2,305
Views
2
CrossRef citations to date
0
Altmetric
Review

The omics strategy: the use of systems vaccinology to characterize immune responses to childhood immunization

Pages 1205-1214 | Received 30 Apr 2022, Accepted 20 Jun 2022, Published online: 05 Jul 2022

References

  • Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83–100.
  • Pulendran B, Davis Mark M. The science and medicine of human immunology. Science. 2020;369(6511):eaay4014.
  • Pulendran B. Systems vaccinology. (Ed.)^(Eds) (2010)
  • Murphy KP, Travers P, Walport M, et al. Janeway’s immunobiology/Kenneth Murphy, Paul Travers, Mark Walport; with contributions by Michael Ehrenstein … [et al]. New York; London: Garland Science; 2008.
  • Liston A, Humblet-Baron S, Duffy D, et al. Human immune diversity: from evolution to modernity. Nat Immunol. 2021;22(12):1479–1489.
  • O’Connor D, Pollard AJ. Characterizing vaccine responses using host genomic and transcriptomic analysis. Clin Infect Dis. 2013;57(6):860–869.
  • Newport M, Goetghebuer T, Weiss H, et al., Genetic regulation of immune responses to vaccines in early life. Genes Immun. 2004;5(2):122–129.
  • O’Connor D, Png E, Khor CC, et al., Common genetic variations associated with the persistence of immunity following childhood immunization. Cell Rep. 2019;27(11):3241–3253.e3244.
  • Piccio L, Vermi W, Boles KS, et al. Adhesion of human T cells to antigen-presenting cells through SIRPbeta2-CD47 interaction costimulates T-cell proliferation. Blood. 2005;105(6):2421–2427.
  • Feenstra B, Pasternak B, Geller F, et al., Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet. 2014;46(12):1274–1282.
  • Haralambieva IH, Ovsyannikova IG, Kennedy RB, et al. Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Hum Genet. 2017;136(4):421–435.
  • Png E, Thalamuthu A, Ong RT, et al. A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants in the HLA region. Hum Mol Genet. 2011;20(19):3893–3898.
  • Kamatani Y, Wattanapokayakit S, Ochi H, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet. 2009;41(5):591–595.
  • Chung S, Roh EY, Park B, et al. GWAS identifying HLA-DPB1 gene variants associated with responsiveness to hepatitis B virus vaccination in Koreans: independent association of HLA-DPB1*04:02 possessing rs1042169 G - rs9277355 C - rs9277356 A. J Viral Hepat. 2019;26(11):1318–1329.
  • O’Brien TR, Kohaar I, Pfeiffer RM, et al. Risk alleles for chronic hepatitis B are associated with decreased mRNA expression of HLA-DPA1 and HLA-DPB1 in normal human liver. Genes Immun. 2011;12(6):428–433.
  • Sakai A, Noguchi E, Fukushima T, et al. Identification of amino acids in antigen-binding site of class II HLA proteins independently associated with hepatitis B vaccine response. Vaccine. 2017;35(4):703–710.
  • Bernstein BE, Meer A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–681.
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.
  • Morales-Nebreda L, McLafferty FS, Singer BD. DNA methylation as a transcriptional regulator of the immune system. Transl Res. 2019;204:1–18.
  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.
  • Pischedda S, O’Connor D, Fairfax BP, et al., Changes in epigenetic profiles throughout early childhood and their relationship to the response to pneumococcal vaccination. Clin Epigenetics. 2021;13(1):29.
  • Lu Y, Cheng Y, Yan W, et al. Exploring the molecular causes of hepatitis B virus vaccination response: an approach with epigenomic and transcriptomic data. BMC Med Genomics. 2014;7(1):12.
  • Drury RE, O’Connor D, Pollard AJ. The clinical application of micrornas in infectious disease. Front Immunol. 2017;8:1182.
  • Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–433.
  • Drury RE, Pollard AJ, O’Connor D. The effect of H1N1 vaccination on serum miRNA expression in children: a tale of caution for microRNA microarray studies. PLoS One. 2019;14(8):e0221143.
  • Nakaya HI, Clutterbuck E, Kazmin D, et al. Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proc Natl Acad Sci U S A. 2016;113(7):1853–1858.
