SR, et al. Temperature-sensitive mutants of influenza virus. I. Behavior in tissue culture and in experimental animals. J Infect Dis. 1971;123(2):145–157.
  • Murphy BR, Tolpin MD, Massicot JG, et al. Escape of a highly defective influenza A virus mutant from its temperature sensitive phenotype by extragenic suppression and other types of mutation. Ann N Y Acad Sci. 1980;354(1):172–182.
  • Tolpin MD, Massicot JG, Mullinix MG, et al. Genetic factors associated with loss of the temperature-sensitive phenotype of the influenza A/Alaska/77-ts-1A2 recombinant during growth in vivo. Virology. 1981;112(2):505–517.
  • Beare A, Webster R. Replication of avian influenza viruses in humans. Arch Virol. 1991;119(1):37–42.
  • Blanco-Lobo P, Nogales A, Rodríguez L, et al. Novel approaches for the development of live attenuated influenza vaccines. Viruses. 2019;11(2):190.
  • Miller GL. A study of conditions for the optimum production of PR8 influenza virus in chick embryos. J Exp Med. 1944;79(2):173–183.
  • Wong -S-S, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev. 2013;26(3):476–492.
  • RJ COX, BROKSTAD KA. The postvaccination antibody response to influenza virus proteins. Apmis. 1999;107(1‐6):289–296.
  • Katayose M, Hosoya M, Haneda T, et al. The effectiveness of trivalent inactivated influenza vaccine in children over six consecutive influenza seasons. Vaccine. 2011;29(9):1844–1849.
  • Saletti G, Gerlach T, Rimmelzwaan GF. Influenza vaccines:‘tailor-made’or ‘one fits all.’ Curr Opin Immunol. 2018;53:102–110.
  • Cox R, Brokstad K, Ogra P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol. 2004;59(1):1–15.
  • Laver W, Webster R. Preparation and immunogenicity of an influenza virus hemagglutinin and neuraminidase subunit vaccine. Virology. 1976;69(2):511–522.
  • Cox MM, Patriarca PA, Treanor J. FluBlok, a recombinant hemagglutinin influenza vaccine. Influenza Other Respir Viruses. 2008;2(6):211–219.
  • Lukšić I, Clay S, Falconer R, et al. Effectiveness of seasonal influenza vaccines in children–a systematic review and metaanalysis. Croat Med J. 2013;54(2):135–145.
  • Beyer W, Palache A, De Jong J, et al. Cold-adapted live influenza vaccine versus inactivated vaccine: systemic vaccine reactions, local and systemic antibody response, and vaccine efficacy: a meta-analysis. Vaccine. 2002;20(9–10):1340–1353.
  • Hoft DF, Lottenbach KR, Blazevic A, et al. Comparisons of the humoral and cellular immune responses induced by live attenuated influenza vaccine and inactivated influenza vaccine in adults. Clin Vaccin Immunol. 2017;24(1):e00414–16.
  • Sycheva AL, Pogorelyy MV, Komech EA, et al. Quantitative profiling reveals minor changes of T cell receptor repertoire in response to subunit inactivated influenza vaccine. Vaccine. 2018;36(12):1599–1605.
  • Chakradhar S. After flu vaccine mismatch, calls for delayed selection intensify. Nat Med. 2015;21(4):297.
  • Hale BG, Randall RE, Ortín J, et al. The multifunctional NS1 protein of influenza A viruses. J Gen Virol. 2008;89(10):2359–2376.
  • Tisoncik JR, Billharz R, Burmakina S, et al. The NS1 protein of influenza A virus suppresses interferon-regulated activation of antigen-presentation and immune-proteasome pathways. J Gen Virol. 2011;92(Pt 9):2093.
  • Hsu AC-Y. Influenza virus: a master tactician in innate immune evasion and novel therapeutic interventions. Front Immunol. 2018;9:743.
  • Clark AM, Nogales A, Martinez-Sobrido L, et al. Functional evolution of influenza virus NS1 protein in currently circulating human 2009 pandemic H1N1 viruses. J Virol. 2017;91(17):e00721–17.
