782
Views
3
CrossRef citations to date
0
Altmetric
Review

Quantification methods for viruses and virus-like particles applied in biopharmaceutical production processes

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1029-1044 | Received 25 Feb 2022, Accepted 27 Apr 2022, Published online: 06 May 2022

References

  • Chen YH, Keiser MS, Davidson BL. Viral vectors for gene transfer. Curr Protoc Mouse Biol. 2018 Dec;8(4):e58 1–7.
  • Humphreys IR, Sebastian S. Novel viral vectors in infectious diseases. Immunology. 2018 Jan;153(1):1–9.
  • Heidbuechel JPW, Engeland CE. Paramyxoviruses for tumor-targeted immunomodulation: design and evaluation ex vivo. J Vis Exp. 2019 Jan;7(143):e58651 1–14.
  • Zheng M, Huang J, Tong A, et al. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther Oncolytics. 2019 Dec 20;15:234–247.
  • Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020 Jun 29; 13(1):e84 1–15.
  • Lei C, Yang J, Hu J, et al. On the calculation of TCID50 for quantitation of virus infectivity. Virol Sin. 2021 Feb;36(1):141–144.
  • Transfiguracion J, Manceur AP, Petiot E, et al. Particle quantification of influenza viruses by high performance liquid chromatography. Vaccine. 2015 Jan 1; 33(1):78–84.
  • Mo C, Yamagata R, Pan A, et al. Development of a high-throughput Alamar blue assay for the determination of influenza virus infectious dose, serum antivirus neutralization titer and virus ca/ts phenotype. J Virol Methods. 2008 Jun;150(1–2):63–69.
  • Karakus U, Crameri M, Lanz C, et al. Propagation and titration of influenza viruses. Methods Mol Biol. 2018;1836:59–88.
  • Cornfield J, Halperin M, Moore F. Some statistical aspects of safety testing the Salk poliomyelitis vaccine. 433021. 1956;71(10):1045–1056.
  • Polson A, Hampton JW. Studies on poliomyelitis virus: concentration and purification of the virus. J Hyg (Lond). 1957 Sep;55(3):344–346.
  • Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints12. Am J Epidemiol. 1938;27(3):493–497.
  • Lock M, Korn M, Wilson J, et al. Measuring the infectious titer of recombinant adenovirus using tissue culture infection dose 50% (TCID50) end-point dilution and quantitative polymerase chain reaction (qPCR). Cold Spring Harb Protoc. 2019 Aug 1; 2019(8):600–608.
  • Loewe D, Haussler J, Grein TA, et al. Forced degradation studies to identify critical process parameters for the purification of infectious measles virus. Viruses. 2019 Aug 7; 11(8):e725 1–16.
  • Grein TA, Schwebel F, Kress M, et al. Screening different host cell lines for the dynamic production of measles virus. Biotechnol Prog. 2017 Jul;33(4):989–997.
  • Eckhardt D, Dieken H, Loewe D, et al. Purification of oncolytic measles virus by cation-exchange chromatography using resin-based stationary phases. Sep Sci Technol. 2021;57(6):886-896.
  • Loewe D, Dieken H, Grein TA, et al. A combined ultrafiltration/diafiltration process for the purification of oncolytic measles virus. Membranes (Basel). 2022;12(2):e105 1–14.
  • Galasso B, Sharma S, Knollmann-Ritschel B, et al. Magnetic bead purification of enveloped alphavirus and flavivirus. MethodsX. 2021;8:e101549 2–7.
  • Wang Q, Xie H, Zeng W, et al. Development of indirect immunofluorescence assay for TCID50 measurement of grass carp reovirus genotype II without cytopathic effect onto cells. Microb Pathog. 2018 Jan;114:68–74.
  • Cresta D, Warren DC, Quirouette C, et al. Time to revisit the endpoint dilution assay and to replace the TCID50 as a measure of a virus sample’s infection concentration. PLoS Comput Biol. 2021 Oct;17(10):e1009480 1–20.
  • Hochdorfer D, Businger R, Hotter D, et al. Automated, label-free TCID50 assay to determine the infectious titer of virus-based therapeutics. J Virol Methods. 2021 Oct 6;299:e114318.
  • Agbulos DS, Barelli L, Giordano BV, et al. Zika virus: quantification, propagation, detection, and storage. Curr Protoc Microbiol. 2016 Nov 18;43:15D.4.1–15D.4.16.
