1,544
Views
7
CrossRef citations to date
0
Altmetric
Review

Loading mechanisms of the anterior cruciate ligament

ORCID Icon, ORCID Icon &
Pages 1-29 | Received 31 Dec 2020, Accepted 08 Apr 2021, Published online: 07 May 2021

References

  • Arnoczky, S. P. (1983). Anatomy of the anterior cruciate ligament. Clinical Orthopaedics and Related Research, 172, 19–25. https://pubmed.ncbi.nlm.nih.gov/6821989/
  • Bai, D., Okada, Y., Fukumoto, T., Ogawa, M., & Tanaka, Y. (2019). The muscle pre-activity timing of the hamstrings and quadriceps during 180° and 360° rotational jump landings in healthy female subjects. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 17, 16–20. https://doi.org/10.1016/j.asmart.2019.01.001
  • Balazs, G. C., Pavey, G. J., Brelin, A. M., Pickett, A., Keblish, D. J., & Rue, J. P. (2015). Risk of anterior cruciate ligament injury in athletes on synthetic playing surfaces: A systematic review. The American Journal of Sports Medicine, 43(7), 1798–1804. https://doi.org/10.1177/0363546514545864
  • Ball, S., Stephen, J. M., El-Daou, H., Williams, A., & Amis, A. A. (2020). The medial ligaments and the ACL restrain anteromedial laxity of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 28(12), 3700–3708. https://doi.org/10.1007/s00167-020-06084-4
  • Bates, N. A., Nesbitt, R. J., Shearn, J. T., Myer, G. D., & Hewett, T. E. (2017). Knee abduction affects greater magnitude of change in ACL and MCL strains than matched internal tibial rotation in vitro. Clinical Orthopaedics & Related Research, 475(10), 2385–2396. https://doi.org/10.1007/s11999-017-5367-9
  • Bates, N. A., Schilaty, N. D., Nagelli, C. V., Krych, A. J., & Hewett, T. E. (2017). Novel mechanical impact simulator designed to generate clinically relevant anterior cruciate ligament ruptures. Clinical Biomechanics (Bristol, Avon), 44, 36–44. https://doi.org/10.1016/j.clinbiomech.2017.03.005
  • Bates, N. A., Schilaty, N. D., Nagelli, C. V., Krych, A. J., & Hewett, T. E. (2019). Multiplanar loading of the knee and its influence on anterior cruciate ligament and medial collateral ligament strain during simulated landings and noncontact tears. The American Journal of Sports Medicine, 47(8), 1844–1853. https://doi.org/10.1177/0363546519850165
  • Bayer, S., Meredith, S. J., Wilson, K., De Sa, D., Pauyo, T., Byrne, K., McDonough, C. M., & Musahl, V. (2020). Knee morphological risk factors for anterior cruciate ligament injury: A systematic review. Journal of Bone and Joint Surgery, 102(8), 703–718. https://doi.org/10.2106/JBJS.19.00535
  • Beynnon, B., Howe, J. G., Pope, M. H., Johnson, R. J., & Fleming, B. C. (1992). The measurement of anterior cruciate ligament strain in vivo. International Orthopaedics, 16(1), 1–12. https://doi.org/10.1007/BF00182976
  • Bojicic, K. M., Beaulieu, M. L., Imaizumi Krieger, D. Y., Ashton-Miller, J. A., & Wojtys, E. M. (2017). Association between lateral posterior tibial slope, body mass index, and ACL injury risk. Orthopaedic Journal of Sports Medicine, 5(2), 2325967116688664. https://doi.org/10.1177/2325967116688664
  • Butler, D. L., Noyes, F. R., & Grood, E. S. (1980). Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. The Journal of Bone & Joint Surgery, 62(2), 259–270. https://doi.org/10.2106/00004623-198062020-00013
  • Carlson, V. R., Sheehan, F. T., & Boden, B. P. (2016). video analysis of anterior cruciate ligament (ACL) injuries: A systematic review. JBJS Reviews, 4(11), e5. https://doi.org/10.2106/JBJS.RVW.15.00116
  • Carulli, C., Innocenti, M., Roselli, G., Sirleo, L., Matassi, F., & Innocenti, M. (2020). Partial rupture of anterior cruciate ligament: Preliminary experience of selective reconstruction. Journal of Orthopaedics and Traumatology, 21(1), 5. https://doi.org/10.1186/s10195-020-0544-0
  • Chandrashekar, N., Mansouri, H., Slauterbeck, J., & Hashemi, J. (2006). Sex-based differences in the tensile properties of the human anterior cruciate ligament. Journal of Biomechanics, 39(16), 2943–2950. https://doi.org/10.1016/j.jbiomech.2005.10.031
  • Chen, J., Kim, J., Shao, W., Schlecht, S. H., Baek, S. Y., Jones, A. K., Ahn, T., Ashton-Miller, J. A., Banaszak Holl, M. M., & Wojtys, E. M. (2019). An anterior cruciate ligament failure mechanism. The American Journal of Sports Medicine, 47(9), 2067–2076. https://doi.org/10.1177/0363546519854450
  • Chhabra, A., Zelle, B. A., Feng, M. T., & Fu, F. H. (2005). The arthroscopic appearance of a normal anterior cruciate ligament in a posterior cruciate ligament–deficient knee: The Posterolateral Bundle (PLB) Sign. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 21(10), 1267. https://doi.org/10.1016/j.arthro.2005.07.009
  • Christel, P. S., Akgun, U., Yasar, T., Karahan, M., & Demirel, B. (2012). The contribution of each anterior cruciate ligament bundle to the Lachman test: A cadaver investigation. The Journal of Bone and Joint Surgery. British Volume, 94-B(1), 68–74. https://doi.org/10.1302/0301-620X.94B1.26562
  • Critchley, M. L., Davis, D. J., Keener, M. M., Layer, J. S., Wilson, M. A., Zhu, Q., & Dai, B. (2020). The effects of mid-flight whole-body and trunk rotation on landing mechanics: Implications for anterior cruciate ligament injuries. Sports Biomechanics, 19(4), 421–437. https://doi.org/10.1080/14763141.2019.1595704
