321
Views
2
CrossRef citations to date
0
Altmetric
Review

Reverse engineering approach: a step towards a new era of vaccinology with special reference to Salmonella

, &
Pages 1763-1785 | Received 19 Jul 2022, Accepted 14 Nov 2022, Published online: 23 Nov 2022

References

  • Saleh S, Van Upyield S, Staes A, et al. Salmonella Typhi, Paratyphi A, Enteritidis and Typhimurium core proteomes reveal differentially expressed proteins linked to the cell surface and pathogenicity. PLoS Negl Trop Dis. 2019;13(5):e0007416.
  • MacLennan CA. Antibodies and protection against invasive Salmonella disease. Front Immunol. 2014;5:635.
  • Ochiai RL, Wang X, Von Seidlein L, et al. Salmonella Paratyphi A Rates, Asia. Emerg Infect Dis. 2005;11(11):1764.
  • John J, Van Aart CJ, Grassly NC. The burden of typhoid and paratyphoid in India: systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10(4):e0004616.
  • GBD. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study. Lancet. 2015;388:1459–1544.
  • Majowicz SE, Musto J, Scallan E, et al. The global burden of nontyphoidal Salmonella Gastroenteritis. Clin Infect Dis. 2010;50(6):882–889.
  • Antillón M, Warren JL, Crawford FW, et al. The burden of typhoid fever in low-and middle-income countries: a meta-regression approach. PLoS Negl Trop Dis. 2017;11(2):e0005376.
  • Kim CL, Espinoza LM, Vannice KS, et al. The burden of typhoid fever in Sub-Saharan Africa: a Perspective. Res Rep Trop Med. 2022;13:1.
  • Parry CM, Threlfall EJ. Antimicrobial resistance in typhoidal and nontyphoidal Salmonellae. Curr Opin Infect Dis. 2008;21(5):531–538.
  • Verma D, Kishore S, Siddique ME. Comparative evaluation of various tests for diagnosis of concurrent malaria and typhoid fever in a tertiary care hospital of Northern India. J Clin Diag Res. 2014;8:DC41.
  • Mogasale V, Ramani E, Mogasale VV, et al. What proportion of Salmonella Typhi cases are detected by blood culture? A systematic literature review. Ann Clin Microbiol Antimicrob. 2016;15(1):1–8.
  • Adhikari A, Rauniyar R, Raut PP, et al. Evaluation of sensitivity and specificity of ELISA against Widal test for typhoid diagnosis in endemic population of Kathmandu. BMC Infect Dis. 2015;15(1):1–7.
  • WHO Pathogens Priority List Working Group, Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327.
  • Barber M, Rozwadowska-Dowzenko M. Infection by penicillin-resistant Staphylococci. Lancet. 1948;2(6530):641–644.
  • Pray L. Antibiotic R&D: resolving the paradox between unmet medical need and commercial incentive. Needham MA: Cambridge Healthtech Institute; 2008.
  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2015;1–84.
  • Feasey NA, Gaskell K, Wong V, et al. Rapid emergence of multidrug resistant, H58-Lineage Salmonella Typhi in Blantyre, Malawi. PLoS Negl Trop Dis. 2015;9(4):e0003748.
  • Lepage P, Bogaerts J, Van Goethem C, et al. Multiresistant Salmonella typhimurium systemic infection in Rwanda. Clinical features and treatment with cefotaxime. J Antimicrob Chemother. 1990;26(suppl A):53–57.
  • Chatham-Stephens K, Medalla F, Hughes M, et al. Emergence of extensively drug-resistant Salmonella typhi infections among Travelers to or from Pakistan — United States, 2016–2018. Morbidity Mortality Weekly Rep. 2019;68(1):11.
  • Cooke FJ, Wain J, Threlfall EJ. Fluoroquinolone resistance in Salmonella typhi. Bmj. 2006;333(7563):353–354.
  • Klemm EJ, Shakoor S, Page AJ, et al. Emergence of an extensively drug-resistant Salmonella enterica serovar typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio. 2018;9(1):e00105–18.
  • Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903.
  • Van Schaik W. The human gut resistome. Trans R Soc Lond B Biol Sci. 2015;370(1670):20140087.
  • Germanier R, Furer E. Isolation and Characterization of Gal E Mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis. 1975;131(5):553–558.
