595
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Anterior-posterior ground reaction forces across a range of running speeds in unilateral transfemoral amputees

, , , , , , & show all
Pages 69-80 | Received 16 Apr 2020, Accepted 08 Sep 2020, Published online: 28 Oct 2020

References

  • Baum, B. S., Hobara, H., Kim, Y. H., & Shim, J. K. (2016). Amputee locomotion: Ground reaction forces during submaximal running with running-specific prostheses. Journal of Applied Biomechanics, 32(3), 287–294. https://doi.org/10.1123/jab.2014-0290
  • Beck, O. N., Taboga, P., & Grabowski, A. M. (2017). Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations. Journal of Applied Physiology, 123(1), 38–48. https://doi.org/10.1152/japplphysiol.00896.2016
  • Burkett, B. (2010). Technology in Paralympic sport: Performance enhancement or essential for performance? British Journal of Sports Medicine, 44(3), 215–220. https://doi.org/10.1136/bjsm.2009.067249
  • Cavagna, G. A. (2006). The landing–take-off asymmetry in human running. Journal of Experimental Biology, 209(20), 4051–4060. https://doi.org/10.1242/jeb.02344
  • Chang, Y. H., & Kram, R. (1999). Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, 86(5), 1657–1662. https://doi.org/10.1152/jappl.1999.86.5.1657
  • Dyer, B. (2015). The progression of male 100 m sprinting with a lower-limb amputation 1976–2012. Sports, 3(1), 30–39. https://doi.org/10.3390/sports3010030
  • Engsberg, J. R., Lee, A. G., Tedford, K. G., & Harder, J. A. (1993). Normative ground reaction force data for able-bodied and trans-tibial amputee children during running. Prosthetics and Orthotics International, 17(2), 83–89. https://doi.org/10.3109/03093649309164361
  • Enoka, R. M., Miller, D. I., & Burgess, E. M. (1982). Below-knee amputee running gait. American Journal of Physical Medicine & Rehabilitation, 61(2), 66–84. https://doi.org/10.1097/00002060-198204000-00002
  • Eskridge, S. L., Clouser, M. C., McCabe, C. T., Watrous, J. R., & Galarneau, M. R. (2019). Self-reported functional status in US service members after combat-related amputation. American Journal of Physical Medicine & Rehabilitation, 98(7), 631–635. https://doi.org/10.1097/PHM.0000000000001140
  • Exell, T., Irwin, G., Gittoes, M., & Kerwin, D. (2017). Strength and performance asymmetry during maximal velocity sprint running. Scandinavian Journal of Medicine & Science in Sports, 27(11), 1273–1282. https://doi.org/10.1111/sms.12759
  • Funken, J., Heinrich, K., Willwacher, S., Müller, R., Böcker, J., Hobara, H., Brüggemann, G. P., & Potthast, W. (2019). Leg amputation side determines performance in curve sprinting: A case study on a Paralympic medalist. Sports Biomechanics, 18(1), 75–87. https://doi.org/10.1080/14763141.2017.1384051
  • Furlong, L. A. M., & Egginton, N. L. (2018). Kinetic asymmetry during running at preferred and nonpreferred speeds. Medicine and Science in Sports and Exercise, 50(6), 1241–1248. https://doi.org/10.1249/MSS.0000000000001560
  • Gottschall, J. S., & Kram, R. (2005). Ground reaction forces during downhill and uphill running. Journal of Biomechanics, 38(3), 445–452. https://doi.org/10.1016/j.jbiomech.2004.04.023
  • Hamner, S. R., Seth, A., & Delp, S. L. (2010). Muscle contributions to propulsion and support during running. Journal of Biomechanics, 43(14), 2709–2716. https://doi.org/10.1016/j.jbiomech.2010.06.025
  • Hisano, G., Hashizume, S., Kobayashi, Y., Murai, A., Kobayashi, T., Nakashima, M., & Hobara, H. (2020). Factors associated with a risk of prosthetic knee buckling during walking in unilateral transfemoral amputees. Gait & Posture, 77, 69–74. https://doi.org/10.1016/j.gaitpost.2020.01.002
  • Hobara, H., Sakata, H., Hashizume, S., & Kobayashi, Y. (2019). Leg stiffness in unilateral transfemoral amputees across a range of running speeds. Journal of Biomechanics, 84, 67–72. https://doi.org/10.1016/j.jbiomech.2018.12.014
  • Hunter, J. P., Marshall, R. N., & McNair, P. (2005). Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. Journal of Applied Biomechanics, 21(1), 31–43. https://doi.org/10.1123/jab.21.1.31
  • Kiernan, D., Miller, R. H., Baum, B. S., Joon, H., & Kun, J. (2017). Amputee locomotion: Frequency content of prosthetic vs. intact limb vertical ground reaction forces during running and the effects of filter cut-off frequency. Journal of Biomechanics, 60, 248–252. https://doi.org/10.1016/j.jbiomech.2017.06.019
  • Korhonen, M. T., Suominen, H., Viitasalo, J. T., Liikavainio, T., Alen, M., & Mero, A. A. (2010). Variability and symmetry of force platform variables in maximum-speed running in young and older athletes. Journal of Applied Biomechanics, 26(3), 357–366. https://doi.org/10.1123/jab.26.3.357