  • Orsel K, de Jong MC, Bouma A, et al. Foot and mouth disease virus transmission among vaccinated pigs after exposure to virus shedding pigs. Vaccine. 2007 Aug 21; 25(34):6381–6391.
  • Basak S, Kang HJ, Chu KB, et al. Simple and rapid plaque assay for recombinant baculoviruses expressing influenza hemagglutinin. Sci Prog. 2021 Jan-Mar;104(1):e368504211004261 1–12.
  • Domachowske JB, Bonville CA. Overnight titration of human respiratory syncytial virus using quantitative shell vial amplification. Biotechniques. 1998 Oct;25(4):644, 647.
  • McKimm-Breschkin JL. A simplified plaque assay for respiratory syncytial virus–direct visualization of plaques without immunostaining. J Virol Methods. 2004 Sep 1; 120(1):113–117.
  • Amarilla AA, Modhiran N, Setoh YX, et al. An optimized high-throughput immuno-plaque assay for SARS-CoV-2. Front Microbiol. 2021;12:e625136 1–17.
  • Smither SJ, Lear-Rooney C, Biggins J, et al. Comparison of the plaque assay and 50% tissue culture infectious dose assay as methods for measuring filovirus infectivity. J Virol Methods. 2013 Nov;193(2):565–571.
  • Coelho SVA, Neris RLS, Papa MP, et al. Development of standard methods for Zika virus propagation, titration, and purification. J Virol Methods. 2017 Aug;246:65–74.
  • Bouillier C, Rincheval V, Sitterlin D, et al. Generation, amplification, and titration of recombinant respiratory syncytial viruses. J Vis Exp. 2019 Apr;4(146):e59218 1–14.
  • Bernal LJ, Velandia-Romero M, Guevara C, et al. Human metapneumovirus: laboratory methods for isolation, propagation, and plaque titration. Intervirology. 2018;61(6):301–306.
  • Rziha HJ, Rohde J, Amann R. Generation and selection of orf virus (ORFV) recombinants. Methods Mol Biol. 2016;1349:177–200.
  • Mendoza EJ, Manguiat K, Wood H, et al. Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Curr Protoc Microbiol. 2020 Jun;57(1): ecpmc105 1–15.
  • Bekliz M, Adea K, Essaidi-Laziosi M, et al. SARS-CoV-2 rapid diagnostic tests for emerging variants. Lancet Microbe. 2021;2(8): e3511–1. 10.1016/S2666-5247(21)00147-6.
  • Abedon ST, Katsaounis TI. Detection of bacteriophages: statistical aspects of plaque assay. Bacteriophages. 2021;539–560.
  • Arias-Arias JL, Corrales-Aguilar E, Mora-Rodriguez RA. A fluorescent real-time plaque assay enables single-cell analysis of virus-induced cytopathic effect by live-cell imaging. Viruses. 2021 Jun 22; 13(7):e1193 1–16.
  • Dormitzer PR, Suphaphiphat P, Gibson DG, et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Transl Med. 2013 May 15; 5(185):e185ra68.
  • Brien JD, Hassert M, Stone ET, et al. Isolation and quantification of Zika virus from multiple organs in a mouse. J Vis Exp. 2019 Aug;15(150):e59632 1–8.
  • Elahi SM, Nazemi-Moghaddam N, Gadoury C, et al. A rapid focus-forming assay for quantification of infectious adenoviral vectors. J Virol Methods. 2021 Aug 23;297:e114267.
  • Reguzova A, Ghosh M, Muller M, et al. Orf virus-based vaccine vector D1701-V induces strong CD8+ T cell response against the transgene but not against ORFV-Derived Epitopes. Vaccines (Basel). [2020 Jun 10];8(2):e295 1–17.
  • Wang Y, Bergelson S, Feschenko M. Determination of lentiviral infectious titer by a novel droplet digital PCR method. Hum Gene Ther Methods. 2018 Apr;29(2):96–103.
  • Lothert K, Pagallies F, Feger T, et al. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J Biotechnol. 2020 Nov 10;323:62–72.
  • Schneider M, Muller M, Yigitliler A, et al. Orf virus-based therapeutic vaccine for treatment of papillomavirus-induced tumors. J Virol. 2020 Jul 16; 94(15):e00398-20 1–18.