  • Csapo, R., Juras, V., Heinzle, B., Trattnig, S., & Fink, C. (2020). Compositional MRI of the anterior cruciate ligament of professional alpine ski racers: Preliminary report on seasonal changes and load sensitivity. European Radiology Experimental, 4(1), 64. https://doi.org/10.1186/s41747-020-00191-0
  • Della Villa, F., Buckthorpe, M., Grassi, A., Nabiuzzi, A., Tosarelli, F., Zaffagnini, S., & Della Villa, S. (2020). Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. British Journal of Sports Medicine, 54(23), 1423–1432. https://doi.org/10.1136/bjsports-2019-101247
  • DeMorat, G., Weinhold, P., Blackburn, T., Chudik, S., & Garrett, W. (2004). Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. The American Journal of Sports Medicine, 32(2), 477–483. https://doi.org/10.1177/0363546503258928
  • Draganich, L. F., & Vahey, J. W. (1990). An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. Journal of Orthopaedic Research, 8(1), 57–63. https://doi.org/10.1002/jor.1100080107
  • Duthon, V. B., Barea, C., Abrassart, S., Fasel, J. H., Fritschy, D., & Ménétrey, J. (2006). Anatomy of the anterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 14(3), 204–213. https://doi.org/10.1007/s00167-005-0679-9
  • Elmansori, A., Lording, T., Dumas, R., Elmajri, K., Neyret, P., & Lustig, S. (2017). Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: A comparative MRI study. Knee Surgery, Sports Traumatology, Arthroscopy, 25(5), 1598–1605. https://doi.org/10.1007/s00167-017-4447-4
  • Ferretti, M., Ekdahl, M., Shen, W., & Fu, F. H. (2007). Osseous landmarks of the femoral attachment of the anterior cruciate ligament: An anatomic study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 23(11), 1218–1225. https://doi.org/10.1016/j.arthro.2007.09.008
  • Fleming, B. C., Renstrom, P. A., Beynnon, B. D., Engstrom, B., Peura, G. D., Badger, G. J., & Johnson, R. J. (2001). The effect of weightbearing and external loading on anterior cruciate ligament strain. Journal of Biomechanics, 34(2), 163–170. https://doi.org/10.1016/S0021-9290(00)00154-8
  • Fok, A. W., & Yau, W. P. (2014). Associations between isolated bundle tear of anterior cruciate ligament, time from injury to surgery, and clinical tests. Journal of Orthopaedic Surgery (Hong Kong), 22(2), 209–213. https://doi.org/10.1177/230949901402200219
  • Fujimaki, Y., Thorhauer, E., Sasaki, Y., Smolinski, P., Tashman, S., & Fu, F. H. (2016). Quantitative in situ analysis of the anterior cruciate ligament: Length, midsubstance cross-sectional area, and insertion site areas. The American Journal of Sports Medicine, 44(1), 118–125. https://doi.org/10.1177/0363546515611641
  • Fukubayashi, T., Torzilli, P. A., Sherman, M. F., & Warren, R. F. (1982). An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. The Journal of Bone & Joint Surgery, 64(2), 258–264. https://doi.org/10.2106/00004623-198264020-00018
  • Fukuda, Y., Woo, S. L., Loh, J. C., Tsuda, E., Tang, P., McMahon, P. J., & Debski, R. E. (2003). A quantitative analysis of valgus torque on the ACL: A human cadaveric study. Journal of Orthopaedic Research, 21(6), 1107–1112. https://doi.org/10.1016/S0736-0266(03)00084-6
  • Furman, W., Marshall, J. L., & Girgis, F. G. (1976). The anterior cruciate ligament. A functional analysis based on postmortem studies. The Journal of Bone & Joint Surgery, 58(2), 179–185. https://doi.org/10.2106/00004623-197658020-00003
  • Gabriel, M. T., Wong, E. K., Woo, S. L., Yagi, M., & Debski, R. E. (2004). Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. Journal of Orthopaedic Research, 22(1), 85–89. https://doi.org/10.1016/S0736-0266(03)00133-5
  • Gardner, E. J., Noyes, F. R., Jetter, A. W., Grood, E. S., Harms, S. P., & Levy, M. S. (2015). Effect of anteromedial and posterolateral anterior cruciate ligament bundles on resisting medial and lateral tibiofemoral compartment subluxations. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 31(5), 901–910. https://doi.org/10.1016/j.arthro.2014.12.009
  • Gollehon, D. L., Torzilli, P. A., & Warren, R. F. (1987). The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. The Journal of Bone & Joint Surgery, 69(2), 233–242. https://doi.org/10.2106/00004623-198769020-00010
  • Hame, S. L., Oakes, D. A., & Markolf, K. L. (2002). Injury to the anterior cruciate ligament during alpine skiing: A biomechanical analysis of tibial torque and knee flexion angle. The American Journal of Sports Medicine, 30(4), 537–540. https://doi.org/10.1177/03635465020300041301
  • Hargrave, M. D., Carcia, C. R., Gansneder, B. M., & Shultz, S. J. (2003). Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training, 38(1), 18–23. https://www.ncbi.nlm.nih.gov/pubmed/12937467
  • Hashemi, J., Chandrashekar, N., Mansouri, H., Gill, B., Slauterbeck, J. R., Schutt, R. C., Dabezies, E., & Beynnon, B. D. (2010). Shallow medial tibial plateau and steep medial and lateral tibial slopes: New risk factors for anterior cruciate ligament injuries. The American Journal of Sports Medicine, 38(1), 54–62. https://doi.org/10.1177/0363546509349055
