279
Views
0
CrossRef citations to date
0
Altmetric
Review

Comparison of preclinical efficacy of immunotherapies against HPV-induced cancers

, , , , &
Pages 674-687 | Received 30 Jan 2024, Accepted 26 Jun 2024, Published online: 08 Jul 2024

References

  • Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: an update. Int J Cancer. 2018;142(2):224–229. doi: 10.1002/ijc.31027
  • Bosch FX, Manos MM, Munoz N, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) study group. J Natl Cancer Inst. 1995;87(11):796–802. doi: 10.1093/jnci/87.11.796
  • de Sanjose S, Quint WG, Alemany L, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–1056. doi: 10.1016/S1470-2045(10)70230-8
  • Munoz N, Bosch FX, de Sanjose S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–527. doi: 10.1056/NEJMoa021641
  • Schiffman MH, Haley NJ, Felton JS, et al. Biochemical epidemiology of cervical neoplasia: measuring cigarette smoke constituents in the cervix. Cancer Res. 1987;47(14):3886–3888.
  • zur Hausen H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr Top Microbiol Immunol. 1977;78:1–30.
  • zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–350. doi: 10.1038/nrc798
  • de Sanjose S, Serrano B, Tous S, et al. Burden of Human Papillomavirus (HPV)-related cancers attributable to HPVs 6/11/16/18/31/33/45/52 and 58. JNCI Cancer Spectr. 2018;2(4):ky045. doi: 10.1093/jncics/pky045
  • Zottnick S, Voss AL, Riemer AB. Inducing immunity where it matters: orthotopic HPV tumor models and therapeutic vaccinations. Front Immunol. 2020;11:1750. doi: 10.3389/fimmu.2020.01750
  • Sabatini ME, Chiocca S. Human papillomavirus as a driver of head and neck cancers. Br J Cancer. 2020;122(3):306–314. doi: 10.1038/s41416-019-0602-7
  • Barsouk A, Aluru JS, Rawla P, et al. Epidemiology, risk factors, and prevention of head and neck squamous cell carcinoma. Med Sci (Basel). 2023;11(2):42. doi: 10.3390/medsci11020042
  • Ghiani L, Chiocca S. High risk-human papillomavirus in HNSCC: present and future challenges for epigenetic therapies. Int J Mol Sci. 2022;23(7):3483. doi: 10.3390/ijms23073483
  • Lechner M, Liu J, Masterson L, et al. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol. 2022;19(5):306–327. doi: 10.1038/s41571-022-00603-7
  • Ruttkay-Nedecky B, Jimenez Jimenez AM, Nejdl L, et al. Relevance of infection with human papillomavirus: the role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (review). Int J Oncol. 2013;43(6):1754–1762. doi: 10.3892/ijo.2013.2105
  • Steenbergen RD, Snijders PJ, Heideman DA, et al. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat Rev Cancer. 2014;14(6):395–405. doi: 10.1038/nrc3728
  • Parfenov M, Pedamallu CS, Gehlenborg N, et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci USA. 2014;111(43):15544–15549. doi: 10.1073/pnas.1416074111
  • Andersen AS, Koldjaer Solling AS, Ovesen T, et al. The interplay between HPV and host immunity in head and neck squamous cell carcinoma. Int J Cancer. 2014;134(12):2755–2763. doi: 10.1002/ijc.28411
  • Shamseddine AA, Burman B, Lee NY, et al. Tumor immunity and immunotherapy for HPV-Related cancers. Cancer Discov. 2021;11(8):1896–1912. doi: 10.1158/2159-8290.CD-20-1760
  • Bogani G, Sopracordevole F, Ciavattini A, et al. HPV persistence after cervical surgical excision of high-grade cervical lesions. Cancer Cytopathol. 2023;132(5):268–269. doi: 10.1002/cncy.22760
  • Bogani G, Sopracordevole F, Ciavattini A, et al. Duration of human papillomavirus persistence and its relationship with recurrent cervical dysplasia. Eur J Cancer Prev. 2023;32(6):525–532. doi: 10.1097/CEJ.0000000000000822
  • Doorbar J, Quint W, Banks L, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30(Suppl 5):F55–70. doi: 10.1016/j.vaccine.2012.06.083