  • Cao RG, Suarez NM, Obermoser G, et al. Differences in antibody responses between trivalent inactivated influenza vaccine and live attenuated influenza vaccine correlate with the kinetics and magnitude of interferon signaling in children. J Infect Dis. 2014;210(2):224–233.
  • O’Connor D, Pinto MV, Sheerin D, et al., Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine. Mol Syst Biol. 2020;16(11):e9888.
  • Alcorn JF, Avula R, Chakka AB, et al. Differential gene expression in peripheral blood mononuclear cells from children immunized with inactivated influenza vaccine. Hum Vaccin Immunother. 2020;16(8):1782–1790.
  • Osterholm MT, Kelley NS, Sommer A, et al. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(1):36–44.
  • Beyer WE, Palache AM, de Jong JC, et al. Cold-adapted live influenza vaccine versus inactivated vaccine: systemic vaccine reactions, local and systemic antibody response, and vaccine efficacy. A meta-analysis. Vaccine. 2002;20(9–10):1340–1353.
  • Zhu W, Higgs BW, Morehouse C, et al. A whole genome transcriptional analysis of the early immune response induced by live attenuated and inactivated influenza vaccines in young children. Vaccine. 2010;28(16):2865–2876.
  • de Armas LR, Cotugno N, Pallikkuth S, et al. Induction of IL21 in peripheral T follicular helper cells is an indicator of influenza vaccine response in a previously vaccinated HIV-infected pediatric cohort. J Immunol. 2017;198(5):1995–2005.
  • Cotugno N, De Armas L, Pallikkuth S, et al. Perturbation of B cell gene expression persists in HIV-infected children despite effective antiretroviral therapy and predicts H1N1 response. Front Immunol. 2017;8:1083.
  • Cotugno N, Santilli V, Pascucci GR, et al. Artificial intelligence applied to in vitro Gene Expression Testing (IVIGET) to predict trivalent inactivated influenza vaccine immunogenicity in HIV infected children. Front Immunol. 2020;11:559590.
  • Patel M, Glass RI, Jiang B, et al. A systematic review of anti-rotavirus serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy. J Infect Dis. 2013;208(2):284–294.
  • Gómez-Carballa A, Barral-Arca R, Cebey-López M, et al. Host transcriptomic response following administration of rotavirus vaccine in infants’ mimics wild type infection. Front Immunol. 2020;11:580219.
  • Galson JD, Pollard AJ, Trück J, et al. Studying the antibody repertoire after vaccination: practical applications. Trends Immunol. 2014;35(7):319–331.
  • Bradley P, Thomas PG. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu Rev Immunol. 2019;37(1):547–570.
  • Jiang N, He J, Weinstein JA, et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med. 2013;5(171):171ra119.
  • Nielsen SCA, Roskin KM, Jackson KJL, et al. Shaping of infant B cell receptor repertoires by environmental factors and infectious disease. Sci Transl Med. 2019;11(481). DOI:10.1126/scitranslmed.aat2004.
  • Rijkers GT, Sanders EA, Breukels MA, et al. Infant B cell responses to polysaccharide determinants. Vaccine. 1998;16(14–15):1396–1400.
  • Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48(2):202–213.
  • Pogorelyy MV, Elhanati Y, Marcou Q, et al. Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires. PLoS Comput Biol. 2017;13(7):e1005572.
  • Emerson RO, DeWitt WS, Vignali M, et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat Genet. 2017;49(5):659–665.
  • Britanova OV, Putintseva EV, Shugay M, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 2014;192(6):2689–2698.
  • Gaimann MU, Nguyen M, Desponds J, et al. Early life imprints the hierarchy of T cell clone sizes. Elife. 2020;9. DOI:10.7554/eLife.61639
  • Gostic KM, Ambrose M, Worobey M, et al. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science. 2016;354(6313):722–726.
  • Xu GJ, Kula T, Xu Q, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015;348(6239):aaa0698.
  • Mina MJ, Kula T, Leng Y, et al., Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599–606.
  • Mina MJ, Metcalf CJ, de Swart RL, et al. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science. 2015;348(6235):694–699.