  • Lothert K, Pagallies F, Eilts F, et al. A scalable downstream process for the purification of the cell culture-derived Orf virus for human or veterinary applications. J Biotechnol. 2020 Nov 10;323:221–230.
  • Tang VA, Renner TM, Varette O, et al. Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine. 2016 Sep 30; 34(42):5082–5089.
  • Li Z, Ling L, Liu X, et al. A flow cytometry-based immuno-titration assay for rapid and accurate titer determination of modified vaccinia Ankara virus vectors. J Virol Methods. 2010 Oct;169(1):87–94.
  • Labisch JJ, Wiese GP, Barnes K, et al. Infectious titer determination of lentiviral vectors using a temporal immunological real-time imaging approach. PLoS One. 2021;16(7):e0254739 1–19.
  • Hebert CG, Rodrigues KL, DiNardo N, et al. Viral infectivity quantification and neutralization assays using laser force cytology. Methods Mol Biol. 2021;2183:575–585.
  • Hebert CG, DiNardo N, Evans ZL, et al. Rapid quantification of vesicular stomatitis virus in vero cells using laser force cytology. Vaccine. 2018 Oct 1;36(41):6061–6069.
  • Hayes PR, Przybycien T, Schneider JW. Viral adventitious agent detection using Laser Force Cytology: intrinsic cell property changes with infection and comparison to in vitro testing. Biotechnol Bioeng. 2021 Oct 11; 119(1):134–144.
  • Engvall E, Perlmann P. Enzyme-linked immunosorbent assay, ELISA: III. quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972;109(1):129–135.
  • Butler JE. Enzyme-linked immunosorbent assay. J Immunoassay. 2000 May-Aug;21(2–3):165–209.
  • Sigoillot-Claude C, Battaglio M, Fiorucci M, et al. A versatile in vitro ELISA test for quantification and quality testing of infectious, inactivated and formulated rabies virus used in veterinary monovalent or combination vaccine. Vaccine. 2015 Jul 31; 33(32):3843–3849.
  • Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology. 2011 Mar 15; 411(2):229–236.
  • Heldt CL. Scalable method utilizing low pH for DNA removal in the harvest of recombinant adeno-associated virus vectors. J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Aug 15; 1124:173–179
  • Navarro Sanchez ME, Soulet D, Bonnet E, et al. Rabies vaccine characterization by nanoparticle tracking analysis. Sci Rep. 2020 May 18; 10(1):e8149 1–8.
  • Pose AG, Rodriguez ER, Pineiro MJ, et al. Quantitative ELISA sandwich for a new vaccine against avian influenza virus H5N1. J Immunol Methods. 2018 Aug;459:70–75.
  • Kim BC, Ju MK, Dan-Chin-Yu A, et al. Quantitative detection of HIV-1 particles using HIV-1 neutralizing antibody-conjugated beads. Anal Chem. 2009 Mar 15; 81(6):2388–2393.
  • He Z, Huffman J, Curtin K, et al. Composable microfluidic plates (cPlate): a simple and scalable fluid manipulation system for multiplexed enzyme-linked immunosorbent assay (ELISA). Anal Chem. 2021 Jan 26; 93(3):1489–1497.
  • Cohen L, Cui N, Cai Y, et al. Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano. 2020 Aug 25; 14(8):9491–9501.
  • Mancini G, Carbonara AO, Heremans JF. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965;2(3):235–254.
  • Vyas GN, Shulman NR. Hemagglutination assay for antigen and antibody associated with viral hepatitis. Science. 1970 Oct 16; 170(3955):233–332.
  • Levine S, Puck TT, Sagik BP. An absolute method for assay of virus hemagglutinins. J Exp Med. 1953;98(6):521–531.
  • Manceur AP, Kamen AA. Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine. 2015 Nov 4; 33(44):5913–5919.
  • Thompson CM, Petiot E, Lennaertz A, et al. Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches. Virol J. 2013 May 4;10:e141 1–14.
  • van Kessel G, Geels MJ, de Weerd S, et al. Development and qualification of the parallel line model for the estimation of human influenza haemagglutinin content using the single radial immunodiffusion assay. Vaccine. 2012 Jan 5; 30(2):201–209.