  • Causin RL, Freitas AJA, Trovo Hidalgo Filho CM, et al. A systematic review of MicroRNAs involved in cervical cancer progression. Cells. 2021;10(3):668. doi: 10.3390/cells10030668
  • Stanley MA. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 2012;25(2):215–222. doi: 10.1128/CMR.05028-11
  • Benard E, Drolet M, Laprise JF, et al. Potential population-level effectiveness of one-dose HPV vaccination in low-income and middle-income countries: a mathematical modelling analysis. Lancet Public Health. 2023;8(10):e788–e799. doi: 10.1016/S2468-2667(23)00180-9
  • Drolet M, Benard E, Perez N, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet. 2019;394(10197):497–509. doi: 10.1016/S0140-6736(19)30298-3
  • Falcaro M, Castanon A, Ndlela B, et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. The Lancet. 2021;398(10316):2084–2092. doi: 10.1016/S0140-6736(21)02178-4
  • Kjaer SK, Dehlendorff C, Belmonte F, et al. Real-world effectiveness of human papillomavirus vaccination against cervical cancer. J Natl Cancer Inst. 2021;113(10):1329–1335. doi: 10.1093/jnci/djab080
  • Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7(1):10501. doi: 10.1038/ncomms10501
  • Hampson IN. Effects of the prophylactic HPV vaccines on HPV type prevalence and cervical pathology. Viruses. 2022;14(4):757. doi: 10.3390/v14040757
  • Rosalik K, Tarney C, Han J. Human papilloma virus vaccination. Viruses. 2021;13(6):1091. doi: 10.3390/v13061091
  • Kahn JA, Brown DR, Ding L, et al. Vaccine-type human papillomavirus and evidence of herd protection after vaccine introduction. Pediatrics. 2012;130(2):e249–256. doi: 10.1542/peds.2011-3587
  • Brisson M, Kim JJ, Canfell K, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. The Lancet. 2020;395(10224):575–590. doi: 10.1016/S0140-6736(20)30068-4
  • Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–560. doi: 10.1038/nrc2886
  • Scarth JA, Patterson MR, Morgan EL, et al. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol. 2021;102(3). doi: 10.1099/jgv.0.001540
  • Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res. 2017;231:21–33. doi: 10.1016/j.virusres.2016.11.023
  • Torres-Poveda K, Bahena-Roman M, Madrid-Gonzalez C, et al. Role of IL-10 and TGF-beta1 in local immunosuppression in HPV-associated cervical neoplasia. World J Clin Oncol. 2014;5(4):753–763. doi: 10.5306/wjco.v5.i4.753
  • Leo PJ, Madeleine MM, Wang S, et al. Defining the genetic susceptibility to cervical neoplasia-A genome-wide association study. PloS Genet. 2017;13(8):e1006866. doi: 10.1371/journal.pgen.1006866
  • Hewavisenti RV, Arena J, Ahlenstiel CL, et al. Human papillomavirus in the setting of immunodeficiency: pathogenesis and the emergence of next-generation therapies to reduce the high associated cancer risk. Front Immunol. 2023;14:1112513. doi: 10.3389/fimmu.2023.1112513
  • Borcoman E, Lalanne A, Delord JP, et al. Phase Ib/II trial of tipapkinogene sovacivec, a therapeutic human papillomavirus16-vaccine, in combination with avelumab in patients with advanced human papillomavirus16-positive cancers. Eur J Cancer. 2023;191:112981. doi: 10.1016/j.ejca.2023.112981
  • Brun JL, Dalstein V, Leveque J, et al. Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol. 2011;204(2):169 e161–168. doi: 10.1016/j.ajog.2010.09.020
  • Harper DM, Nieminen P, Donders G, et al. The efficacy and safety of Tipapkinogen Sovacivec therapeutic HPV vaccine in cervical intraepithelial neoplasia grades 2 and 3: randomized controlled phase II trial with 2.5 years of follow-up. Gynecol Oncol. 2019;153(3):521–529. doi: 10.1016/j.ygyno.2019.03.250
  • Lin KY, Guarnieri FG, Staveley-O’Carroll KF, et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56(1):21–26.