  • Hendrix, S. T., Barrett, A. M., Chrea, B., Replogle, W. H., Hydrick, J. M., & Barrett, G. R. (2017). Relationship between posterior-inferior tibial slope and bilateral noncontact ACL injury. Orthopedics, 40(1), e136–e140. https://doi.org/10.3928/01477447-20161013-06
  • Hershman, E. B., Anderson, R., Bergfeld, J. A., Bradley, J. P., Coughlin, M. J., Johnson, R. J., Spindler, K. P., Wojtys, E., Powell, J. W., Collins, J. T., Casolaro, M. A., Mayer, T., Pellman, E., Tessendorf, W., & Tucker, A. (2012). An analysis of specific lower extremity injury rates on grass and FieldTurf playing surfaces in National Football League games: 2000–2009 seasons. The American Journal of Sports Medicine, 40(10), 2200–2205. https://doi.org/10.1177/0363546512458888
  • Hino, K., Shiraishi, Y., Nishimatsu, K., Kutsuna, T., Watamori, K., Kiyomatsu, H., Ishimaru, Y., Kinoshita, T., Higaki, H., & Miura, H. (2019). In vivo anterior cruciate ligament length pattern assessment secondary to differences in the femoral attachment under loading condition using image-matching techniques. Journal of Orthopaedic Science, 24(2), 294–300. https://doi.org/10.1016/j.jos.2018.09.021
  • Hirokawa, S., Solomonow, M., Lu, Y., Lou, Z.-P., & D’Ambrosia, R. (1992). Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. The American Journal of Sports Medicine, 20(3), 299–306. https://doi.org/10.1177/036354659202000311
  • Hollis, J. M., Takai, S., Adams, D. J., Horibe, S., & Woo, S. L. (1991). The effects of knee motion and external loading on the length of the anterior cruciate ligament (ACL): A kinematic study. Journal of Biomechanical Engineering, 113(2), 208–214. https://doi.org/10.1115/1.2891236
  • Hosseini, A., Gill, T. J., & Li, G. (2009). In vivo anterior cruciate ligament elongation in response to axial tibial loads. Journal of Orthopaedic Science, 14(3), 298–306. https://doi.org/10.1007/s00776-009-1325-z
  • Howard, M., Solaru, S., Kang, H. P., Bolia, I. K., Hatch, G. F. R., Tibone, J. E., Gamradt, S. C., & Weber, A. E. (2020). Epidemiology of anterior cruciate ligament injury on natural grass versus artificial turf in soccer: 10-year data from the National Collegiate Athletic Association injury surveillance system. Orthopaedic Journal of Sports Medicine, 8(7), 2325967120934434. https://doi.org/10.1177/2325967120934434
  • Iriuchishima, T., Ryu, K., Aizawa, S., & Fu, F. H. (2015). Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surgery, Sports Traumatology, Arthroscopy, 23(11), 3157–3162. https://doi.org/10.1007/s00167-014-3139-6
  • Iriuchishima, T., Ryu, K., Aizawa, S., & Fu, F. H. (2016). The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surgery, Sports Traumatology, Arthroscopy, 24(1), 254–259. https://doi.org/10.1007/s00167-014-3373-y
  • Iriuchishima, T., Ryu, K., Yorifuji, H., Aizawa, S., & Fu, F. H. (2014). Commonly used ACL autograft areas do not correlate with the size of the ACL footprint or the femoral condyle. Knee Surgery, Sports Traumatology, Arthroscopy, 22(7), 1573–1579. https://doi.org/10.1007/s00167-013-2595-8
  • Iwahashi, T., Shino, K., Nakata, K., Otsubo, H., Suzuki, T., Amano, H., & Nakamura, N. (2010). Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 26(9), S13–20. https://doi.org/10.1016/j.arthro.2010.01.023
  • Jordan, S. S., DeFrate, L. E., Nha, K. W., Papannagari, R., Gill, T. J., & Li, G. (2007). The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. The American Journal of Sports Medicine, 35(4), 547–554. https://doi.org/10.1177/0363546506295941
  • Kanamori, A., Woo, S. L., Ma, C. B., Zeminski, J., Rudy, T. W., Li, G., & Livesay, G. A. (2000). The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 16(6), 633–639. https://doi.org/10.1053/jars.2000.7682
  • Kanamori, A., Zeminski, J., Rudy, T. W., Li, G., Fu, F. H., & Woo, S. L. (2002). The effect of axial tibial torque on the function of the anterior cruciate ligament: A biomechanical study of a simulated pivot shift test. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 18(4), 394–398. https://doi.org/10.1053/jars.2002.30638
  • Kato, Y., Ingham, S. J., Maeyama, A., Lertwanich, P., Wang, J. H., Mifune, Y., Kramer, S., Smolinski, P., & Fu, F. H. (2012). Biomechanics of the human triple-bundle anterior cruciate ligament. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 28(2), 247–254. https://doi.org/10.1016/j.arthro.2011.07.019
  • Katouda, M., Soejima, T., Kanazawa, T., Tabuchi, K., Yamaki, K., & Nagata, K. (2011). Relationship between thickness of the anteromedial bundle and thickness of the posterolateral bundle in the normal ACL. Knee Surgery, Sports Traumatology, Arthroscopy, 19(8), 1293–1298. https://doi.org/10.1007/s00167-011-1417-0
  • Katz, B. (1939). The relation between force and speed in muscular contraction. The Journal of Physiology, 96(1), 45–64. https://doi.org/10.1113/jphysiol.1939.sp003756
  • Kennedy, J. C., Hawkins, R. J., & Willis, R. B. (1977). Strain gauge analysis of knee ligaments. Clinical Orthopaedics and Related Research, 129(129), 225–229. https://doi.org/10.1097/00003086-197711000-00031
  • Kiapour, A. M., Demetropoulos, C. K., Kiapour, A., Quatman, C. E., Wordeman, S. C., Goel, V. K., & Hewett, T. E. (2016). Strain response of the anterior cruciate ligament to uniplanar and multiplanar loads during simulated landings: Implications for injury mechanism. The American Journal of Sports Medicine, 44(8), 2087–2096. https://doi.org/10.1177/0363546516640499