  • Haralambieva IH, Simon WL, Kennedy RB, et al. Profiling of measles-specific humoral immunity in individuals following two doses of MMR vaccine using proteome microarrays. Viruses. 2015;7(3):1113–1133.
  • Chung AW, Kumar MP, Arnold KB, et al. Dissecting polyclonal vaccine-induced humoral immunity against HIV using systems serology. Cell. 2015;163(4):988–998.
  • Esposito S, Bosis S, Morlacchi L, et al. Can infants be protected by means of maternal vaccination? Clin Microbiol Infect. 2012;18(5):85–92.
  • Jennewein MF, Goldfarb I, Dolatshahi S, et al. Fc glycan-mediated regulation of placental antibody transfer. Cell. 2019;178(1):202–215.e214.
  • Plotkin SA, Gilbert P, Orenstein WA, et al. 3 - correlates of protection. Elsevier; 2018. p. 35–40.e34.
  • Brinkman ID, Butler AL, and de Wit J, et al. Measles vaccination elicits a polyfunctional antibody response, which decays more rapidly in early vaccinated children. J Infect Dis. 2022;225:1755–1764.
  • Jegaskanda S, Job ER, Kramski M, et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J Immunol. 2013;190(4):1837–1848.
  • Jegaskanda S, Luke C, Hickman HD, et al. Generation and protective ability of influenza virus-specific antibody-dependent cellular cytotoxicity in humans elicited by vaccination, natural infection, and experimental challenge. J Infect Dis. 2016;214(6):945–952.
  • Florek K, Mutschler J, McLean HQ, et al. Antibody-dependent cell-mediated cytotoxicity antibody responses to inactivated and live-attenuated influenza vaccination in children during 2014-15. Vaccine. 2020;38(8):2088–2094.
  • Selman MH, de Jong SE, Soonawala D, et al. Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination. Mol Cell Proteomics. 2012;11(4):M111.014563.
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–867.
  • Bennike TB, Fatou B, Angelidou A, et al. Preparing for life: plasma proteome changes and immune system development during the first week of human life. Front Immunol. 2020;11:578505.
  • Olin A, Henckel E, Chen Y, et al. Stereotypic immune system development in newborn children. Cell. 2018;174(5):1277–1292.e1214.
  • Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–2379.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506.
  • Harris VC, Armah G, Fuentes S, et al. Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana. J Infect Dis. 2017;215(1):34–41.
  • Huda MN, Lewis Z, Kalanetra KM, et al. Stool microbiota and vaccine responses of infants. Pediatrics. 2014;134(2):e362–372.
  • Harris V, Ali A, Fuentes S, et al. Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes. 2018;9(2):93–101.
  • Robertson RC, Church JA, Edens TJ, et al. The fecal microbiome and rotavirus vaccine immunogenicity in rural Zimbabwean infants. Vaccine. 2021;39(38):5391–5400.
  • Parker EPK, Praharaj I, Zekavati A, et al. Influence of the intestinal microbiota on the immunogenicity of oral rotavirus vaccine given to infants in south India. Vaccine. 2018;36(2):264–272.
  • Zhao T, Li J, Fu Y, et al. Influence of gut microbiota on mucosal IgA antibody response to the polio vaccine. NPJ Vaccines. 2020;5(1):47.
  • Grassly NC, Praharaj I, Babji S, et al. The effect of azithromycin on the immunogenicity of oral poliovirus vaccine: a double-blind randomised placebo-controlled trial in seronegative Indian infants. Lancet Infect Dis. 2016;16(8):905–914.
  • Biesbroek G, Wang X, Keijser BJ, et al. Seven-valent pneumococcal conjugate vaccine and nasopharyngeal microbiota in healthy children. Emerg Infect Dis. 2014;20(2):201–210.
  • Salgado VR, Fukutani KF, Fukutani E, et al. Effects of 10-valent pneumococcal conjugate (PCV10) vaccination on the nasopharyngeal microbiome. Vaccine. 2020;38(6):1436–1443.
  • Feazel LM, Santorico SA, Robertson CE, et al. Effects of vaccination with 10-valent pneumococcal non-typeable haemophilus influenza protein D conjugate vaccine (PHiD-CV) on the nasopharyngeal microbiome of kenyan toddlers. PLoS One. 2015;10(6):e0128064.