  • Smalley Rumfield C, Roller N, Pellom ST, et al. Therapeutic vaccines for HPV-Associated Malignancies. Immunotargets Ther. 2020;9:167–200. doi: 10.2147/ITT.S273327
  • Arribillaga L, Echeverria I, Belsue V, et al. Bivalent therapeutic vaccine against HPV16/18 genotypes consisting of a fusion protein between the extra domain a from human fibronectin and HPV16/18 E7 viral antigens. J Immunother Cancer. 2020;8(1). doi: 10.1136/jitc-2020-000704
  • Lasarte JJ, Casares N, Gorraiz M, et al. The extra domain a from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo. J Immunol. 2007;178(2):748–756. doi: 10.4049/jimmunol.178.2.748
  • Levy HB, Baer G, Baron S, et al. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis. 1975;132(4):434–439. doi: 10.1093/infdis/132.4.434
  • Kim JW, Hung CF, Juang J, et al. Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Ther. 2004;11(12):1011–1018. doi: 10.1038/sj.gt.3302252
  • Dibbern ME, Bullock TN, Jenkins TM, et al. Loss of MHC class I expression in HPV-associated cervical and Vulvar Neoplasia: a potential mechanism of resistance to checkpoint inhibition. Am J Surg Pathol. 2020;44(9):1184–1191. doi: 10.1097/PAS.0000000000001506
  • Ladant D. Bioengineering of bordetella pertussis adenylate cyclase toxin for vaccine development and other biotechnological purposes. Toxins (Basel). 2021;13(2):83. doi: 10.3390/toxins13020083
  • Guermonprez P, Khelef N, Blouin E, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med. 2001;193(9):1035–1044. doi: 10.1084/jem.193.9.1035
  • Berraondo P, Nouze C, Preville X, et al. Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res. 2007;67(18):8847–8855. doi: 10.1158/0008-5472.CAN-07-0321
  • Gonzalez-Navajas JM, Fan DD, Yang S, et al. The impact of tregs on the anticancer immunity and the efficacy of immune checkpoint inhibitor therapies. Front Immunol. 2021;12:625783. doi: 10.3389/fimmu.2021.625783
  • Krishnamoorthy M, Gerhardt L, Maleki Vareki S. Immunosuppressive effects of myeloid-derived suppressor cells in cancer and immunotherapy. Cells. 2021;10(5):1170. doi: 10.3390/cells10051170
  • Shields NJ, Peyroux EM, Ferguson AL, et al. Late-stage MC38 tumours recapitulate features of human colorectal cancer - implications for appropriate timepoint selection in preclinical studies. Front Immunol. 2023;14:1152035. doi: 10.3389/fimmu.2023.1152035
  • Mohseni Z, Sedighian H, Halabian R, et al. Potent in vitro antitumor activity of B-subunit of Shiga toxin conjugated to the diphtheria toxin against breast cancer. Eur J Pharmacol. 2021;899:174057. doi: 10.1016/j.ejphar.2021.174057
  • Johannes L, Goud B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 1998;8(4):158–162. doi: 10.1016/S0962-8924(97)01209-9
  • Haicheur N, Bismuth E, Bosset S, et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J Immunol. 2000;165(6):3301–3308. doi: 10.4049/jimmunol.165.6.3301
  • Pere H, Montier Y, Bayry J, et al. A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood. 2011;118(18):4853–4862. doi: 10.1182/blood-2011-01-329656
  • Sandoval F, Terme M, Nizard M, et al. Mucosal imprinting of vaccine-induced CD8(+) T cells is crucial to inhibit the growth of mucosal tumors. Sci Transl Med. 2013;5(172):172ra120. doi: 10.1126/scitranslmed.3004888
  • Paget C, Chow MT, Duret H, et al. Role of gammadelta T cells in alpha-galactosylceramide-mediated immunity. J Immunol. 2012;188(8):3928–3939. doi: 10.4049/jimmunol.1103582
  • Flickinger JC Jr., Rodeck U, Snook AE. Listeria monocytogenes as a vector for cancer immunotherapy: Current understanding and progress. Vaccines (Basel). 2018;6(3):48. doi: 10.3390/vaccines6030048
  • Brunt LM, Portnoy DA, Unanue ER. Presentation of listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J Immunol. 1990;145(11):3540–3546. doi: 10.4049/jimmunol.145.11.3540
  • Brockstedt DG, Giedlin MA, Leong ML, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci USA. 2004;101(38):13832–13837. doi: 10.1073/pnas.0406035101
  • Shahabi V, Seavey MM, Maciag PC, et al. Development of a live and highly attenuated listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer Gene Ther. 2011;18(1):53–62. doi: 10.1038/cgt.2010.48