  • Kiapour, A. M., Kiapour, A., Goel, V. K., Quatman, C. E., Wordeman, S. C., Hewett, T. E., & Demetropoulos, C. K. (2015). Uni-directional coupling between tibiofemoral frontal and axial plane rotation supports valgus collapse mechanism of ACL injury. Journal of Biomechanics, 48(10), 1745–1751. https://doi.org/10.1016/j.jbiomech.2015.05.017
  • Kiapour, A. M., Quatman, C. E., Goel, V. K., Wordeman, S. C., Hewett, T. E., & Demetropoulos, C. K. (2014). Timing sequence of multi-planar knee kinematics revealed by physiologic cadaveric simulation of landing: Implications for ACL injury mechanism. Clinical Biomechanics (Bristol, Avon), 29(1), 75–82. https://doi.org/10.1016/j.clinbiomech.2013.10.017
  • Kittl, C., El-Daou, H., Athwal, K. K., Gupte, C. M., Weiler, A., Williams, A., & Amis, A. A. (2016). The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. The American Journal of Sports Medicine, 44(2), 345–354. https://doi.org/10.1177/0363546515614312
  • Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., Bahr, R., & Krosshaug, T. (2010). Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. The American Journal of Sports Medicine, 38(11), 2218–2225. https://doi.org/10.1177/0363546510373570
  • Koshino, Y., Yamanaka, M., Ezawa, Y., Okunuki, T., Ishida, T., Samukawa, M., & Tohyama, H. (2017). Coupling motion between rearfoot and hip and knee joints during walking and single-leg landing. Journal of Electromyography and Kinesiology, 37, 75–83. https://doi.org/10.1016/j.jelekin.2017.09.004
  • Lalwani, R., Srivastava, R., Kotgirwar, S., & Athavale, S. A. (2020). New insights in anterior cruciate ligament morphology: Implications for anterior cruciate ligament reconstruction surgeries. Anatomy & Cell Biology, 53(4), 398–404. https://doi.org/10.5115/acb.20.119
  • Lambson, R. B., Barnhill, B. S., & Higgins, R. W. (1996). Football cleat design and its effect on anterior cruciate ligament injuries. A three-year prospective study. The American Journal of Sports Medicine, 24(2), 155–159. https://doi.org/10.1177/036354659602400206
  • Lane, J. G., Irby, S. E., Kaufman, K., Rangger, C., & Daniel, D. M. (1994). The anterior cruciate ligament in controlling axial rotation. An evaluation of its effect. The American Journal of Sports Medicine, 22(2), 289–293. https://doi.org/10.1177/036354659402200222
  • LaPrade, R. F., Wentorf, F. A., Fritts, H., Gundry, C., & Hightower, C. D. (2007). A prospective magnetic resonance imaging study of the incidence of posterolateral and multiple ligament injuries in acute knee injuries presenting with a hemarthrosis. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 23(12), 1341–1347. https://doi.org/10.1016/j.arthro.2007.07.024
  • Lee, J. K., Lee, S., Seong, S. C., & Lee, M. C. (2015). Anatomy of the anterior cruciate ligament insertion sites: Comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surgery, Sports Traumatology, Arthroscopy, 23(8), 2297–2305. https://doi.org/10.1007/s00167-014-3041-2
  • Levine, J. W., Kiapour, A. M., Quatman, C. E., Wordeman, S. C., Goel, V. K., Hewett, T. E., & Demetropoulos, C. K. (2013). Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. The American Journal of Sports Medicine, 41(2), 385–395. https://doi.org/10.1177/0363546512465167
  • Li, G., Papannagari, R., DeFrate, L. E., Yoo, J. D., Park, S. E., & Gill, T. J. (2007). The effects of ACL deficiency on mediolateral translation and varus–valgus rotation. Acta Orthopaedica, 78(3), 355–360. https://doi.org/10.1080/17453670710013924
  • Li, G., Rudy, T. W., Allen, C., Sakane, M., & Woo, S. L. (1998). Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior cruciate ligament: A porcine study. Journal of Orthopaedic Research, 16(1), 122–127. https://doi.org/10.1002/jor.1100160121
  • Li, G., Rudy, T. W., Sakane, M., Kanamori, A., Ma, C. B., & Woo, S. L. (1999). The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Journal of Biomechanics, 32(4), 395–400. https://doi.org/10.1016/S0021-9290(98)00181-X
  • Lipke, J. M., Janecki, C. J., Nelson, C. L., McLeod, P., Thompson, C., Thompson, J., & Haynes, D. W. (1981). The role of incompetence of the anterior cruciate and lateral ligaments in anterolateral and anteromedial instability. A biomechanical study of cadaver knees. The Journal of Bone & Joint Surgery, 63(6), 954–960. https://doi.org/10.2106/00004623-198163060-00013
  • Lipps, D. B., Oh, Y. K., Ashton-Miller, J. A., & Wojtys, E. M. (2012). Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. The American Journal of Sports Medicine, 40(1), 32–40. https://doi.org/10.1177/0363546511422325
  • Lipps, D. B., Wojtys, E. M., & Ashton-Miller, J. A. (2013). Anterior cruciate ligament fatigue failures in knees subjected to repeated simulated pivot landings. The American Journal of Sports Medicine, 41(5), 1058–1066. https://doi.org/10.1177/0363546513477836
  • Lo, J., Müller, O., Wünschel, M., Bauer, S., & Wülker, N. (2008). Forces in anterior cruciate ligament during simulated weight-bearing flexion with anterior and internal rotational tibial load. Journal of Biomechanics, 41(9), 1855–1861. https://doi.org/10.1016/j.jbiomech.2008.04.010