  • Milligan R, Paul M, Richardson M, et al. Vaccines for preventing typhoid fever. Cochrane Database Syst Rev. 2018(5). doi:10.1002/14651858.CD001261.pub4.
  • Lindsay S, Garrett D, Steele D. Evidence to action: the 10th international conference on typhoid and Other invasive salmonelloses. Clin Infect Dis. 2019;68(Supplement_1):1–3.
  • Klugman KP, Koornhof HJ, Robbins JB, et al. Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine. 1996;14(5):435–448.
  • Sur D, Ochiai RL, Bhattacharya SK, et al. A cluster-randomized effectiveness trial of Vi typhoid vaccine in India. New Eng J Med. 2009;361(4):335–344.
  • Siegrist CA. Vaccine immunology. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. 6th ed. Philadelphia: Saunders Elsevier; 2013. p. 14–33.
  • World Health Organization. Background paper on typhoid vaccines for SAGE meeting. World Health Organization. 2017.
  • Biotech B. World’s first typhoid conjugate vaccine prequalified by WHO. Hyderabad: Genome Valley; 2018 Jan 3: 2018. Available from: https://www.who.int/medicines/news/2017/Bharat-Biotech-TypbarTCVWHO-PQ-Press-Release-Global-Final.pdf
  • Lanh MN, Van Bay P, Ho VA, et al. Persistent efficacy of Vi conjugate vaccine against typhoid fever in young children. New Eng J Med. 2003;349(14):1390–1391.
  • Hale C, Bowe F, Pickard D, et al. Evaluation of a novel Vi conjugate vaccine in a murine model of salmonellosis. Vaccine. 2006;24(20):4312–4320.
  • Bajracharya D, Khan MI, Pach IIIA, et al. 25 years after Vi typhoid vaccine efficacy study, typhoid affects significant number of population in Nepal. PloS one. 2014;9(1):e77974.
  • Jin C, Gibani MM, Moore M, et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. Lancet. 2017;390(10111):2472–2480.
  • Haque A. Significance of Vi negative isolates of Salmonella enterica serovar Typhi. Infect Dis Nanomed III. 2018;2018:9–18.
  • Sahastrabuddhe S, Carbis R, Wierzba TF, et al. Increasing rates of Salmonella Paratyphi A and the current status of its vaccine development. Expert Rev Vaccines. 2013;12(9):1021–1031.
  • Vajda S, Kataoka R, DeLisi C, et al. Molecular structure and vaccine design. Ann Rev Biophys Biophys Chem. 1990;19(1):69–82.
  • Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000;3(5):445–450.
  • Fleischmann RD, Adams MD, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995;269(5223):496–512.
  • Toneatto D, Oster P, Deboer AC, et al. Early clinical experience with a candidate meningococcal B recombinant vaccine (rMenB) in healthy adults. Hum Vaccinol. 2011;7(7):781–791.
  • Masignani V, Pizza M, Moxon ER. The development of a vaccine against meningococcus B using reverse vaccinology. Front Immunol. 2019;10:751.
  • Chitlaru T, Altboum Z, Reuveny S, et al. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev. 2011;239(1):221–236.
  • Noor F, Ahmad S, Saleem M, et al. Designing a multi-epitope vaccine against Chlamydia pneumoniae by integrating the core proteomics, subtractive proteomics and reverse vaccinology-based immunoinformatics approaches. Comput Biol Med. 2022;145:105507.
  • Moise L, Moss SF, De Groot AS. Moving Helicobacter pylori vaccine development forward with bioinformatics and immunomics. Expert Rev Vaccines. 2012;11(9):1031–1033.
  • Talukdar S, Zutshi S, Prashanth KS, et al. Identification of potential vaccine candidates against Streptococcus pneumoniae by reverse vaccinology approach. Appl Biochem Biotechnol. 2014;172(6):3026–3041.
  • Mamede LD, de Paula KG, de Oliveira B, et al. Reverse and structural vaccinology approach to design a highly immunogenic multi-epitope subunit vaccine against Streptococcus pneumoniae infection. Infect Genet Evol. 2020;85:104473.
  • Dong Y, Dai T, Wei Y, et al. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020;5(1):1–4.
  • Sheikh A, Charles RC, Sharmeen N, et al. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl Trop Dis. 2011;5(12):e1419.
  • Alam MM, Tsai LL, Rollins SM, et al. Identification of in vivo -induced bacterial proteins during human infection with Salmonella enterica Serotype Paratyphi A. Clin Vaccine Immunol. 2013;20(5):712–719.