  • Wallecha A, Maciag PC, Rivera S, et al. Construction and characterization of an attenuated listeria monocytogenes strain for clinical use in cancer immunotherapy. Clin Vaccine Immunol. 2009;16(1):96–103. doi: 10.1128/CVI.00274-08
  • Gunn GR, Zubair A, Peters C, et al. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol. 2001;167(11):6471–6479. doi: 10.4049/jimmunol.167.11.6471
  • Shrimali R, Ahmad S, Berrong Z, et al. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy. J Immunother Cancer. 2017;5(1):64. doi: 10.1186/s40425-017-0266-x
  • Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3(2):135–142. doi: 10.1038/ni759
  • Davar D, Zappasodi R. Targeting GITR in cancer immunotherapy - there is no perfect knowledge. Oncotarget. 2023;14(1):614–621. doi: 10.18632/oncotarget.28461
  • Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11(4):307–320. doi: 10.2174/156652311796150372
  • Zhang H, Wang H, An Y, et al. Construction and application of adenoviral vectors. Mol Ther Nucleic Acids. 2023;34:102027. doi: 10.1016/j.omtn.2023.09.004
  • Barouch DH, Kik SV, Weverling GJ, et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine. 2011;29(32):5203–5209. doi: 10.1016/j.vaccine.2011.05.025
  • Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against ad vectors: humoral, cellular, and innate response, what’s important? Hum Vaccin Immunother. 2014;10(10):2875–2884. doi: 10.4161/hv.29594
  • McCann N, O’Connor D, Lambe T, et al. Viral vector vaccines. Curr Opin Immunol. 2022;77:102210. doi: 10.1016/j.coi.2022.102210
  • Pichla-Gollon SL, Lin SW, Hensley SE, et al. Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol. 2009;83(11):5567–5573. doi: 10.1128/JVI.00405-09
  • Pinschewer DD. Virally vectored vaccine delivery: medical needs, mechanisms, advantages and challenges. Swiss Med Wkly. 2017;147:w14465.
  • Mendonca SA, Lorincz R, Boucher P, et al. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines. 2021;6(1):97. doi: 10.1038/s41541-021-00356-x
  • Khan S, Oosterhuis K, Wunderlich K, et al. Development of a replication-deficient adenoviral vector-based vaccine candidate for the interception of HPV16- and HPV18-induced infections and disease. Int J Cancer. 2017;141(2):393–404. doi: 10.1002/ijc.30679
  • Hoffmann C, Stanke J, Kaufmann AM, et al. Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother. 2010;33(2):136–145. doi: 10.1097/CJI.0b013e3181badc46
  • Prow NA, Jimenez Martinez R, Hayball JD, et al. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev Vaccines. 2018;17(10):925–934. doi: 10.1080/14760584.2018.1522255
  • Altenburg AF, Kreijtz JH, de Vries RD, et al. Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses. 2014;6(7):2735–2761. doi: 10.3390/v6072735
  • Ramos RN, Tosch C, Kotsias F, et al. Pseudocowpox virus, a novel vector to enhance the therapeutic efficacy of antitumor vaccination. Clin Transl Immunology. 2022;11(5):e1392. doi: 10.1002/cti2.1392
  • Stachura P, Stencel O, Lu Z, et al. Arenaviruses: Old viruses present new solutions for cancer therapy. Front Immunol. 2023;14:1110522. doi: 10.3389/fimmu.2023.1110522
  • Bonilla WV, Kirchhammer N, Marx AF, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021;2(3):100209. doi: 10.1016/j.xcrm.2021.100209
  • Marx AF, Kallert SM, Brunner TM, et al. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1+ CD8+ T cells in chronic viral infection. Immunity. 2023;56(4):813–828.e10. doi: 10.1016/j.immuni.2023.01.029
  • NCT04180215. A phase I/II study of TheraT® vector(s) expressing HPV 16+ specific antigens in patients with HPV 16+ confirmed cancers. 2021. Available from: https://clinicaltrials.gov/study/NCT04180215
  • Ku MW, Charneau P, Majlessi L. Use of lentiviral vectors in vaccination. Expert Rev Vaccines. 2021;20(12):1571–1586. doi:10.1080/14760584.2021.1988854
  • Nemirov K, Bourgine M, Anna F, et al. Lentiviral vectors as a vaccine platform against infectious diseases. Pharmaceutics. 2023;15(3):846. doi:10.3390/pharmaceutics15030846
  • TheraVectys-Clinical-Trial. Safety, tolerability and immunogenicity induced by the THV01 treatment in patients infected with HIV-1 Clade B and Treated with Highly Active Antiretroviral Therapy (HAART). 2019. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2011-006260-52,2011-006260-52