  • Lord, B. R., El-Daou, H., Zdanowicz, U., Śmigielski, R., & Amis, A. A. (2019). The role of fibers within the tibial attachment of the anterior cruciate ligament in restraining tibial displacement. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 35(7), 2101–2111. https://doi.org/10.1016/j.arthro.2019.01.058
  • Loughran, G. J., Vulpis, C. T., Murphy, J. P., Weiner, D. A., Svoboda, S. J., Hinton, R. Y., & Milzman, D. P. (2019). Incidence of knee injuries on artificial turf versus natural grass in National Collegiate Athletic Association American football: 2004–2005 through 2013–2014 seasons. The American Journal of Sports Medicine, 47(6), 1294–1301. https://doi.org/10.1177/0363546519833925
  • Luetkemeyer, C. M., Cai, L. Y., Neu, C. P., & Arruda, E. M. (2018). Full-volume displacement mapping of anterior cruciate ligament bundles with dualMRI. Extreme Mechanics Letters, 19, 7–14. https://doi.org/10.1016/j.eml.2017.12.004
  • Luites, J. W., Wymenga, A. B., Blankevoort, L., & Kooloos, J. G. (2007). Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surgery, Sports Traumatology, Arthroscopy, 15(12), 1422–1431. https://doi.org/10.1007/s00167-007-0402-0
  • MacKay, J. W., Whitehead, H., & Toms, A. P. (2014). Radiological evidence for the triple bundle anterior cruciate ligament. Clinical Anatomy, 27(7), 1097–1102. https://doi.org/10.1002/ca.22420
  • Markolf, K., Boguszewski, D., Yamaguchi, K., Lama, C., & McAllister, D. (2018). Prediction of ACL force produced by tibiofemoral compression during controlled knee flexion: A new robotic testing methodology. Journal of Biomechanical Engineering, 140(12), 124503. https://doi.org/10.1115/1.4040775
  • Markolf, K., Yamaguchi, K., Matthew, J., & McAllister, D. (2019). Effects of tibiofemoral compression on ACL forces and knee kinematics under combined knee loads. Journal of Orthopaedic Research, 37(3), 631–639. https://doi.org/10.1002/jor.24233
  • Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A., & Slauterbeck, J. L. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13(6), 930–935. https://doi.org/10.1002/jor.1100130618
  • Markolf, K. L., Gorek, J. F., Kabo, J. M., & Shapiro, M. S. (1990). Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. The Journal of Bone & Joint Surgery, 72(4), 557–567. https://doi.org/10.2106/00004623-199072040-00014
  • Markolf, K. L., Jackson, S. R., Foster, B., & McAllister, D. R. (2014). ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. Journal of Orthopaedic Research, 32(1), 89–95. https://doi.org/10.1002/jor.22476
  • Markolf, K. L., Mensch, J. S., & Amstutz, H. C. (1976). Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. The Journal of Bone & Joint Surgery, 58(5), 583–594. https://doi.org/10.2106/00004623-197658050-00001
  • Markolf, K. L., O’Neill, G., Jackson, S. R., & McAllister, D. R. (2004). Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. The American Journal of Sports Medicine, 32(5), 1144–1149. https://doi.org/10.1177/0363546503262198
  • Markolf, K. L., Park, S., Jackson, S. R., & McAllister, D. R. (2008). Contributions of the posterolateral bundle of the anterior cruciate ligament to anterior-posterior knee laxity and ligament forces. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 24(7), 805–809. https://doi.org/10.1016/j.arthro.2008.02.012
  • Matsumoto, H., Suda, Y., Otani, T., Niki, Y., Seedhom, B. B., & Fujikawa, K. (2001). Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. Journal of Orthopaedic Science, 6(1), 28–32. https://doi.org/10.1007/s007760170021
  • McLean, S. G., Andrish, J. T., & Van den Bogert, A. J. (2005). Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. The American Journal of Sports Medicine, 33(7), 1106; author reply 1106–1107. https://doi.org/10.1177/0363546505278247
  • McLean, S. G., Huang, X., Su, A., & Van den Bogert, A. J. (2004). Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clinical Biomechanics (Bristol, Avon), 19(8), 828–838. https://doi.org/10.1016/j.clinbiomech.2004.06.006
  • McLean, S. G., Lucey, S. M., Rohrer, S., & Brandon, C. (2010). Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clinical Biomechanics (Bristol, Avon), 25(8), 781–788. https://doi.org/10.1016/j.clinbiomech.2010.06.002
  • McLean, S. G., Oh, Y. K., Palmer, M. L., Lucey, S. M., Lucarelli, D. G., Ashton-Miller, J. A., & Wojtys, E. M. (2011). The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. Journal of Bone and Joint Surgery, 93(14), 1310–1317. https://doi.org/10.2106/JBJS.J.00259
  • McQuade, K. J., Crutcher, J. P., Sidles, J. A., & Larson, R. V. (1989). Tibial rotation in anterior cruciate deficient knees: An in vitro study. Journal of Orthopaedic & Sports Physical Therapy, 11(4), 146–149. https://doi.org/10.2519/jospt.1989.11.4.146
  • Meyer, E. G., & Haut, R. C. (2008). Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. Journal of Biomechanics, 41(16), 3377–3383. https://doi.org/10.1016/j.jbiomech.2008.09.023
  • Miyasaka, K. C., Daniel, D. M., Stone, M. L., & Hirschman, P. (1991). The incidence of knee ligament injuries in the general population. American Journal of Knee Surgery, 4, 43–48.