  • Harris JB, Baresch-Bernal A, Rollins SM, et al. Identification of In-vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect Immun. 2006;74(9):5161–5168.
  • Hang L, John M, Asaduzzaman M, et al. Use of in vivo -induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Nat Acad Sci U S A. 2003;100(14):8508–8513.
  • Rollins SM, Peppercorn A, Young JS, et al. Application of In vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One. 2008;3(3):e1824.
  • Daigle F, Graham JE, Curtiss IIIR. Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol. 2001;41(5):1211–1222.
  • Rendón JM, Lang B, Tartaglia GG, et al. BacFITBase: a database to assess the relevance of bacterial genes during host infection. Nucleic Acids Res. 2020;48(D1):D511–D516.
  • Rendón JM, Lang B, Ramos Llorens M, et al. DualSeqDB: the host–pathogen dual RNA sequencing database for infection processes. Nucleic Acids Res. 2021;49(D1):D687–D693.
  • Yu NY, Wagner JR, Laird MR, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608–1615.
  • Yu CS, Cheng CW, Su WC, et al. CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PloS one. 2014;9(6):e99368.
  • Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics. 2005;21(10):2522–2524.
  • Shen HB, Chou KC. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J Theor Biol. 2010;264(2):326–333.
  • Pintar A, Carugo O, Pongor S. CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics. 2002;18(7):980–984.
  • Bui HH, Sidney J, Li W, et al. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics. 2007;8(1):1–6.
  • Howlader DR, Koley H, Sinha R, et al. Development of a novel S. Typhi and Paratyphi A outer membrane vesicles based bivalent vaccine against enteric fever. PloS One. 2018;13(9):e0203631.
  • Robotham JM, Hoffman GG, Teuber SS, et al. Linear IgE-epitope mapping and comparative structural homology modelling of hazelnut and English walnut 11S globulins. Mol Immunol. 2009;46(15):2975–2984.
  • Dolimbek BZ, Steward LE, Aoki KR, et al. Immune recognition of botulinum neurotoxin B: antibody-binding regions on the heavy chain of the toxin. Mol Immunol. 2008;45(4):910–924.
  • Pier G, Lyczak J, Wetzler LI. Infection, and Immunity. 1st ed. USA: ASM Press: PL Washington; 2004.
  • Saha S, Raghava GP. BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In International conference on artificial immune systems. Springer, Berlin, Heidelberg. 2004: pp. 197–204.
  • Jespersen MC, Peters B, Nielsen M, et al. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24–W29.
  • Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40–48.
  • Sweredoski MJ, Baldi P. COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel. 2009;22(3):113–120.
  • Singh H, Ansari HR, Raghava GP. Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PloS one. 2013;8(5):e62216.
  • Saravanan V, Gautham N. Harnessing computational biology for exact linear B-cell epitope prediction: a novel amino acid composition-based feature descriptor. Omics. 2015;19(10):648–658.
  • Sweredoski MJ, Baldi P. PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics. 2008;24(12):1459–1460.
  • Andersen PH, Nielsen M, Lund O. Prediction of residues in discontinuous B cell epitopes using protein 3D structures. Prot Sci. 2006;15(11):2558–2567.
  • Kringelum JV, Lundegaard C, Lund O, et al. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol. 2012;8(12):e1002829.
  • Ponomarenko J, Bui HH, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinf. 2008;9(1):514.
  • Doytchinova IA, Guan P, Flower DR. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinf. 2006;7(1):1–11.
  • Bhasin M, Raghava GP. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci. 2007;32(1):31–42.
  • Singh H, Raghava GPS. ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics. 2003;19(8):1009–1014.
  • Singh H, Raghava GP. ProPred: prediction of HLA-DR binding sites. Bioinformatics. 2001;17(12):1236–1237.
  • Reche PA, Glutting JP, Zhang H, et al. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56(6):405–419.
  • Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Human Immunol. 2002;63(9):701–709.
  • Zhang Q, Wang P, Kim Y, et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008;36(Web Server):513–518.
  • Sturniolo T, Bono E, Ding J, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol. 1999;17(6):555–561.
  • Ong E, Cooke MF, Huffman A, et al. Vaxign2: the second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 2021;49(1):671–678.
  • Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf. 2007;8(1):4.
