218
Views
2
CrossRef citations to date
0
Altmetric
Review

Dendritic cell-based vaccine: the state-of-the-art vaccine platform for COVID-19 management

ORCID Icon, , , ORCID Icon &
Pages 1395-1403 | Received 16 Nov 2021, Accepted 02 Aug 2022, Published online: 09 Aug 2022

References

  • Duan X, Shi R, Liu P, et al. A non-ACE2-blocking neutralizing antibody against omicron-included SARS-CoV-2 variants. Signal Transduct Target Ther. 2022;7(1):23.
  • Basu D, Chavda VP, Mehta AA. Therapeutics for COVID-19 and post COVID-19 complications: an update. Curr Res Pharmacol Drug Discov. [Internet]. 2022;100086. Available from: https://www.sciencedirect.com/science/article/pii/S2590257122000062
  • Chavda VP, Kapadia C, Soni S, et al. A global picture: therapeutic perspectives for COVID-19. Immunotherapy [Internet]. 2022. DOI:10.2217/imt-2021-0168
  • Chavda VP, Hossain MK, Beladiya J, et al., Nucleic acid vaccines for COVID-19: a paradigm shift in the vaccine development arena. Biologics. 2021;1(3): 337–356.
  • Chavda VP, Gajjar N, Shah N, et al. Darunavir ethanolate: repurposing an anti-HIV drug in COVID-19 treatment. Eur J Med Chem Reports. [Internet]. 2021;3:100013. Available from: https://www.sciencedirect.com/science/article/pii/S2772417421000133
  • Chavda VP, Apostolopoulos V. Omicron variant (B.1.1.529) of SARS-CoV-2: threat for the elderly? Maturitas [Internet]. 2022;158:78–81.
  • Chavda VP, Apostolopoulos V. Is booster dose strategy sufficient for omicron variant of SARS-CoV-2? Vaccines (Basel). 2022;10(3):367.
  • Chavda VP, Apostolopoulos V. Global impact of delta plus variant and vaccination.Expert Rev Vaccines [Internet]. 2022;21(5):597–600.
  • Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and vulnerability at the global level.J Med Virol [Internet]. 2022;94(7):2986–3005.
  • Chavda VP, Bezbaruah R, Athalye M, et al. Replicating viral vector-based vaccines for COVID-19: potential avenue in vaccination arena. Viruses . 2022;14(4):759.
  • Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–1211.
  • Eyawo O, Viens AM. Rethinking the central role of equity in the global governance of pandemic response. J Bioeth Inq. 2020;17(4):549–553.
  • COVID-19 [Internet]. Google News. 2021. Available from: https://news.google.com/covid19/map?hl=en-IN&mid=%2Fm%2F03rk0&state=7&gl=IN&ceid=IN%3Aen.
  • Amanna I, Slifka MK. Public fear of vaccination: separating fact from fiction. Viral Immunol. 2005;18(2):307–315.
  • Menni C, Klaser K, May A, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID symptom study app in the UK: a prospective observational study. Lancet Infect Dis [Internet]. 2021 [cited 2021 May 5];21 (7):939–949. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33930320
  • Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res. 2016;96:59–126.
  • Yadav UCS. Vaccines and drugs under clinical trials for prevention and treatment of COVID-19.VirusDisease [Internet]. 2021;32(1):13–19.
  • Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: towards third generation vaccination era. Expert Rev Vaccines. 2021;20(12):1549–1560.
  • Li T, Zhang T, Gu Y, et al., Current progress and challenges in the design and development of a successful COVID-19 vaccine. Fundamental Research. 2021;1(2):139–150.
  • Hager S, Fittler FJ, Wagner E, et al. Nucleic acid-based approaches for tumor therapy. Cells. 2020;9(9):2061.
  • Apostolopoulos V, Thalhammer T, Tzakos AG, et al. Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv. 2013;2013:869718.
  • Sheng K-C, Pietersz GA, Wright MD, et al. Dendritic cells: activation and maturation–applications for cancer immunotherapy. Curr Med Chem. 2005;12(15):1783–1800.
  • Proudfoot O, Apostolopoulos V, Pietersz GA. Receptor-mediated delivery of antigens to dendritic cells:  anticancer applications. Mol Pharm. 2007;4(1):58–72.
  • Apostolopoulos V, Pietersz GA, Tsibanis A, et al. Dendritic cell immunotherapy: clinical outcomes. Clin Transl Immunol. 2014;3(7):e21.