  • Miyasaka, T., Matsumoto, H., Suda, Y., Otani, T., & Toyama, Y. (2002). Coordination of the anterior and posterior cruciate ligaments in constraining the varus–valgus and internal–external rotatory instability of the knee. Journal of Orthopaedic Science, 7(3), 348–353. https://doi.org/10.1007/s007760200058
  • Mochizuki, T., Muneta, T., Nagase, T., Shirasawa, S., Akita, K.-I., & Sekiya, I. (2006). Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(4), 356–361. https://doi.org/10.1016/j.arthro.2005.09.020
  • Mommersteeg, T. J., Huiskes, R., Blankevoort, L., Kooloos, J. G., & Kauer, J. M. (1997). An inverse dynamics modeling approach to determine the restraining function of human knee ligament bundles. Journal of Biomechanics, 30(2), 139–146. https://doi.org/10.1016/S0021-9290(96)00096-6
  • Monaco, E., Ferretti, A., Labianca, L., Maestri, B., Speranza, A., Kelly, M. J., & D’Arrigo, C. (2012). Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surgery, Sports Traumatology, Arthroscopy, 20(5), 870–877. https://doi.org/10.1007/s00167-011-1640-8
  • Monaco, E., Maestri, B., Labianca, L., Speranza, A., Kelly, M. J., D’Arrigo, C., & Ferretti, A. (2010). Navigated knee kinematics after tear of the ACL and its secondary restraints: Preliminary results. Orthopedics, 33(10), 87–93. https://doi.org/10.3928/01477447-20100510-58
  • Montgomery, C., Blackburn, J., Withers, D., Tierney, G., Moran, C., & Simms, C. (2018). Mechanisms of ACL injury in professional rugby union: A systematic video analysis of 36 cases. British Journal of Sports Medicine, 52(15), 994–1001. https://doi.org/10.1136/bjsports-2016-096425
  • Nagano, Y., Ida, H., Akai, M., & Fukubayashi, T. (2007). Gender differences in knee kinematics and muscle activity during single limb drop landing. The Knee, 14(3), 218–223. https://doi.org/10.1016/j.knee.2006.11.008
  • Nielsen, S., Ovesen, J., & Rasmussen, O. (1984). The anterior cruciate ligament of the knee: An experimental study of its importance in rotatory knee instability. Archives of Orthopaedic and Traumatic Surgery, 103(3), 170–174. https://doi.org/10.1007/BF00435549
  • Norwood, L. A., & Cross, M. J. (1979). Anterior cruciate ligament: Functional anatomy of its bundles in rotatory instabilities. The American Journal of Sports Medicine, 7(1), 23–26. https://doi.org/10.1177/036354657900700106
  • Noyes, F. R., Jetter, A. W., Grood, E. S., Harms, S. P., Gardner, E. J., & Levy, M. S. (2015). Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. The American Journal of Sports Medicine, 43(3), 683–692. https://doi.org/10.1177/0363546514561746
  • Ochi, M., Adachi, N., Deie, M., & Kanaya, A. (2006). Anterior cruciate ligament augmentation procedure with a 1-incision technique: Anteromedial bundle or posterolateral bundle reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(4), 463 e461–465. https://doi.org/10.1016/j.arthro.2005.06.034
  • Oh, Y. K., Kreinbrink, J. L., Ashton-Miller, J. A., & Wojtys, E. M. (2011). Effect of ACL transection on internal tibial rotation in an in vitro simulated pivot landing. The Journal of Bone and Joint Surgery-American Volume, 93(4), 372–380. https://doi.org/10.2106/JBJS.J.00262
  • Oh, Y. K., Kreinbrink, J. L., Wojtys, E. M., & Ashton-Miller, J. A. (2012). Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. Journal of Orthopaedic Research, 30(4), 528–534. https://doi.org/10.1002/jor.21572
  • Oh, Y. K., Lipps, D. B., Ashton-Miller, J. A., & Wojtys, E. M. (2012). What strains the anterior cruciate ligament during a pivot landing? The American Journal of Sports Medicine, 40(3), 574–583. https://doi.org/10.1177/0363546511432544
  • Orishimo, K. F., Kremenic, I. J., Pappas, E., Hagins, M., & Liederbach, M. (2009). Comparison of landing biomechanics between male and female professional dancers. The American Journal of Sports Medicine, 37(11), 2187–2193. https://doi.org/10.1177/0363546509339365
  • Pandy, M. G., & Shelburne, K. B. (1997). Dependence of cruciate-ligament loading on muscle forces and external load. Journal of Biomechanics, 30(10), 1015–1024. https://doi.org/10.1016/S0021-9290(97)00070-5
  • Peeler, J., Anderson, J., Piotrowski, S., & Stranges, G. (2017). Motion of the anterior cruciate ligament during internal and external rotation at the knee: A cadaveric study. Clinical Anatomy, 30(7), 861–867. https://doi.org/10.1002/ca.22896
  • Petersen, W., & Zantop, T. (2006). Partial rupture of the anterior cruciate ligament. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(11), 1143–1145. https://doi.org/10.1016/j.arthro.2006.08.017
  • Petersen, W., & Zantop, T. (2007). Anatomy of the anterior cruciate ligament with regard to its two bundles. Clinical Orthopaedics and Related Research, 454, 35–47. https://doi.org/10.1097/BLO.0b013e31802b4a59
  • Pfeifer, C. E., Beattie, P. F., Sacko, R. S., & Hand, A. (2018). Risk factors associated with non-contact anterior cruciate ligament injury: A systematic review. International Journal of Sports Physical Therapy, 13(4), 575–587. https://doi.org/10.26603/ijspt20180575
  • Pflum, M. A., Shelburne, K. B., Torry, M. R., Decker, M. J., & Pandy, M. G. (2004). Model prediction of anterior cruciate ligament force during drop-landings. Medicine & Science in Sports & Exercise, 36(11), 1949–1958. https://doi.org/10.1249/01.MSS.0000145467.79916.46
  • Powers, C. M. (2010). The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. Journal of Orthopaedic & Sports Physical Therapy, 40(2), 42–51. https://doi.org/10.2519/jospt.2010.3337
  • Quiles, C., Constantino, J. A., Gañán, Y., Macías, D., & Quiles, M. (2018). Stereophotogrammetric surface anatomy of the anterior cruciate ligament’s tibial footprint: Precise osseous structure and distances to arthroscopically-relevant landmarks. The Knee, 25(4), 531–544. https://doi.org/10.1016/j.knee.2018.03.016
  • Rahnemai-Azar, A. A., Yaseen, Z., Van Eck, C. F., Irrgang, J. J., Fu, F. H., & Musahl, V. (2016). Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. Journal of Bone and Joint Surgery, 98(12), 1001–1006. https://doi.org/10.2106/JBJS.15.01163