  • Vivona S, Bernante F, Filippini F. NERVE: new enhanced reverse vaccinology environment. BMC Biotechnol. 2006;6(1):1–8.
  • Jaiswal V, Chanumolu SK, Gupta A, et al. Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC Bioinf. 2013;14(1):1–11.
  • Magnan CN, Zeller M, Kayala MA, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics. 2010;26(23):2936–2943.
  • Cao K, Hollenbach J, Shi X, et al. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Human Immunol. 2001;62(9):1009–1030.
  • Gulukota K, DeLisi C. HLA allele selection for designing peptide vaccines. Genet Anals. 1996;13(3):81–86.
  • Bui HH, Sidney J, Dinh K, et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006;7(1):1–5.
  • Bui HH, Sidney J, Li W, et al. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics. 2007;8(1):361.
  • Kimura M. The neutral theory of molecular evolution. England: Cambridge University Press; 1983.
  • Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, et al. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 2008;36(Web Server):35–41.
  • Oldstone MB. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol. 2005;296:1–17.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410.
  • Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002;Chapter 2:Unit 2.3.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402.
  • Eric SD, Nicholas TD, Theophilus KA. Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA). J Bioinform Seq Anal. 2014;6(1):1–6.
  • Lamiable A, Thévenet P, Rey J, et al. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016;44(W1):449–454.
  • Rentzsch R, Renard BY. Docking small peptides remains a great challenge: an assessment using AutoDock Vina. Bioinformatics. 2015;16(6):1045–1056.
  • Trellet M, Melquiond AS, Bonvin AM. A unified conformational selection and induced fit approach to protein-peptide docking. PloS one. 2013;8(3):e58769.
  • Donsky E, Wolfson HJ. PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics. 2011;27(20):2836–2842.
  • Devaurs D, Antunes DA, Hall-Swan S, et al. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. BMC Mol Cell Biol. 2019;20(1):1–5.
  • Verdonk ML, Cole JC, Hartshorn MJ, et al. Improved protein-ligand docking using GOLD. Proteins Struct Funct Bioinf. 2003;52(4):609–623.
  • Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46(4):499–511.
  • London N, Raveh B, Cohen E, et al. Rosetta FlexPepDock web server—high-resolution modelling of peptide-protein interactions. Nucleic Acids Res. 2011;39(suppl_2):249–253.
  • Kurcinski M, Jamroz M, Blaszczyk M, et al. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015;43(W1):419–424.
  • Schindler CE, de Vries SJ, Zacharias M. Fully blind peptide-protein docking with pepATTRACT. Structure. 2015;23(8):1507–1515.
  • Alam N, Goldstein O, Xia B, et al. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput Biol. 2017;13(12):e1005905.
  • Porter KA, Xia B, Beglov D, et al. ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT. Bioinformatics. 2017;33(20):3299–3301.
  • Pierce BG, Wiehe K, Hwang H, et al. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics. 2014;30(12):1771–1773.
  • Lee H, Heo L, Lee MS, et al. GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. 2015;43(W1):431–435.
  • Obarska-Kosinska A, Iacoangeli A, Lepore R, et al. PepComposer: computational design of peptides binding to a given protein surface. Nucleic Acids Res. 2016;44(W1):522–528.
  • Mallik B, Morikis D. Applications of molecular dynamics simulations in immunology: a useful computational method in aiding vaccine design. Curr Proteom. 2006;3(4):259–270.
  • McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature. 1977;267(5612):585–590.
  • Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput. 2009;5(6):1632–1639.
  • Case DA, Cheatham IIITE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26(16):1668–1688.
  • Jo S, Cheng X, Lee J, et al. CHARMM‐GUI 10 years for biomolecular modeling and simulation. J Comput Chem. 2017;38(15):1114–1124.
  • Chow E, Rendleman CA, Bowers KJ, et al. Desmond performance on a cluster of multicore processors. DE Shaw Research Technical Report DESRES/TR–2008-01. 2008.
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718.
  • Nelson MT, Humphrey W, Gursoy A, et al. NAMD: a parallel, object-oriented molecular dynamics program. Int J Supercomp Appl High Perform Comput. 1996;10:251–268.
  • Rackers JA, Wang Z, Lu C, et al. Tinker 8: software tools for molecular design. J Chem Theory Comput. 2018;14(10):5273–5289.
  • Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000;37(2):239–253.
  • Ghosh S, Chakraborty K, Nagaraja T, et al. An adhesion protein of Salmonella enterica serovar Typhi is required for pathogenesis and potential target for vaccine development. Proc Natl Acad Sci USA. 2011;108(8):3348–3353.
  • Mukherjee S, Gangopadhyay K, Mukherjee SB. Identification of potential new vaccine candidates in Salmonella typhi using reverse vaccinology and subtractive genomics-based approach. bioRxiv. 2022;521518.
  • Li J, Qiu J, Huang Z, et al. Reverse vaccinology approach for the identifications of potential vaccine candidates against Salmonella. Int J Med Microbiol. 2021;311(5):151508.
  • Thakur R, Suri CR, Rishi P. Contribution of typhoid toxin in the pathogenesis of Salmonella Typhi. Microbiol Pathogen. 2022;164:105444.
  • Thakur R, Pathania P, Kaur N, et al. Prophylactic potential of cytolethal distending toxin B (CdtB) subunit of typhoid toxin against Typhoid fever. Sci Rep. 2019;9(1):1–2.
  • Song J, Gao X, Galán JE. Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature. 2013;499(7458):350–354.
  • Esmailnia E, Amani J, Gargari SLM. Identification of novel vaccine candidate against Salmonella enterica serovar Typhi by reverse vaccinology method and evaluation of its immunization. Genomics. 2020;112(5):3374–3381.
  • Lei Y, Zhao F, Shao J, et al. Application of built-in adjuvants for epitope-based vaccines. PeerJ. 2019;6:e6185.
  • Rueckert C, Guzmán CA, Hobman TC. Vaccines: from empirical development to rational design. PLoS Path. 2012;8(11):e1003001.
  • Kitaoka M, Naritomi A, Kawabe Y, et al. Transcutaneous pollinosis immunotherapy using a solid‐in‐oil nanodispersion system carrying T cell epitope peptide and R848. Bioeng Transl Med. 2017;2(1):102–108.
  • Karuturi BV, Tallapaka SB, Yeapuri P, et al. Encapsulation of an EP67-conjugated CTL peptide vaccine in nanoscale biodegradable particles increases the efficacy of respiratory immunization and affects the magnitude and memory subsets of vaccine-generated mucosal and systemic CD8+ T cells in a diameter-dependent manner. Mol Pharm. 2017;14(5):1469–1481.
  • Zom GG, Khan S, Filippov DV, et al. TLR ligand–peptide conjugate vaccines: toward clinical application. Adv Immunol. 2012;114:177–201.
  • Li Q, Li Z, Deng N, et al. Built-in adjuvants for use in vaccines. Eur J Med Chem. 2022;227:113917.
  • Wang H, Su X, Zhang P, et al. Recombinant heat shock protein 65 carrying PADRE and HBV epitopes activates dendritic cells and elicits HBV-specific CTL responses. Vaccine. 2011;29(12):2328–2335.
  • Wang Y, Alahdal M, Ye J, et al. Inhibition of RM-1 prostate carcinoma and eliciting robust immune responses in the mouse model by using VEGF-M2-GnRH3-hinge-MVP vaccine. Genes Immun. 2019;20(3):245–254.
  • Nezafat N, Sadraeian M, Rahbar MR, et al. Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice. Biologicals. 2015;43(1):11–17.
  • Bahrami AA, Payandeh Z, Khalili S, et al. Immunoinformatics: in silico approaches and computational design of a multi-epitope, immunogenic protein. Int Rev Immunol. 2019;38(6):307–322.
  • Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65(10):1357–1369.
  • Arai R, Ueda H, Kitayama A, et al. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 2001;14(8):529–532.
  • Arai R, Wriggers W, Nishikawa Y, et al. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins. 2004;57(4):829–838.
  • George RA, Heringa J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng. 2002;15(11):871–879.
  • Shams N, Shakarami Gandabeh Z, Nazifi N, et al. Computational design of different epitope-based vaccines against Salmonella typhi. Int J Pep Res Therapeut. 2020;26(3):1527–1539.
  • Farhadi T, Hashemian SM. Constructing novel chimeric DNA vaccine against Salmonella enterica based on SopB and GroEL proteins: an in-silico approach. J Pharm Investig. 2018;48(6):639–655.