  • Cousin C, Oberkampf M, Felix T, et al. Persistence of Integrase-Deficient Lentiviral Vectors Correlates with the Induction of STING-Independent CD8(+) T Cell Responses. Cell Rep. 2019;26(5):1242–1257.e7. doi: 10.1016/j.celrep.2019.01.025
  • Lopez J, Anna F, Authie P, et al. A lentiviral vector encoding fusion of light invariant chain and mycobacterial antigens induces protective CD4(+) T cell immunity. Cell Rep. 2022;40(4):111142. doi: 10.1016/j.celrep.2022.111142
  • Ku MW, Authie P, Nevo F, et al. Lentiviral vector induces high-quality memory T cells via dendritic cells transduction. Commun Biol. 2021;4(1):713. doi: 10.1038/s42003-021-02251-6
  • Vesin B, Lopez J, Noirat A, et al. An intranasal lentiviral booster reinforces the waning mRNA vaccine-induced SARS-CoV-2 immunity that it targets to lung mucosa. Mol Ther. 2022;30(9):2984–2997. doi: 10.1016/j.ymthe.2022.04.016
  • Grasso F, Negri DR, Mochi S, et al. Successful therapeutic vaccination with integrase defective lentiviral vector expressing nononcogenic human papillomavirus E7 protein. Int J Cancer. 2013;132(2):335–344. doi: 10.1002/ijc.27676
  • Cheng WF, Hung CF, Chai CY, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001;108(5):669–678. doi: 10.1172/JCI200112346
  • Douguet L, Fert I, Lopez J, et al. Full eradication of pre-clinical human papilloma virus-induced tumors by a lentiviral vaccine. EMBO Mol Med. 2023;15(10):e17723. doi: 10.15252/emmm.202317723
  • Hong W, Yang B, He Q, et al. New insights of CCR7 signaling in dendritic cell migration and inflammatory diseases. Front Pharmacol. 2022;13:841687. doi: 10.3389/fphar.2022.841687
  • Zhao X, Shan Q, Xue HH. TCF1 in T cell immunity: a broadened frontier. Nat Rev Immunol. 2022;22(3):147–157. doi: 10.1038/s41577-021-00563-6
  • Gary EN, Weiner DB. DNA vaccines: prime time is now. Curr Opin Immunol. 2020;65:21–27. doi:10.1016/j.coi.2020.01.006
  • Chandra J, Dutton JL, Li B, et al. DNA vaccine encoding HPV16 oncogenes E6 and E7 induces potent cell-mediated and humoral immunity which protects in tumor challenge and drives E7-expressing skin graft rejection. J Immunother. 2017;40(2):62–70. doi: 10.1097/CJI.0000000000000156
  • Liu WJ, Zhao KN, Gao FG, et al. Polynucleotide viral vaccines: codon optimisation and ubiquitin conjugation enhances prophylactic and therapeutic efficacy. Vaccine. 2001;20(5–6):862–869. doi: 10.1016/S0264-410X(01)00406-6
  • Aygun I, Barciszewski J. The forerunners and successful partnerships behind the BioNTech mRNA vaccine. J Appl Genet. 2023;65(1):47–55. doi: 10.1007/s13353-023-00793-5
  • Cabanillas B, Novak N, Akdis CA. The form of PEG matters: PEG conjugated with lipids and not PEG alone could be the specific form involved in allergic reactions to COVID-19 vaccines. Allergy. 2022;77(6):1658–1660. doi:10.1111/all.15187
  • Ramos da Silva J, Bitencourt Rodrigues K, Formoso Pelegrin G, et al. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med. 2023;15(686):eabn3464. doi: 10.1126/scitranslmed.abn3464
  • Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143(1):1–20. doi: 10.1196/annals.1443.020
  • Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175. doi: 10.1016/j.immuni.2005.06.008
  • Maruggi G, Ulmer JB, Rappuoli R, et al. Self-amplifying mRNA-based vaccine technology and its mode of action. Curr Top Microbiol Immunol. 2022;440:31–70.
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. doi: 10.1038/nrd.2017.243
  • Guimaraes LE, Baker B, Perricone C, et al. Vaccines, adjuvants and autoimmunity. Pharmacol Res. 2015;100:190–209. doi: 10.1016/j.phrs.2015.08.003
  • Seida I, Alrais M, Seida R, et al. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA): past, present, and future implications. Clin Exp Immunol. 2023;213(1):87–101. doi: 10.1093/cei/uxad033
  • Somaiah N, Block MS, Kim JW, et al. First-in-class, first-in-human study evaluating LV305, a Dendritic-cell tropic lentiviral vector, in Sarcoma and other solid tumors expressing NY-ESO-1. Clin Cancer Res. 2019;25(19):5808–5817. doi: 10.1158/1078-0432.CCR-19-1025