  • Ren, Y., Jacobs, B. J., Nuber, G. W., Koh, J. L., & Zhang, L.-Q. (2010). Developing a 6-DOF robot to investigate multi-axis ACL injuries under valgus loading coupled with tibia internal rotation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 2010, pp. 3942–3945). Buenos Aires, Argentina. https://doi.org/10.1109/IEMBS.2010.5627703
  • Renstrom, P., Ljungqvist, A., Arendt, E., Beynnon, B., Fukubayashi, T., Garrett, W., Georgoulis, T., Hewett, T. E., Johnson, R., Krosshaug, T. and Mandelbaum, B. (2008). Non-contact ACL injuries in female athletes: An International Olympic Committee current concepts statement. British Journal of Sports Medicine, 42(6), 394–412. https://doi.org/10.1136/bjsm.2008.048934
  • Ruiz, N., Filippi, G. J., Gagnière, B., Bowen, M., & Robert, H. E. (2016). The comparative role of the anterior cruciate ligament and anterolateral structures in controlling passive internal rotation of the knee: A biomechanical study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32(6), 1053–1062. https://doi.org/10.1016/j.arthro.2016.02.017
  • Sakane, M., Fox, R. J., Woo, S. L., Livesay, G. A., Li, G., & Fu, F. H. (1997). In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Journal of Orthopaedic Research, 15(2), 285–293. https://doi.org/10.1002/jor.1100150219
  • Sakane, M., Livesay, G. A., Fox, R. J., Rudy, T. W., Runco, T. J., & Woo, S. L. (1999). Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 7(2), 93–97. https://doi.org/10.1007/s001670050128
  • Scheffler, S. U., Maschewski, K., Becker, R., & Asbach, P. (2018). In-vivo three-dimensional MR imaging of the intact anterior cruciate ligament shows a variable insertion pattern of the femoral and tibial footprints. Knee Surgery, Sports Traumatology, Arthroscopy, 26(12), 3667–3672. https://doi.org/10.1007/s00167-018-4939-x
  • Shelburne, K. B., & Pandy, M. G. (1997). A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. Journal of Biomechanics, 30(2), 163–176. https://doi.org/10.1016/S0021-9290(96)00119-4
  • Shin, C. S., Chaudhari, A. M., & Andriacchi, T. P. (2011). Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Medicine & Science in Sports & Exercise, 43(8), 1484–1491. https://doi.org/10.1249/MSS.0b013e31820f8395
  • Shultz, S. J., Schmitz, R. J., Cameron, K. L., Ford, K. R., Grooms, D. R., Lepley, L. K., Myer, G. D., & Pietrosimone, B. (2019). Anterior cruciate ligament research retreat VIII summary statement: An update on injury risk identification and prevention across the anterior cruciate ligament injury continuum, March 14–16, 2019, Greensboro, NC. Journal of Athletic Training, 54(9), 970–984. https://doi.org/10.4085/1062-6050-54.084
  • Siebold, R., Ellert, T., Metz, S., & Metz, J. (2008). Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: Morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—A cadaver study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 24(5), 585–592. https://doi.org/10.1016/j.arthro.2007.12.008
  • Siebold, R., & Fu, F. H. (2008). Assessment and augmentation of symptomatic anteromedial or posterolateral bundle tears of the anterior cruciate ligament. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 24(11), 1289–1298. https://doi.org/10.1016/j.arthro.2008.06.016
  • Simon, R. A., Everhart, J. S., Nagaraja, H. N., & Chaudhari, A. M. (2010). A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. Journal of Biomechanics, 43(9), 1702–1707. https://doi.org/10.1016/j.jbiomech.2010.02.033
  • Skelley, N. W., Castile, R. M., Cannon, P. C., Weber, C. I., Brophy, R. H., & Lake, S. P. (2016). Regional variation in the mechanical and microstructural properties of the human anterior cruciate ligament. The American Journal of Sports Medicine, 44(11), 2892–2899. https://doi.org/10.1177/0363546516654480
  • Skelley, N. W., Castile, R. M., York, T. E., Gruev, V., Lake, S. P., & Brophy, R. H. (2015). Differences in the microstructural properties of the anteromedial and posterolateral bundles of the anterior cruciate ligament. The American Journal of Sports Medicine, 43(4), 928–936. https://doi.org/10.1177/0363546514566192
  • Smeets, K., Jacobs, P., Hertogs, R., Luyckx, J.-P., Innocenti, B., Corten, K., Ekstrand, J., & Bellemans, J. (2012). Torsional injuries of the lower limb: An analysis of the frictional torque between different types of football turf and the shoe outsole. British Journal of Sports Medicine, 46(15), 1078–1083. https://doi.org/10.1136/bjsports-2012-090938
  • Sonnery-Cottet, B., Barth, J., Graveleau, N., Fournier, Y., Hager, J.-P., & Chambat, P. (2009). Arthroscopic identification of isolated tear of the posterolateral bundle of the anterior cruciate ligament. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 25(7), 728–732. https://doi.org/10.1016/j.arthro.2008.12.018
  • Sonnery-Cottet, B., & Colombet, P. (2016). Partial tears of the anterior cruciate ligament. Orthopaedics & Traumatology: Surgery & Research, 102(1), S59–67. https://doi.org/10.1016/j.otsr.2015.06.032
  • Steckel, H., Starman, J. S., Baums, M. H., Klinger, H. M., Schultz, W., & Fu, F. H. (2007). Anatomy of the anterior cruciate ligament double bundle structure: A macroscopic evaluation. Scandinavian Journal of Medicine & Science in Sports, 17(4), 387–392. https://doi.org/10.1111/j.1600-0838.2006.00579.x
  • Stuelcken, M. C., Mellifont, D. B., Gorman, A. D., & Sayers, M. G. (2016). Mechanisms of anterior cruciate ligament injuries in elite women’s netball: A systematic video analysis. Journal of Sports Sciences, 34(16), 1516–1522. https://doi.org/10.1080/02640414.2015.1121285
  • Sturnick, D. R., Vacek, P. M., DeSarno, M. J., Gardner-Morse, M. G., Tourville, T. W., Slauterbeck, J. R., Johnson, R. J., Shultz, S. J., & Beynnon, B. D. (2015). Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. The American Journal of Sports Medicine, 43(4), 839–847. https://doi.org/10.1177/0363546514563277