  • O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–565.
  • Lee AH, Shannon CP, Amenyogbe N, et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. Nat Commun. 2019;10(1):1092.
  • Holm SR, Jenkins BJ, Cronin JG, et al. A role for metabolism in determining neonatal immune function. Pediatr Allergy Immunol. 2021;32(8):1616–1628.
  • Odumade OA, Plotkin AL, Pak J, et al. Plasma adenosine deaminase (ADA)-1 and −2 demonstrate robust ontogeny across the first four months of human life. Front Immunol. 2021;12:578700.
  • Levy O, Coughlin M, Cronstein BN, et al. The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J Immunol. 2006;177(3):1956–1966.
  • Dreschers S, Ohl K, Lehrke M, et al. Impaired cellular energy metabolism in cord blood macrophages contributes to abortive response toward inflammatory threats. Nat Commun. 2019;10(1):1685.
  • Angelidou A, Diray-Arce J, Conti MG, et al. Human newborn monocytes demonstrate distinct BCG-induced primary and trained innate cytokine production and metabolic activation. Front Immunol. 2021;12:674334.
  • Menni F, Chiarelli G, Sabatini C, et al. Vaccination in children with inborn errors of metabolism. Vaccine. 2012;30(50):7161–7164.
  • Hassan A, Booth C, Brightwell A, et al. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood. 2012;120(17):3615–3624; quiz 3626.
  • Galli E, Friebel E, Ingelfinger F, et al. The end of omics? High dimensional single cell analysis in precision medicine. Eur J Immunol. 2019;49(2):212–220.
  • Jin C, Hill J, Gunn BM, et al. Vi-specific serological correlates of protection for typhoid fever. J Exp Med. 2021;218(2). DOI:10.1084/jem.20201116.
  • Rudolph ME, McArthur MA, Magder LS, et al. Diversity of salmonella typhi-responsive CD4 and CD8 T cells before and after Ty21a typhoid vaccination in children and adults. Int Immunol. 2019;31(5):315–333.
  • Fresnay S, McArthur MA, Magder LS, et al. Importance of salmonella typhi-responsive CD8+ T cell immunity in a human typhoid fever challenge model. Front Immunol. 2017;8:208.
  • Lartey S, Zhou F, Brokstad KA, et al. Live-attenuated influenza vaccine induces tonsillar follicular T helper cell responses that correlate with antibody induction. J Infect Dis. 2020;221(1):21–32.
  • Amodio D, Cotugno N, Macchiarulo G, et al. Quantitative multiplexed imaging analysis reveals a strong association between immunogen-specific B cell responses and tonsillar germinal center immune dynamics in children after influenza vaccination. J Immunol. 2018;200(2):538–550.
  • Bentebibel SE, Lopez S, Obermoser G, et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013;5(176):176ra132.
  • Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111.
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–2615.
  • Tomic A, Tomic I, Rosenberg-Hasson Y, et al. SIMON, an automated machine learning system, reveals immune signatures of influenza vaccine responses. J Immunol. 2019;203(3):749–759.
  • See P, Lum J, Chen J, et al. A single-cell sequencing guide for immunologists. Front Immunol. 2018;9:2425.
  • Singh A, Shannon CP, Gautier B, et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35(17):3055–3062.
  • Li S, Sullivan NL, Rouphael N, et al. Metabolic phenotypes of response to vaccination in humans. Cell. 2017;169(5):862–877.e817.
  • COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium. C-M-oBACCEa. Consortium C-M-oBAC. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell. 2022.
  • Collaborators Gco D. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–1788.
  • O’Connor D, Moschese V, Martinon-Torres F, et al. Editorial: vaccination of special populations: protecting the vulnerable. Front Immunol. 2021;12:815550.
  • Collins N, Belkaid Y. Control of immunity via nutritional interventions. Immunity. 2022;55(2):210–223.
  • Camacho-Morales A, Caba M, García-Juárez M, et al. Breastfeeding contributes to physiological immune programming in the newborn. Front Pediatr. 2021;9:744104.
  • Kandasamy R, Voysey M, McQuaid F, et al. Non-specific immunological effects of selected routine childhood immunisations: systematic review. BMJ. 2016;355:i5225.