  • Nogales A, Martinez-Sobrido L, Topham DJ, et al. NS1 protein amino acid changes D189N and V194I affect interferon responses, thermosensitivity, and virulence of circulating H3N2 human influenza A viruses. J Virol. 2017;91(5):e01930–16.
  • Nogales A, Rodriguez L, DeDiego ML, et al. Interplay of PA-X and NS1 proteins in replication and pathogenesis of a temperature-sensitive 2009 pandemic H1N1 influenza A virus. J Virol. 2017;91(17):e00720–17.
  • Nogales A, Huang K, Chauché C, et al. Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology. 2017;500:1–10.
  • García-Sastre A, Egorov A, Matassov D, et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology. 1998;252(2):324–330.
  • Falcon AM, Fernandez-Sesma A, Nakaya Y, et al. Attenuation and immunogenicity in mice of temperature-sensitive influenza viruses expressing truncated NS1 proteins. J Gen Virol. 2005;86(10):2817–2821.
  • Lamb RA, Choppin PW. Segment 8 of the influenza virus genome is unique in coding for two polypeptides. Proc Nat Acad Sci. 1979;76(10):4908–4912.
  • JrA R, Lekcharoensuk P, Lager KM, et al. Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine. J Virol. 2006;80(22):11009–11018.
  • Vincent AL, Ma W, Lager KM, et al. Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine. Vaccine. 2007;25(47):7999–8009.
  • Steel J, Lowen AC, Pena L, et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol. 2009;83(4):1742–1753.
  • E-h C, Song M-S, Park S-J, et al. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene. Arch Virol. 2015;160(7):1729–1740.
  • Quinlivan M, Zamarin D, García-Sastre A, et al. Attenuation of equine influenza viruses through truncations of the NS1 protein. J Virol. 2005;79(13):8431–8439.
  • Talon J, Salvatore M, O’Neill RE, et al. Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc Nat Acad Sci. 2000;97(8):4309–4314.
  • Baskin C, Bielefeldt-Ohmann H, Garcia-Sastre A, et al. Functional genomic and serological analysis of the protective immune response resulting from vaccination of macaques with an NS1-truncated influenza virus. J Virol. 2007;81(21):11817–11827.
  • Pica N, Langlois RA, Krammer F, et al. NS1-truncated live attenuated virus vaccine provides robust protection to aged mice from viral challenge. J Virol. 2012;86(19):10293–10301.
  • Solórzano A, Webby RJ, Lager KM, et al. Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. J Virol. 2005;79(12):7535–7543.
  • Kappes MA, Sandbulte MR, Platt R, et al. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs. Vaccine. 2012;30(2):280–288.
  • Jang H, Ngunjiri JM, Lee C-W. Association between interferon response and protective efficacy of NS1-truncated mutants as influenza vaccine candidates in chickens. PLoS One. 2016;11(6):e0156603.
  • Mössler C, Groiss F, Wolzt M, et al. Phase I/II trial of a replication-deficient trivalent influenza virus vaccine lacking NS1. Vaccine. 2013;31(52):6194–6200.
  • Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol. 2002;14(4):432–436.
  • Le Bon A, Etchart N, Rossmann C, et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol. 2003;4(10):1009–1015.
  • Biggerstaff M, Cauchemez S, Reed C, et al. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14(1):1–20.
  • Parvin R, Begum JA, Nooruzzaman M, et al. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect. 2018;146(10):1259–1266.
  • Harding AT, Heaton BE, Dumm RE, et al. Rationally designed influenza virus vaccines that are antigenically stable during growth in eggs. MBio. 2017;8(3):e00669–17.
  • Wise HM, Hutchinson EC, Jagger BW, et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog. 2012;8(11):e1002998.
  • Paterson D, Fodor E, Hobman TC. Emerging roles for the influenza A virus nuclear export protein (NEP). PLoS Pathog. 2012;8(12):e1003019.
  • Nogales A, DeDiego ML, Topham DJ, et al. Rearrangement of influenza virus spliced segments for the development of live-attenuated vaccines. J Virol. 2016;90(14):6291–6302.