  • Suruga, M., Horaguchi, T., Iriuchishima, T., Yahagi, Y., Iwama, G., Tokuhashi, Y., & Aizawa, S. (2017). Morphological size evaluation of the mid-substance insertion areas and the fan-like extension fibers in the femoral ACL footprint. Archives of Orthopaedic and Trauma Surgery, 137(8), 1107–1113. https://doi.org/10.1007/s00402-017-2726-7
  • Takahashi, M., Doi, M., Abe, M., Suzuki, D., & Nagano, A. (2006). Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. The American Journal of Sports Medicine, 34(5), 787–792. https://doi.org/10.1177/0363546505282625
  • Takai, S., Woo, S. L., Livesay, G. A., Adams, D. J., & Fu, F. H. (1993). Determination of the in situ loads on the human anterior cruciate ligament. Journal of Orthopaedic Research, 11(5), 686–695. https://doi.org/10.1002/jor.1100110511
  • Tampere, T., Van Hoof, T., Cromheecke, M., Van Der Bracht, H., Chahla, J., Verdonk, P., & Victor, J. (2017). The anterior cruciate ligament: A study on its bony and soft tissue anatomy using novel 3D CT technology. Knee Surgery, Sports Traumatology, Arthroscopy, 25(1), 236–244. https://doi.org/10.1007/s00167-016-4310-z
  • Tamura, A., Akasaka, K., Otsudo, T., Shiozawa, J., Toda, Y., Yamada, K., & McCrory, J. L. (2017). Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing. PLoS One, 12(6), e0179810. https://doi.org/10.1371/journal.pone.0179810
  • Tantisricharoenkul, G., Linde-Rosen, M., Araujo, P., Zhou, J., Smolinski, P., & Fu, F. H. (2014). Anterior cruciate ligament: An anatomical exploration in humans and in a selection of animal species. Knee Surgery, Sports Traumatology, Arthroscopy, 22(5), 961–971. https://doi.org/10.1007/s00167-013-2463-6
  • Tran, T. D., & Tran, Q. L. (2018). A cadaveric study on the anatomy of anterior cruciate ligament in Vietnamese adults. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 14, 22–25. https://doi.org/10.1016/j.asmart.2018.05.001
  • Vasta, S., Andrade, R., Pereira, R., Bastos, R., Battaglia, A. G., Papalia, R., & Espregueira-Mendes, J. (2018). Bone morphology and morphometry of the lateral femoral condyle is a risk factor for ACL injury. Knee Surgery, Sports Traumatology, Arthroscopy, 26(9), 2817–2825. https://doi.org/10.1007/s00167-017-4761-x
  • Waiwaiole, A., Gurbani, A., Motamedi, K., Seeger, L., Sim, M. S., Nwajuaku, P., & Hame, S. L. (2016). Relationship of ACL injury and posterior tibial slope with patient age, sex, and race. Orthopaedic Journal of Sports Medicine, 4(11), 2325967116672852. https://doi.org/10.1177/2325967116672852
  • Walden, M., Krosshaug, T., Bjorneboe, J., Andersen, T. E., Faul, O., & Hagglund, M. (2015). Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. British Journal of Sports Medicine, 49(22), 1452–1460. https://doi.org/10.1136/bjsports-2014-094573
  • Wall, S. J., Rose, D. M., Sutter, E. G., Belkoff, S. M., & Boden, B. P. (2012). The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: A cadaveric study. The American Journal of Sports Medicine, 40(3), 568–573. https://doi.org/10.1177/0363546511430204
  • Wang, D., Kent, R. N., 3rd, Amirtharaj, M. J., Hardy, B. M., Nawabi, D. H., Wickiewicz, T. L., Pearle, A. D., & Imhauser, C. W. (2019). Tibiofemoral kinematics during compressive loading of the ACL-intact and ACL-sectioned knee: Roles of tibial slope, medial eminence volume, and anterior laxity. Journal of Bone and Joint Surgery, 101(12), 1085–1092. https://doi.org/10.2106/JBJS.18.00868
  • Withrow, T. J., Huston, L. J., Wojtys, E. M., & Ashton-Miller, J. A. (2006a). The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clinical Biomechanics, 21(9), 977–983. https://doi.org/10.1016/j.clinbiomech.2006.05.001
  • Withrow, T. J., Huston, L. J., Wojtys, E. M., & Ashton-Miller, J. A. (2006b). The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. The American Journal of Sports Medicine, 34(2), 269–274. https://doi.org/10.1177/0363546505280906
  • Withrow, T. J., Huston, L. J., Wojtys, E. M., & Ashton-Miller, J. A. (2008). Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. The Journal of Bone and Joint Surgery-American Volume, 90(4), 815–823. https://doi.org/10.2106/JBJS.F.01352
  • Wojtys, E. M., Beaulieu, M. L., & Ashton‐Miller, J. A. (2016). New perspectives on ACL injury: On the role of repetitive sub-maximal knee loading in causing ACL fatigue failure. Journal of Orthopaedic Research, 34(12), 2059–2068. https://doi.org/10.1002/jor.23441
  • Wünschel, M., Müller, O., Lo, J., Obloh, C., & Wülker, N. (2010). The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 26(11), 1520–1527. https://doi.org/10.1016/j.arthro.2010.04.069
  • Yadav, S., & Singh, S. (2020). Analysis of partial bundle anterior cruciate ligament tears- diagnosis and management with ACL augmentation. Journal of Clinical Orthopaedics and Trauma, 11(Suppl 3), S337–S341. https://doi.org/10.1016/j.jcot.2019.08.018
  • Yasuda, K., Kondo, E., Ichiyama, H., Kitamura, N., Tanabe, Y., Tohyama, H., & Minami, A. (2004). Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 20(10), 1015–1025. https://doi.org/10.1016/j.arthro.2004.08.010
  • Zantop, T., Brucker, P. U., Vidal, A., Zelle, B. A., & Fu, F. H. (2007). Intraarticular rupture pattern of the ACL. Clinical Orthopaedics and Related Research, 454, 48–53. https://doi.org/10.1097/BLO.0b013e31802ca45b
  • Zantop, T., Herbort, M., Raschke, M. J., Fu, F. H., & Petersen, W. (2007). The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. The American Journal of Sports Medicine, 35(2), 223–227. https://doi.org/10.1177/0363546506294571
  • Zantop, T., Wellmann, M., Fu, F. H., & Petersen, W. (2008). Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: Anatomic and radiographic findings. The American Journal of Sports Medicine, 36(1), 65–72. https://doi.org/10.1177/0363546507308361
  • Zeng, C., Yang, T., Wu, S., Gao, S.-G., Li, H., Deng, Z.-H., Zhang, Y., & Lei, G.-H. (2016). Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surgery, Sports Traumatology, Arthroscopy, 24(3), 830–837. https://doi.org/10.1007/s00167-014-3382-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.