  • Koido S, Enomoto Y, Apostolopoulos V, et al. Tumor regression by CD4 T-cells primed with dendritic/tumor fusion cell vaccines. Anticancer Res. 2014;34(8):3917–3924.
  • Enomoto Y, Bharti A, Khaleque AA, et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J Immunol. 2006;177(9):5946–5955.
  • Nainu F, Abidin RS, Bahar MA, et al. SARS-CoV-2 reinfection and implications for vaccine development. Hum Vaccines Immunother. 2020;16(12):3061–3073.
  • Jeffery-Smith A, Rowland TAJ, Patel M, et al. Reinfection with new variants of SARS-CoV-2 after natural infection: a prospective observational cohort in 13 care homes in England. Lancet Heal Longev. 2021;2(12):e811–e819.
  • Carloni S, Piccinini C, Pancisi E, et al. Potency assessment of dendritic cell anticancer vaccine: validation of the co-flow DC assay. Int J Mol Sci. 2021;22(11):5824.
  • Pouniotis DS, Apostolopoulos V, Pietersz GA. Penetratin tandemly linked to a CTL peptide induces anti-tumour T-cell responses via a cross-presentation pathway. Immunology. 2006;117(3):329–339.
  • Gong J, Apostolopoulos V, Chen D, et al. Selection and characterization of MUC1-specific CD8 + T cells from MUC1 transgenic mice immunized with dendritic-carcinoma fusion cells. Immunology. 2000;101(3):316–324.
  • Guzhova IV, Margulis BA. HSP70-based anti-cancer immunotherapy.Hum Vaccin Immunother. 2016 Jun 13;12(10):2529–2535.
  • Apostolopoulos V, Pouniotis DS, van Maanen PJ, et al. Delivery of tumor associated antigens to antigen presenting cells using penetratin induces potent immune responses. Vaccine. 2006;24(16):3191–3202.
  • Day S, Tselios T, Androutsou M-E, et al. Mannosylated linear and cyclic single amino acid mutant peptides using a small 10 amino acid linker constitute promising candidates against multiple sclerosis. Front Immunol. 2015;6:136.
  • Katsara M, Yuriev E, Ramsland PA, et al. Altered peptide ligands of myelin basic protein (MBP 87–99) conjugated to reduced mannan modulate immune responses in mice. Immunology. 2009;128(4):521–533.
  • Apostolopoulos V, Pietersz GA, Loveland BE, et al. Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci U S A. 1995;92(22):10128–10132.
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine. 1996;14(9):930–938.
  • Karanikas V, Hwang LA, Pearson J, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest. 1997;100(11):2783–2792.
  • Apostolopoulos V, Pietersz GA, Gordon S, et al. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol. 2000;30(6):1714–1723.
  • Matsoukas JM, Ligielli I, Chasapis CT, et al. Novel approaches in the immunotherapy of multiple sclerosis: cyclization of myelin epitope peptides and conjugation with mannan. Brain Sci. 2021;12(1):11.
  • Matsoukas J, Deraos G, Kelaidonis K, et al. Myelin peptide-mannan conjugate multiple sclerosis vaccines: conjugation efficacy and stability of vaccine ingredient. Vaccines (Basel). 2021;9(12):1456.
  • Vaskovich-Koubi D, Kleiner R, Liubomirski Y, et al. Abstract 714: from cancer to COVID-19- development of a dendritic cell-targeted nano-vaccine for prevention and therapy of COVID-19. Cancer Res [Internet]. 2021;81(13_Supplement):714. Available from: http://cancerres.aacrjournals.org/content/81/13_Supplement/714.abstract
  • Winheim E, Rinke L, Lutz K, et al. Impaired function and delayed regeneration of dendritic cells in COVID-19. bioRxiv [Internet]. 2021; 2021.05.26.445809. Available from: http://biorxiv.org/content/early/2021/05/26/2021.05.26.445809.abstract
  • Silva AL, Soema PC, Slütter B, et al. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016 Jan 11;12(4):1056–1069.
  • Martin Lluesma S, Wolfer A, Harari A, et al. Cancer vaccines in ovarian cancer: how can we improve? Biomedicines. 2016;4(2):10.
  • Apostolopoulos V, Pietersz GA, Tsibanis A, et al. Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res [Internet]. 2006;8(3):R27.
  • Sheng KC, Wright MD, Apostolopoulos V. Inflammatory mediators hold the key to dendritic cell suppression and tumor progression. Curr Med Chem. 2011;18(36):5507–5518.
  • Galati D, Zanotta S, Capitelli L, et al. A bird’s eye view on the role of dendritic cells in SARS-CoV-2 infection: perspectives for immune-based vaccines. Allergy [Internet]. 2021;77(1):100–110.