  • Kram, R., Griffin, T. M., Donelan, J. M., & Chang, Y. H. (1998). Force treadmill for measuring vertical and horizontal ground reaction forces. Journal of Applied Physiology, 85(2), 764–769. https://doi.org/10.1152/jappl.1998.85.2.764
  • Kyröläinen, H., Komi, P. V., & Belli, A. (1999). Changes in muscle activity patterns and kinetics with increasing running speed. Journal of Strength and Conditioning Research, 13(4), 400–406. https://doi.org/10.1519/00124278-199911000-00017
  • Makimoto, A., Sano, Y., Hashizume, S., Murai, A., Kobayashi, Y., Takemura, H., & Hobara, H. (2017). Ground reaction forces during sprinting in unilateral transfemoral amputees. Journal of Applied Biomechanics, 33(6), 406–409. https://doi.org/10.1123/jab.2017-0008
  • Mero, A., Komi, P. V., & Gregor, R. J. (1992). Biomechanics of sprint running: A review. Sports Medicine, 13(6), 376–392. https://doi.org/10.2165/00007256-199213060-00002
  • Morin, J. B., Edouard, P., & Samozino, P. (2011). Technical ability of force application as a determinant factor of sprint performance. Medicine and Science in Sports and Exercise, 43(9), 1680–1688. https://doi.org/10.1249/MSS.0b013e318216ea37
  • Munro, C. F., Miller, D. I., & Fuglevand, A. J. (1987). Ground reaction forces in running: A reexamination. Journal of Biomechanics, 20(2), 147–155. https://doi.org/10.1016/0021-9290(87)90306-X
  • Namiki, Y., Hashizume, S., Murai, A., Kobayashi, Y., Takemura, H., & Hobara, H. (2019). Joint moments during sprinting in unilateral transfemoral amputees wearing running-specific prostheses. Biology Open, 8(2), bio039206. https://doi.org/10.1242/bio.039206
  • Nilsson, J., & Thorstensson, A. (1989). Ground reaction forces at different speeds of human walking and running. Acta Physiologica Scandinavica, 136(2), 217–227. https://doi.org/10.1111/j.1748-1716.1989.tb08655.x
  • Nolan, L. (2008). Carbon fibre prostheses and running in amputees: A review. Foot and Ankle Surgery, 14(3), 125–129. https://doi.org/10.1016/j.fas.2008.05.007
  • Nolan, L. (2012). A training programme to improve hip strength in persons with lower limb amputation. Journal of Rehabilitation Medicine, 44(3), 241–248. https://doi.org/10.2340/16501977-0921
  • Sakata, H., Hashizume, S., Takemura, H., & Hobara, H. (2020). A limb-specific strategy across a range of running speeds in transfemoral amputees. Medicine and Science in Sports and Exercise, 52(4), 892–899. https://doi.org/10.1249/MSS.0000000000002203
  • Sanderson, D. J., & Martin, P. E. (1996). Joint kinetics in unilateral below-knee amputee patients during running. Archives of Physical Medicine and Rehabilitation, 77(12), 1279–1285. https://doi.org/10.1016/S0003-9993(96)90193-8
  • Schaarschmidt, M., Lipfert, S. W., Meier-Gratz, C., Scholle, H. C., & Seyfarth, A. (2012). Functional gait asymmetry of unilateral transfemoral amputees. Human Movement Science, 31(4), 907–917. https://doi.org/10.1016/j.humov.2011.09.004
  • Schmalz, T., Bellmann, M., Sottong, J., & Altenburg, B. (2017). Advantages and limitations of new sports prosthetic components developed for running in lower limb amputees. Sports Medicine and Rehabilitation Journal, 2(2), 1018. http://www.remedypublications.com/open-access/padvantages-and-limitations-of-new-sports-prosthetic-components-developed-for-running-in-lower-limb-amputeesp-2201.pdf
  • Seminati, E., Nardello, F., Zamparo, P., Ardigò, L. P., Faccioli, N., & Minetti, A. E. (2013). Anatomically asymmetrical runners move more asymmetrically at the same metabolic cost. PLoS ONE, 8(9), e74134. https://doi.org/10.1371/journal.pone.0074134
  • Silverman, A. K., Fey, N. P., Portillo, A., Walden, J. G., Bosker, G., & Neptune, R. R. (2008). Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait & Posture, 28(4), 602–609. https://doi.org/10.1016/j.gaitpost.2008.04.005
  • Silverman, A. K., & Neptune, R. R. (2011). Differences in whole-body angular momentum between below-knee amputees and non-amputees across walking speeds. Journal of Biomechanics, 44(3), 379–385. https://doi.org/10.1016/j.jbiomech.2010.10.027
  • Strike, S. C., Arcone, D., & Orendurff, M. (2018). Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees. Gait & Posture, 62, 327–332. https://doi.org/10.1016/j.gaitpost.2018.03.030
  • Zeni, J. A., Jr., & Higginson, J. S. (2010). Gait parameters and stride-to-stride variability during familiarization to walking on a split-belt treadmill. Clinical Biomechanics, 25(4), 383–386. https://doi.org/10.1016/j.clinbiomech.2009.11.002
  • Zifchock, R. A., Davis, I., & Hamill, J. (2006). Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. Journal of Biomechanics, 39(15), 2792–2797. https://doi.org/10.1016/j.jbiomech.2005.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.