  • Fischer LM, Wolff MW, Reichl U. Purification of cell culture-derived influenza A virus via continuous anion exchange chromatography on monoliths. Vaccine. 2018 May 24; 36(22):3153–3160.
  • Bissinger T, Wu Y, Marichal-Gallardo P, et al. Towards integrated production of an influenza A vaccine candidate with MDCK suspension cells. Biotechnol Bioeng. 2021 Oct;118(10):3996–4013.
  • Fortuna AR, van Teeffelen S, Ley A, et al. Use of sulfated cellulose membrane adsorbers for chromatographic purification of cell cultured-derived influenza A and B viruses. Sep Purif Technol. 2019;226:350–358.
  • Lai CC, Weng TC, Chen PL, et al. Development and characterization of standard reagents for cell-based prepandemic influenza vaccine products. Hum Vaccin Immunother. 2020 Sep 1; 16(9):2245–2251.
  • Killian ML. Hemagglutination assay for influenza virus. Methods Mol Biol. 2014;1161:3–9.
  • Kalbfuss B, Knochlein A, Krober T, et al. Monitoring influenza virus content in vaccine production: precise assays for the quantitation of hemagglutination and neuraminidase activity. Biologicals. 2008 May;36(3):145–161.
  • Cheng H, Yang L, Cai Z, et al. Development of haemagglutination assay for titration of porcine circovirus type 2. Anal Biochem. 2020 Jun 1;598:e113706.
  • Engelhardt OG, Edge C, Dunleavy U, et al. Comparison of single radial immunodiffusion, SDS-PAGE and HPLC potency assays for inactivated influenza vaccines shows differences in ability to predict immunogenicity of haemagglutinin antigen. Vaccine. 2018 Jul 5; 36(29):4339–4345.
  • Killian ML. Hemagglutination assay for influenza virus. Methods Mol Biol. 2020;2123:3–10.
  • Wang J, Zhang Y, Wang J, et al. Development of a TaqMan-based real-time PCR assay for the specific detection of porcine circovirus 3. J Virol Methods. 2017 Oct;248:177–180.
  • Arikawa E, Sun Y, Wang J, et al. Cross-platform comparison of SYBR Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the microarray quality control (MAQC) study. BMC Genomics. 2008 Jul 11;9:e328 1–12.
  • Hirotsu Y, Maejima M, Shibusawa M, et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int J Infect Dis. 2020 Oct;99:397–402.
  • Gast M, Kuhner S, Sobek H, et al. Understanding the viral load during the synthesis and after rebinding of virus imprinted particles via real-time quantitative PCR. Analyst. [2018 May 29];143(11):2616–2622.
  • Fedosyuk S, Merritt T, Peralta-Alvarez MP, et al. Simian adenovirus vector production for early-phase clinical trials: a simple method applicable to multiple serotypes and using entirely disposable product-contact components. Vaccine. [2019 Nov 8];37(47):6951–6961.
  • Nour I, Hanif A, Alanazi F, et al. Evaluation of three different concentration and extraction methods for recovery efficiency of human adenovirus and human rotavirus virus A. J Virol Methods. 2021 Sep;295:e114212 1–8.
  • Lothert K, Sprick G, Beyer F, et al. Membrane-based steric exclusion chromatography for the purification of a recombinant baculovirus and its application for cell therapy. J Virol Methods. 2020 Jan;275:e113756 1–11.
  • Lothert K, Offersgaard AF, Pihl AF, et al. Development of a downstream process for the production of an inactivated whole hepatitis C virus vaccine. Sci Rep. 2020 Oct 1; 10(1):e16261 1–13.
  • Baigent SJ, Nair VK, Le Galludec H. Real-time PCR for differential quantification of CVI988 vaccine virus and virulent strains of Marek’s disease virus. J Virol Methods. 2016 Jul;233:23–36.
  • Kimura T, Ferran B, Tsukahara Y, et al. Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci Rep. 2019 Sep 19; 9(1):e13601 1–13.
  • Manukyan H, Rodionova E, Zagorodnyaya T, et al. Multiplex PCR-based titration (MPBT) assay for determination of infectious titers of the three Sabin strains of live poliovirus vaccine. Virol J. 2019 Oct 28; 16(1):e122 1–8.
  • Furuta-Hanawa B, Yamaguchi T, Uchida E. Two-Dimensional droplet digital PCR as a tool for titration and integrity evaluation of recombinant adeno-associated viral vectors. Hum Gene Ther Methods. 2019 Aug;30(4):127–136.