  • Si L, Xu H, Zhou X, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science. 2016;354(6316):1170–1173.
  • Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009;82(4):153.
  • Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology. 2006;344(1):230–239.
  • Martínez-Sobrido L, Cadagan R, Steel J, et al. Hemagglutinin-pseudotyped green fluorescent protein-expressing influenza viruses for the detection of influenza virus neutralizing antibodies. J Virol. 2010;84(4):2157–2163.
  • Büssow K. Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol. 2015;32:81–90.
  • Shih FF, Cerasoli DM, Caton AJ. A major T cell determinant from the influenza virus hemagglutinin (HA) can be a cryptic self peptide in HA transgenic mice. Int Immunol. 1997;9(2):249–261.
  • Nogales A, Baker SF, Domm W, et al. Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res. 2016;216:26–40.
  • Uraki R, Kiso M, Iwatsuki-Horimoto K, et al. A novel bivalent vaccine based on a PB2-knockout influenza virus protects mice from pandemic H1N1 and highly pathogenic H5N1 virus challenges. J Virol. 2013;87(14):7874–7881.
  • Sarawar S, Hatta Y, Watanabe S, et al. M2SR, a novel live single replication influenza virus vaccine, provides effective heterosubtypic protection in mice. Vaccine. 2016;34(42):5090–5098.
  • Ozawa M, Victor ST, Taft AS, et al. Replication-incompetent influenza A viruses that stably express a foreign gene. J Gen Virol. 2011;92(Pt 12):2879.
  • Hooper KA, Crowe JJE, Bloom JD. Influenza viruses with receptor-binding N1 neuraminidases occur sporadically in several lineages and show no attenuation in cell culture or mice. J Virol. 2015;89(7):3737–3745.
  • Baker SF, Nogales A, Finch C, et al. Influenza A and B virus intertypic reassortment through compatible viral packaging signals. J Virol. 2014;88(18):10778–10791.
  • Marsh GA, Hatami R, Palese P. Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. J Virol. 2007;81(18):9727–9736.
  • Engelhardt OG. Many ways to make an influenza virus–review of influenza virus reverse genetics methods. Influenza Other Respir Viruses. 2013;7(3):249–256.
  • Masic A, Pyo H-M, Babiuk S, et al. An eight-segment swine influenza virus harboring H1 and H3 hemagglutinins is attenuated and protective against H1N1 and H3N2 subtypes in pigs. J Virol. 2013;87(18):10114–10125.
  • Inagaki A, Goto H, Kakugawa S, et al. Competitive incorporation of homologous gene segments of influenza A virus into virions. J Virol. 2012;86(18):10200–10202.
  • Shinya K, Fujii Y, Ito H, et al. Characterization of a neuraminidase-deficient influenza a virus as a potential gene delivery vector and a live vaccine. J Virol. 2004;78(6):3083–3088.
  • Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science. 2010;328(5983):1272–1275.
  • Bloom JD, Nayak JS, Baltimore D. A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One. 2011;6(7):e22201.
  • Kobayashi H, Iwatsuki-Horimoto K, Kiso M, et al. A replication-incompetent influenza virus bearing the HN glycoprotein of human parainfluenza virus as a bivalent vaccine. Vaccine. 2013;31(52):6239–6246.
  • Baker SF, Guo H, Albrecht RA, et al. Protection against lethal influenza with a viral mimic. J Virol. 2013;87(15):8591–8605.
  • Guo H, Baker SF, Martínez-Sobrido L, et al. Induction of CD8 T cell heterologous protection by a single dose of single-cycle infectious influenza virus. J Virol. 2014;88(20):12006–12016.
  • Baker SF, Nogales A, Santiago FW, et al. Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA). Vaccine. 2015;33(30):3562–3570.
  • Pyo H-M, Zhou Y. Protective efficacy of intranasally administered bivalent live influenza vaccine and immunological mechanisms underlying the protection. Vaccine. 2014;32(30):3835–3842.
  • Victor ST, Watanabe S, Katsura H, et al. A replication-incompetent PB2-knockout influenza A virus vaccine vector. J Virol. 2012;86(8):4123–4128.