  • Schmidt SR. Fusion-proteins as biopharmaceuticals–applications and challenges. Curr Opin Drug Discov Dev. 2009;12:284–295.
  • Chen X, Zaro JL, Shen WC. Pharmacokinetics of recombinant bifunctional fusion proteins. Expert Opin Drug Metab Toxicol. 2012;8(5):581–595.
  • Carsiotis M, Weinstein DL, Karch H, et al. Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect Immun. 1984;46(3):814–818.
  • Weinstein DL, Carsiotis M, Ler CR, et al. Flagella help Salmonella typhimurium survive within murine macrophages. Infect Immun. 1984;46(3):819–825.
  • Lockman HA, Curtiss R 3rd. Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect Immun. 1990;58(1):137–143.
  • Hajam IA, Dar PA, Shahnawaz I, et al. Bacterial flagellin—a potent immunomodulatory agent. Exp Mol Med. 2017;49(9):e373.
  • Li X, Xu J, Xie Y, et al. Vaccination with recombinant flagellar proteins FlgJ and FliN induce protection against Brucella abortus 544 infection in BALB/c mice. Vet Microbiol. 2012;161(1–2):137–144.
  • Zhang M, Wu H, Li X, et al. Edwardsiella tarda flagellar protein FlgD: a protective immunogen against edwardsiellosis. Vaccine. 2012;30(26):3849–3856.
  • Gholi MK, Kalali B, Formichella L, et al. Helicobacter pylori FliD protein is a highly sensitive and specific marker for serologic diagnosis of H. pylori infection. Int J Med Microbiol. 2013;303(8):618–623.
  • Bolhassani A, Agi E. Heat shock proteins in infection. Clin Chim Acta. 2019;498:90–100.
  • Verma S, Sugadev R, Kumar A, et al. Multi-epitope DnaK peptide vaccine against S. Typhi: an in-silico approach. Vaccine. 2018;36(28):4014–4022.
  • Verma S, Singh K, Bansal A. Multi-epitope DnaK peptide vaccine accords protection against lethal S. typhimurium challenge: elicits both cell mediated immunity and long-lasting serum-neutralizing antibody titers. Pharmacol Res. 2021;169:105652.
  • Thakur R, Suri CR, Kaur IP, et al. Peptides as diagnostic, therapeutic, and theranostic tools: progress and future challenges. Crit Rev Ther Drug Carrier Syst. 2023;40(1):49–100.
  • Khan K, Jalal K, Uddin R. An integrated in silico based subtractive genomics and reverse vaccinology approach for the identification of novel vaccine candidate and chimeric vaccine against XDR Salmonella typhi H58. Genomics. 2022;114(2):110301.
  • Chand Y, Singh S. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: a subtractive proteomics and immunoinformatics approach. Microb Pathog. 2021;159:105–150.
  • Mahapatra SR, Dey J, Kushwaha GS, et al. Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars. J Biomol Struct Dyn 2021 1–13 10.1080/07391102.2021.1964600
  • Kanampalliwar AM, Soni R, Girdhar A, et al. Reverse vaccinology: basics and applications. J Vaccines Vaccin. 2013;4:1–5.
  • Bambini S, Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov Today. 2009;14(5–6):252–260.
  • Kim Y, Gu C, Kim HU, et al. Current status of pan-genome analysis for pathogenic bacteria. Curr Opin Biotech. 2020;63:54–62.
  • Wang Z, Zheng X, Guo G, et al. Combining pangenome analysis to identify potential cross-protective antigens against avian pathogenic Escherichia coli. Avian Pathol. 2022;51(1):66–75.
  • Jacobsen A, Hendriksen RS, Aaresturp FM, et al. The Salmonella enterica pan-genome. Microb Ecol. 2011;62(3):487–504.
  • Amir A, Ikram A, Ali Z, et al. Pangenome analysis and reverse vaccinology of XDR Salmonella typhi strain from Pakistan identified novel vaccine targets. Int J Infect Dis. 2020;101:474–475.
  • Asalone KC, Nelson MM, Bracht JR. Novel sequence discovery by subtractive genomics. JoVE. 2019;143:e58877.
  • Fenoll A, Granizo JJ, Aguilar L, et al. Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. J Clin Microbiol. 2009;47(4):1012–1020.
  • Hassan A, Naz A, Obaid A, et al. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics. 2016;17(1):1–25.