  • Tan DM, Lyu SL, Liu W, et al. Utility of droplet digital PCR assay for quantitative detection of norovirus in shellfish, from production to consumption in Guangxi, China. Biomed Environ Sci. 2018 Oct;31(10):713–720.
  • Amoroso MG, Di Concilio D, Langellotti AL, et al. Quantitative real-time PCR and digital PCR to evaluate residual quantity of HAV in experimentally depurated mussels. Food Environ Virol. 2021 Sep;13(3):329–336.
  • Ren M, Lin H, Chen S, et al. Detection of pseudorabies virus by duplex droplet digital PCR assay. J Vet Diagn Invest. 2018 Jan;30(1):105–112.
  • Morley AA. Digital PCR: a brief history. Biomol Detect Quantif. 2014 Sep;1(1):1–2.
  • Nixon G, Garson JA, Grant P, et al. Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem. 2014 May 6; 86(9):4387–4394.
  • Abachin E, Convers S, Falque S, et al. Comparison of reverse-transcriptase qPCR and droplet digital PCR for the quantification of dengue virus nucleic acid. Biologicals. 2018 Mar;52:49–54.
  • Spackman E, Senne DA, Myers TJ, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002 Sep;40(9):3256–3260.
  • Choi S, Jiang SC. Real-time PCR quantification of human adenoviruses in urban rivers indicates genome prevalence but low infectivity. Appl Environ Microbiol. 2005 Nov;71(11):7426–7433.
  • Vasudevan HN, Xu P, Servellita V, et al. Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification. Sci Rep. 2021 Jan 12; 11(1):e780 1–9.
  • Stevanovic AL, Johnson KN. Infectivity of drosophila C virus following oral delivery in drosophila larvae. J Gen Virol. 2015 Jun;96(Pt 6):1490–1496.
  • Hamza IA, Jurzik L, Uberla K, et al. Methods to detect infectious human enteric viruses in environmental water samples. Int J Hyg Environ Health. 2011 Nov;214(6):424–436.
  • Bruce EA, Mills MG, Sampoleo R, et al. Predicting infectivity: comparing four PCR-based assays to detect culturable SARS-CoV-2 in clinical samples. EMBO Mol Med. 2022 Feb 7; 14(2):e15290.
  • Li D, De Keuckelaere A, Uyttendaele M. Application of long-range and binding reverse transcription-quantitative PCR to indicate the viral integrities of noroviruses. Appl Environ Microbiol. 2014 Oct;80(20):6473–6479.
  • Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol. 2021 Jan 15; 4(1):e70 1–12.
  • Kumar PK. Monitoring intact viruses using aptamers. Biosensors (Basel). 2016 Aug 4;6(3):e40 1–16.
  • Malmqvist M. Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics. Curr Opin Immunol. 1993;5(2):282–286.
  • Mariani S, Minunni M. Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem. 2014 Apr;406(9–10):2303–2323.
  • Olaru A, Bala C, Jaffrezic-Renault N, et al. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem. 2015;45(2):97–105.
  • Singh P. Elsevier public health emergency collection. Ref Module Life Sci. 2017: 1–16
  • Nilsson CE, Abbas S, Bennemo M, et al. A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine. 2010 Jan 8; 28(3):759–766.
  • Prabowo BA, Wang RYL, Secario MK, et al. Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor. Biosens Bioelectron. 2017 Jun 15;92:186–191.
  • Wong CL, Chua M, Mittman H, et al. A phase-intensity surface plasmon resonance biosensor for avian influenza A (H5N1) detection. Sensors. 2017 Oct 16; 17(10):e2363 1–9.
  • Bruce-Staskal PJ, Woods RM, Borisov OV, et al. Hemagglutinin from multiple divergent influenza A and B viruses bind to a distinct branched, sialylated poly-LacNAc glycan by surface plasmon resonance. Vaccine. 2020 Oct 7; 38(43):6757–6765.
  • Hagner-Mcwhirter Å, Ahlén G, Bergman M, et al. A scalable adenovirus production process from cell culture to purified bulk product. Genet EngBiotechnol News. 2019;39(5):62–64.