  • Powell TJ, Silk JD, Sharps J, et al. Pseudotyped influenza A virus as a vaccine for the induction of heterotypic immunity. J Virol. 2012;86(24):13397–13406.
  • Katsura H, Iwatsuki-Horimoto K, Fukuyama S, et al. A replication-incompetent virus possessing an uncleavable hemagglutinin as an influenza vaccine. Vaccine. 2012;30(42):6027–6033.
  • Moorthy N, Poongavanam V, Pratheepa V. Viral M2 ion channel protein: a promising target for anti-influenza drug discovery. Mini Rev Med Chem. 2014;14(10):819–830.
  • Watanabe S, Watanabe T, Kawaoka Y. Influenza A virus lacking M2 protein as a live attenuated vaccine. J Virol. 2009;83(11):5947–5950.
  • Watanabe T, Watanabe S, Kim JH, et al. Novel approach to the development of effective H5N1 influenza A virus vaccines: use of M2 cytoplasmic tail mutants. J Virol. 2008;82(5):2486–2492.
  • Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12(1):32–42.
  • Biro JC. Does codon bias have an evolutionary origin? Theor Biol Med Modell. 2008;5(1):1–15.
  • Kumar N, Bera BC, Greenbaum BD, et al. Revelation of influencing factors in overall codon usage bias of equine influenza viruses. PloS one. 2016;11(4):e0154376.
  • McMillan CL, Young PR, Watterson D, et al. The next generation of influenza vaccines: towards a universal solution. Vaccines (Basel). 2021;9(1):26.
  • Yang C, Skiena S, Futcher B, et al. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice. Proc Nat Acad Sci. 2013;110(23):9481–9486.
  • Broadbent AJ, Santos CP, Anafu A, et al. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine. 2016;34(4):563–570.
  • Fan RL, Valkenburg SA, Wong CK, et al. Generation of live attenuated influenza virus by using codon usage bias. J Virol. 2015;89(21):10762–10773.
  • Nogales A, Baker SF, Ortiz-Riaño E, et al. Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development. J Virol. 2014;88(18):10525–10540.
  • Kotomina T, Isakova-Sivak I, Kim K-H, et al. Generation and characterization of universal live-attenuated influenza vaccine candidates containing multiple M2e epitopes. Vaccines (Basel). 2020;8(4):648.
  • Mezhenskaya D, Isakova-Sivak I, Matyushenko V, et al. Universal live-attenuated influenza vaccine candidates expressing multiple M2e epitopes protect ferrets against a high-dose heterologous virus challenge. Viruses. 2021;13(7):1280.
  • Mezhenskaya D, Isakova-Sivak I, Kotomina T, et al. A strategy to elicit M2e-specific antibodies using a recombinant H7N9 live attenuated influenza vaccine expressing multiple M2e tandem repeats. Biomedicines. 2021;9(2):133.
  • Stepanova E, Krutikova E, Wong P-F, et al. Safety, Immunogenicity, and Protective Efficacy of a Chimeric A/B Live Attenuated Influenza Vaccine in a Mouse Model. Microorganisms. 2021;9(2):259.
  • Isakova-Sivak I, Matyushenko V, Stepanova E, et al. Recombinant live attenuated influenza vaccine viruses carrying conserved T cell epitopes of human adenoviruses induce functional cytotoxic T cell responses and protect mice against both infections. Vaccines (Basel). 2020;8(2):196.
  • Zhou B, Meliopoulos VA, Wang W, et al. Reversion of cold-adapted live attenuated influenza vaccine into a pathogenic virus. J Virol. 2016;90(19):8454–8463.
  • Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov. 2020;15(12):1441–1455.
  • Arinaminpathy N, Riley S, Barclay W, et al. Population implications of the deployment of novel Universal vaccines against epidemic and pandemic influenza. J Royal Soc Interface. 2020;17(164):20190879.
  • Young KR, McBurney SP, Karkhanis LU, et al. Virus-like particles: designing an effective AIDS vaccine. Methods. 2006;40(1):98–117.
  • Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol J. 2018;15(1):1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.