  • Saadeldin MK, Abdel-Aziz AK, Abdellatif A. Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis. Med Hypotheses [Internet]. 2021 [cited 2020 Nov 09];146:110365. Available from: https://pubmed.ncbi.nlm.nih.gov/33221134
  • Gadanec LK, McSweeney KR, Qaradakhi T, et al. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci. 2021;23(1):22.
  • Chavda VP, Vora LK, Pandya AK, et al. Intranasal vaccines for SARS-CoV-2: from challenges to potential in COVID-19 management. Drug Discov Today [Internet]. 2021;26(11):2619–2636. Available from: https://www.sciencedirect.com/science/article/pii/S1359644621003317
  • Kate Gadanec L, Qaradakhi T, Renee Mcsweeney K, et al. Dual targeting of toll-like receptor 4 and angiotensin-converting enzyme 2: a proposed approach to SARS-CoV-2 treatment. Future Microbiol. 2021;16(4):205–209.
  • Van Willigen WW, Bloemendal M, Gerritsen WR, et al. Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol. 2018;9:1–13.
  • Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10(1):5408.
  • Steinman RM. Dendritic cells and vaccines. Baylor Univ Med Cent Proc. 2008;21(1):3–8.
  • Palucka K, Banchereau J. Dendritic cell-based cancer therapeutic vaccines Karolina. Immunity. 2013;39(1):38–48.
  • Hallgren EA, McElfish PA, Rubon-Chutaro J. Barriers and opportunities. Diabetes Educ. 2015;41(1):86–94.
  • Forni G, Mantovani A, Forni G, et al. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021;28(2):626–639.
  • Callaway E. The underdog coronavirus vaccines that the world will need if front runners stumble. Nature. 2020;585(7825):332+.
  • Kyriakidis NC, López-Cortés A, González EV, et al. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. Npj Vaccines [Internet]. 2021;6(1):28.
  • Clem AS. Fundamentals of vaccine immunology. J Glob Infect Dis. 2011;3(1):73–78.
  • Perez-Gomez A, Vitalle J, and Gasca-Capote MC, et al. Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. Cell Mol Immunol [Internet]. 2021;18(9): 2128–2139. doi:10.1038/s41423-021-00728-2 https://www.nature.com/articles/s41423-021-00728-2
  • Cheever MA, Higano CS. PROVENGE (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–3526.
  • Hossain MK, Nahar K, Donkor O, et al. Immune-based therapies for metastatic prostate cancer: an update. Immunotherapy. 2018;10(4):283–298.
  • Penson DF, Redfern CH, Ferrari AC, et al. New England Journal. 2012;411–422.
  • Vassilaros S, Tsibanis A, Tsikkinis A, et al. Up to 15-year clinical follow-up of a pilot Phase III immunotherapy study in stage II breast cancer patients using oxidized mannan–MUC1. Immunotherapy [Internet]. 2013;5(11):1177–1182.
  • Apostolopoulos V, Osinski C, Mckenzie IFC. MUC1 cross-reactive Galα(l,3)Gal antibodies in humans switch immune responses from cellular to humoral.Nat Med [Internet]. 1998;4(3):315–320.
  • Mitchell PL, Quinn MA, Grant PT, et al. A phase 2, single-arm study of an autologous dendritic cell treatment against mucin 1 in patients with advanced epithelial ovarian cancer. J Immunother Cancer. 2014;2(1):16.
  • Zhang H. Celartics biopharma’s dendritic cell-based vaccine against COVID-19 infection found to efficiently produce viral antigen-specific T lymphocytes [Internet]. accesswire. 2021 [cited 2021 May 7]. Available from: https://www.accesswire.com/591023/Celartics-Biopharmas-Dendritic-Cell-Based-Vaccine-Against-COVID-19-Infection-Found-to-Efficiently-Produce-Viral-Antigen-Specific-T-Lymphocytes
  • Polyzoidis S, Ashkan K. DCVax®-L–developed by Northwest biotherapeutics. Hum Vaccin Immunother. 2014;10(11):3139–3145.
  • AP news. Celartics biopharma’s dendritic cell-based vaccine against COVID-19 infection found to efficiently produce viral antigen-specific T lymphocytes. 2020 May
  • Us A, Us C. AIVITA biomedical completes phase 1 study of personalized COVID-19 vaccine candidate. AV-COVID-19. 2021;1–5.
  • ClinicalTrials.gov. Phase Ib-II trial of dendritic cell vaccine to prevent COVID-19 in adults. 2020.