  • Carvalho SB, Moleirinho MG, Wheatley D, et al. Universal label-free in-process quantification of influenza virus-like particles. Biotechnol J. 2017 Aug;12(8):e1700031 1–10.
  • Draz MS, Venkataramani M, Lakshminarayanan H, et al. Nanoparticle-enhanced electrical detection of Zika virus on paper microchips. Nanoscale. 2018 Jul 5; 10(25):11841–11849.
  • Zhang CX, Meagher MM. Sample stacking provides three orders of magnitude sensitivity enhancement in SDS capillary gel electrophoresis of adeno-associated virus capsid proteins. Anal Chem. 2017 Mar 21; 89(6):3285–3292.
  • van Tricht E, Geurink L, Backus H, et al. One single, fast and robust capillary electrophoresis method for the direct quantification of intact adenovirus particles in upstream and downstream processing samples. Talanta. 2017 May 1;166:8–14.
  • van Tricht E, Geurink L, Galindo Garre F, et al. Implementation of at-line capillary zone electrophoresis for fast and reliable determination of adenovirus concentrations in vaccine manufacturing. Electrophoresis. 2019 Sep;40(18–19):2277–2284.
  • Roque ACA, Pina AS, Azevedo AM, et al. Anything but conventional chromatography approaches in bioseparation. Biotechnol J. 2020 Aug;15(8):e1900274.
  • Kramberger P, Urbas L, Strancar A. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages. Hum Vaccin Immunother. 2015;11(4):1010–1021.
  • Spitteler MA, Fernandez I, Schabes E, et al. Foot and mouth disease (FMD) virus: quantification of whole virus particles during the vaccine manufacturing process by size exclusion chromatography. Vaccine. 2011 Sep 22; 29(41):7182–7187.
  • Fulvini AA, Tuteja A, Le J, et al. HA1 (Hemagglutinin) quantitation for influenza A H1N1 and H3N2 high yield reassortant vaccine candidate seed viruses by RP-UPLC. Vaccine. 2021 Jan 15; 39(3):545–553.
  • Urbas L, Kosir B, Peterka M, et al. Reversed phase monolithic analytical columns for the determination of HA1 subunit of influenza virus haemagglutinin. J Chromatogr A. 2011 Apr 29; 1218(17):2432–2437.
  • Creskey MC, Li C, Wang J, et al. Simultaneous quantification of the viral antigens hemagglutinin and neuraminidase in influenza vaccines by LC-MSE. Vaccine. 2012 Jul 6; 30(32):4762–4770.
  • Guo J, Lu Y, Zhang Y, et al. Development and fit-for-purpose verification of an LC-MS method for quantitation of hemagglutinin and neuraminidase proteins in influenza virus-like particle vaccine candidates. Anal Biochem. 2020 Mar 1;592:e113577 1–12.
  • Holloway L, Roche A, Marzouk S, et al. Determination of protein-protein interactions at high co-solvent concentrations using static and dynamic light scattering. J Pharm Sci. 2020 Sep;109(9):2699–2709.
  • Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016 Dec;8(4):409–427.
  • Xu R. Light scattering: a review of particle characterization applications. Particuology. 2015;18:11–21.
  • Fischer K, Schmidt M. Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials. 2016 Aug;98:79–91.
  • Ruedt M, Vormittag P, Hillebrandt N, et al. Process monitoring of virus-like particle reassembly by diafiltration with UV/Vis spectroscopy and light scattering. Biotechnol Bioeng. 2019 Jun;116(6):1366–1379.
  • Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010 May;27(5):796–810.
  • Weatherall E, Willmott GR. Applications of tunable resistive pulse sensing. Analyst. 2015 May 21; 140(10):3318–3334.
  • Neumann A, Hoyer W, Wolff MW, et al. New method for density determination of nanoparticles using a CPS disc centrifuge. Colloids Surf B Biointerfaces. 2013 Apr 1;104:27–31.
  • Pieler MM, Heyse A, Wolff MW, et al. Specific ion effects on the particle size distributions of cell culture-derived influenza A virus particles within the Hofmeister series. Eng Life Sci. 2017 May;17(5):470–478.
  • Jr LLB, Fitzpatrick S. Size distribution analysis of recombinant adenovirus using disc centrifugation. J Ind Microbiol Biotechnol. 1998;20(6):317–322.