  • Zeb A, Ali SS, Azad AK, et al. Genome-wide screening of vaccine targets prioritization and reverse vaccinology aided design of peptides vaccine to enforce humoral immune response against Campylobacter jejuni. Comput Biol Med. 2021;133:104412.
  • Naorem RS, Pangabam BD, Bora SS, et al. Identification of putative vaccine and drug targets against the methicillin-resistant Staphylococcus aureus by reverse vaccinology and subtractive genomics approaches. Molecules. 2022;27(7):2083.
  • Rathi B, Sarangi AN, Trivedi N. Genome subtraction for novel target definition in Salmonella typhi. Bioinformation. 2009;4(4):143.
  • Anasir MI, Poh CL. Structural vaccinology for viral vaccine design. Front Microbiol. 2019;10:738.
  • Pack SM, Peters PJ. SARS-CoV-2–specific vaccine candidates; the contribution of structural vaccinology. Vaccines (Basel). 2022;10(2):236.
  • Vishweshwaraiah YL, Dokholyan NV. Toward rational vaccine engineering. Adv Drug Deliv Rev. 2022;183:114–142.
  • Tagliabue A, Rappuoli R. Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol. 2018;9:1068.
  • Rappuoli R, Bottomley MJ, D’Oro U, et al. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J Exp Med. 2016;213(4):469–481.
  • Preet S, Rishi P. Antimicrobial activity of Paneth-cell derived cryptdin-2 against selected pathogens. Am J Biomed Sci. 2010;2:13–22.
  • Rishi P, Vij S, Maurya IK, et al. Peptides as adjuvants for ampicillin and oxacillin against methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog. 2018;124(2):11–20.
  • De Angelis L H, Ponsecchi G, Fraziano M, et al. Application of bacteriophages for human health: an old approach against contemporary “Bad Bugs.” Microorganisms. 2022;10(3):485.
  • Kaur UJ, Chopra A, Preet S, et al. Potential of 1-(1-napthylmethyl)-piperazine, an efflux pump inhibitor against cadmium-induced multidrug resistance in Salmonella enterica serovar Typhi as an adjunct to antibiotics. Braz J Microbiol. 2021;52(3):1303–1313.
  • Haque M, Islam S, Sheikh MA, et al. Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases. Expert Rev Anti Infect Ther. 2021;195:571–586.
  • Kaur A, Soni SK, Vij S, et al. Cocktail of carbohydrases from Aspergillus Niger: an economical and eco-friendly option for biofilm clearance from biopolymer surfaces. AMB Exp. 2021;11:1–19.
  • Kawli T, He F, Tan MW. It takes nerves to fight infections: insights on neuro-immune interactions from C. elegans. Dmm. 2010;3(11–12):721–731.
  • Wani KA, Goswamy D, Irazoqui JE. Nervous system control of intestinal host defense in C. elegans. Curr Opin Neurobiol. 2020;62:1–9.
  • Kaur A, Kaur IP, Chopra K, et al. Bi-directional elucidation of Lactiplantibacillus plantarum (RTA 8) intervention on the pathophysiology of gut-brain axis during Salmonella brain infection. Gut Pathog. 2022;14(1):1–3.
  • Kaur A, Chopra K, Kaur IP, et al. Salmonella strain specificity determines post-typhoid central nervous system complications: intervention by Lactiplantibacillus plantarum at gut-brain axis. Front Microbiol. 2020;11:1568.
  • Swaminathan A, Lucas RM, Dear K, et al. Keyhole limpet haemocyanin–a model antigen for human immunotoxicological studies. Br J Clin Pharmacol. 2014;78(5):1135–1142.
  • Wimmers F, de Haas N, Scholzen A, et al. Monitoring of dynamic changes in Keyhole Limpet Hemocyanin (KLH)-specific B cells in KLH-vaccinated cancer patients. Sci Rep. 2017;7(1):43486.
  • Patel H, Yewale C, Rathi MN, et al. Mucosal immunization: a review of strategies and challenges. Crit Rev Ther Drug Carr Syst. 2014;31;273–303.
  • Neutra MR, Mantis NJ, Kraehenbuhl J-P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2(11):1004–1009.
  • Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol. 1987;7(4):265–276.
  • De Magistris MT. Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev. 2006;58(1):52–67.
  • Lavelle EC, Ward RW. Mucosal vaccines—fortifying the frontiers. Nat Rev Immunol. 2022;22(4):236–250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.