  • Aivita Biomedical I. Phase I-II trial of dendritic cell vaccine to prevent COVID-19 in adults [Internet]. Clin Trials Nct 2020 [cited 2021 May 5]. Available from: https://ichgcp.net/clinical-trials-registry/NCT04386252.
  • Us A, Us C. SARS-COV-2 VACCINE.19–21.
  • Shenzhen Geno-Immune Medical Institute. Immunity and safety of covid-19 synthetic minigene vaccine. 2020. ClinicalTrials.gov Identifier: NCT04276896.
  • Malik S, Gupta A, and Zhong X, et al. Emerging therapeutic modalities against COVID-19. Pharmaceuticals (Basel). 2020;13(8): 188. doi:10.3390/ph13080188.
  • Krammer F. SARS-CoV-2 vaccines in development. Nature [Internet]. 2020;586(7830):516–527.
  • Di Pasquale A, Bonanni P, Garçon N, et al. Vaccine safety evaluation: practical aspects in assessing benefits and risks. Vaccine [Internet]. 2016;34(52):6672–6680. Available from: https://www.sciencedirect.com/science/article/pii/S0264410X16309744
  • Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the sustainable development goals era: time for a revolution. Lancet Glob Heal [Internet]. 2018;6:e1196–e1252.
  • El-Elimat T, AbuAlSamen MM, Almomani BA, et al. Acceptance and attitudes toward COVID-19 vaccines: a cross-sectional study from Jordan. PLoS One [Internet]. 2021;16(4):e0250555.
  • Mastelic-Gavillet B, Balint K, Boudousquie C, et al. Personalized dendritic cell vaccines—recent breakthroughs and encouraging clinical results. Front Immunol. 2019;10:10.
  • Zhong R, Ling X, Cao S, et al. Safety and efficacy of dendritic cell-based immunotherapy (DCVAC/LuCa) combined with carboplatin/pemetrexed for patients with advanced non-squamous non-small-cell lung cancer without oncogenic drivers. ESMO Open [Internet]. 2022;7(1):100334.
  • Solís Arce JS, Warren SS, Meriggi NF, et al. COVID-19 vaccine acceptance and hesitancy in low- and middle-income countries. Nat Med [Internet]. 2021;27(8):1385–1394.
  • Shah D, Vivek Chavda HT. Nasal medication conveyance framework: an approach for brain delivery from essential to cutting edge. Res Rev J Med. 2016;6:14–27.
  • Krishnan A, Gangadaran P, Chavda VP, et al. Convalescent serum-derived exosomes: attractive niche as COVID-19 diagnostic tool and vehicle for mRNA delivery. Exp Biol Med (Maywood). 2022: 15353702221092984. DOI:10.1177/15353702221092984
  • Chavda VP, Hanuma Kumar Ghali EN, Yallapu MM, et al. Therapeutics to tackle omicron outbreak. Immunotherapy [Internet]. 2022;14(11):833–838.
  • Chavda VP, Prajapati R, and Lathigara D, et al. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther. 2022;22(6): 763–780. doi:10.1080/14712598.2022.2078160.
  • Huang Z, Chavda VP, Vora LK, et al. 2-Deoxy-D-Glucose and its derivatives for the COVID-19 treatment: an update. Front Pharmacol. 2022;13:899633.
  • Valencia I, Peiró C, Lorenzo Ó, et al. DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front Pharmacol [Internet]. 2020;11. Available from: https://www.frontiersin.org/article/10.3389/fphar.2020.01161.
  • Masre SF, Jufri NF, Ibrahim FW, et al. Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol [Internet]. 2021 [cited 2020 Dec 26];31:1–9. Available from: https://pubmed.ncbi.nlm.nih.gov/33368788
  • Tang Y, Liu J, Zhang D, et al. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol [Internet]. 2020;11:1708. Available from: https://pubmed.ncbi.nlm.nih.gov/32754163
  • Shilts J, Crozier TWM, Greenwood EJD, et al. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep [Internet]. 2021;11(1):413.
  • Koch C, Staffler G, Hüttinger R, et al. T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Int Immunol [Internet]. 1999;11(5):777–786.
  • Solerte SB, Di Sabatino A, Galli M, et al. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020 Jun 06;57(7):779–783.
  • Introduction IMA/ MAG. A summary of current medical evidence relevant to air travel. Flight-associated transmission. 2022;1–43.
  • Jung JH, Rha M-S, Sa M, et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun [Internet]. 2021;12(1):4043.
  • Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature [Internet]. 2020;584(7821):457–462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.