  • Murphy RM. Static and dynamic light scattering of biological macromolecules: what can we learn? Curr Opin Biotechnol. 1997;8(1):25–30.
  • Falke S, Betzel C. Dynamic light scattering (DLS). Radiation in Bioanalysis. 2019: 173–193
  • Makra I, Terejanszky P, Gyurcsanyi RE. A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX. 2015;2:91–99.
  • Pereira Aguilar P, Gonzalez-Dominguez I, Schneider TA, et al. At-line multi-angle light scattering detector for faster process development in enveloped virus-like particle purification. J Sep Sci. 2019 Aug;42(16):2640–2649.
  • McIntosh NL, Berguig GY, Karim OA, et al. Comprehensive characterization and quantification of adeno associated vectors by size exclusion chromatography and multi angle light scattering. Sci Rep. 2021 Feb 4; 11(1):e3012 1–12.
  • Carvalho SB, Fortuna AR, Wolff MW, et al. Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers. J chem Technol Biotechnol. 2018;93(7):1988–1996.
  • Marichal-Gallardo P, Pieler MM, Wolff MW, et al. Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol. J Chromatogr A. 2017;1483:110–119.
  • Fortuna AR, Taft F, Villain L, et al. Continuous purification of influenza A virus particles using pseudo-affinity membrane chromatography. J Biotechnol. 2021 Dec 10;342:139–148.
  • Lothert K, Dekevic G, Loewe D, et al. Upstream and downstream processes for viral nanoplexes as vaccines. Methods Mol Biol. 2021;2183:217–248.
  • Marichal-Gallardo P, Borner K, Pieler MM, et al. Single-use capture purification of adeno-associated viral gene transfer vectors by membrane-based steric exclusion chromatography. Hum Gene Ther. 2021 Mar 30; 32(17–18):959–974.
  • Vajda J, Weber D, Brekel D, et al. Size distribution analysis of influenza virus particles using size exclusion chromatography. J Chromatogr A. 2016 Sep 23;1465:117–125.
  • Hohl A, Ramms AS, Dohmen C, et al. Adenovirus particle quantification in cell lysates using light scattering. Hum Gene Ther Methods. 2017 Oct;28(5):268–276.
  • Driskell JD, Jones CA, Tompkins SM, et al. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analyst. 2011 Aug 7; 136(15):3083–3090.
  • Kuzmic N, Moore T, Devadas D, et al. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems. Biomech Model Mechanobiol. 2019 Jun;18(3):717–731.
  • Staubach S, Bauer FN, Tertel T, et al. Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev. 2021 Oct;177:e113940 1–18.
  • Kramberger P, Ciringer M, Strancar A, et al. Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J. 2012 Nov 12;9:e265 1–10.
  • Gast M, Sobek H, Mizaikoff B. Nanoparticle tracking of adenovirus by light scattering and fluorescence detection. Hum Gene Ther Methods. 2019 Dec;30(6):235–244.
  • Steppert P, Burgstaller D, Klausberger M, et al. Quantification and characterization of virus-like particles by size-exclusion chromatography and nanoparticle tracking analysis. J Chromatogr A. 2017 Mar 3;1487:89–99.
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim, Germany: John Wiley & Sons; 2008.
  • Kaletta J, Pickl C, Griebler C, et al. A rigorous assessment and comparison of enumeration methods for environmental viruses. Sci Rep. 2020 Oct 29; 10(1):e18625 1–12.
  • Szakacs Z, Meszaros T, de Jonge MI, et al. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis. Nanoscale. 2018 Aug 7; 10(29):13942–13948.
  • Heider S, Muzard J, Zaruba M, et al. Integrated method for purification and single-particle characterization of lentiviral vector systems by size exclusion chromatography and tunable resistive pulse sensing. Mol Biotechnol. 2017 Jul;59(7):251–259.
  • Yang L, Yamamoto T. Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol. 2016;7:e1500 1–7.
  • Yu X, Qiao M, Atanasov I, et al. Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology. 2007 Oct 10; 367(1):126–134.
  • Khater IM, Nabi IR, Hamarneh G. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns. 2020 Jun 12;1(3):e100038 1–23.
  • Xu J, Ma H, Liu Y. Stochastic optical reconstruction microscopy (STORM). Curr Protoc Cytom. 2017 Jul 5;81:12.46.1–12.46.27.
  • Gonzalez-Dominguez I, Puente-Massaguer E, Cervera L, et al. Quantification of the HIV-1 virus-like particle production process by super-resolution imaging: from VLP budding to nanoparticle analysis. Biotechnol Bioeng. 2020 Jul;117(7):1929–1945.
  • Gonzalez-Dominguez I, Puente-Massaguer E, Cervera L, et al. Quality assessment of virus-like particles at single particle level: a comparative study. Viruses. 2020 Feb 17; 12(2):e223 1–24.
  • Gast M, Wondany F, Raabe B, et al. Use of super-resolution optical microscopy to reveal direct virus binding at hybrid core-shell matrixes. Anal Chem. 2020 Feb 18; 92(4):3050–3057.
  • Feiner-Gracia N, Beck M, Pujals S, et al. Super-Resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona. Small. 2017 Nov;13(41):1701631.
  • Post RAJ, van der Zwaag D, Bet G, et al. A stochastic view on surface inhomogeneity of nanoparticles. Nat Commun. 2019 Apr 10; 10(1):e1663 1–11.
  • Zamora JLR, Aguilar HC. Flow virometry as a tool to study viruses. Methods. 2018 Feb 1; 134-135:87–97
  • Al Ahmad M, Mustafa F, Ali LM, et al. Virus detection and quantification using electrical parameters. Sci Rep. 2014 Oct 30;4:6831.
  • Al Ahmad M, Mustafa F, Ali LM, et al. Label-free capacitance-based identification of viruses. Sci Rep. 2015 May 13;5:9809.
  • Culley S, Towers GJ, Selwood DL, et al. Infection counter: automated quantification of in vitro virus replication by fluorescence microscopy. Viruses. 2016 Jul 21; 8(7):201.
  • Lee EM, Titus SA, Xu M, et al. High-Throughput Zika viral titer assay for rapid screening of antiviral drugs. Assay Drug Dev Technol. 2019 Apr;17(3):128–139.
  • Keiser PT, Anantpadma M, Staples H, et al. Automation of infectious focus assay for determination of filovirus titers and direct comparison to plaque and TCID50 assays. Microorganisms. 2021 Jan 12; 9(1):e156 1–13.
  • Schuit M, Dunning R, Freeburger D, et al. The use of an Ebola virus reporter cell line in a semi-automated microtitration assay. J Virol Methods. 2021 Jun;292:e114116 1–8.
  • Zitzmann C, Schmid B, Ruggieri A, et al. A coupled mathematical model of the intracellular replication of dengue virus and the host cell immune response to infection. Front Microbiol. 2020;11:725.
  • Heldt FS, Frensing T, Pflugmacher A, et al. Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals. PLoS Comput Biol. 2013;9(11):e1003372.
  • Nguyen TNT, Sha S, Hong MS, et al. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol Ther Methods Clin Dev. 2021 Jun 11;21:642–655.
  • Gallo-Ramirez LE, Nikolay A, Genzel Y, et al. Bioreactor concepts for cell culture-based viral vaccine production. Expert Rev Vaccines. 2015;14(9):1181–1195.
  • Yin J, Redovich J. Kinetic modeling of virus growth in cells. Microbiol Mol Biol Rev. 2018 Jun;82(2). 10.1128/MMBR.00066-17.
  • Duvigneau S, Durr R, Laske T, et al. Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production. PLoS Comput Biol. 2020 Jun;16(6):e1007810.
  • Kane KIW, Moreno EL, Hachi S, et al. Automated microfluidic cell culture of stem cell derived dopaminergic neurons. Sci Rep. 2019 Feb 11; 9(1):e1796 1–12.
  • Raziq A, Kidakova A, Boroznjak R, et al. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron. 2021 Apr 15;178:113029.
  • Case JB, Bailey AL, Kim AS, et al. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology. 2020 Sep;548:39–48.
  • Boix-Besora A, Lorenzo E, Lavado-Garcia J, et al. Optimization, production, purification and characterization of HIV-1 GAG-Based virus-like particles functionalized with SARS-CoV-2. Vaccines (Basel). 2022 Feb 7;10(2). 10.3390/vaccines10020250.
  • Kailasa SK, Mehta VN, Koduru JR, et al. An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: promising biotools for the rapid diagnosis of COVID-19. Analyst. 2021 Mar 7; 146(5):1489–1513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.