2,388
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Differences in the rotational effect of buoyancy and trunk kinematics between front crawl and backstroke swimming

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1590-1601 | Received 31 Dec 2020, Accepted 20 Apr 2021, Published online: 19 May 2021

References

  • Cohen, R. C., Cleary, P. W., Harrison, S. M., Mason, B. R., & Pease, D. L. (2014). Pitching effects of buoyancy during four competitive swimming strokes. Journal of Applied Biomechanics, 30(5), 609–618. https://doi.org/10.1123/jab.2013-0260
  • De Jesus, K., De Jesus, K., Figueiredo, P., Vilas-boas, J. P., Fernandes, R. J., & Machado, L. J. (2015). Reconstruction accuracy assessment of surface and underwater 3D motion analysis: A new approach. Computational and Mathematical Methods in Medicine, 2015, 1–8. https://doi.org/10.1155/2015/269264
  • Deffeyes, J., & Sanders, R. (2005). Elliptical zone body segment modeling software-Digitising, modeling and body segment parameter calculation. Proceedings of the 23rd international symposium on biomechanics in sports.
  • Figueiredo, P., Sanders, R., Gorski, T., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Kinematic and electromyographic changes during 200 m front crawl at race pace. International Journal of Sports Medicine, 34(1), 49–55. https://doi.org/10.1055/s-0032-1321889
  • Gagnon, M., & Montpetit, R. (1981). Technological development for the measurement of the center of volume in the human body. Journal of Biomechanics, 14(4), 235–241. https://doi.org/10.1016/0021-9290(81)90068-3
  • Gonjo, T., McCabe, C., Coleman, S., Soares, S., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2019). Do swimmers conform to criterion speed during pace-controlled swimming in a 25-m pool using a visual light pacer? Sports Biomechanics / International Society of Biomechanics in Sports, 1–14. https://doi.org/10.1080/14763141.2019.1572781
  • Gonjo, T., McCabe, C., Sousa, A., Ribeiro, J., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2018). Differences in kinematics and energy cost between front crawl and backstroke below the anaerobic threshold. European Journal of Applied Physiology, 118(6), 1107–1118. https://doi.org/10.1007/s00421-018-3841-z
  • Gonjo, T., Narita, K., McCabe, C., Fernandes, R. J., Vilas-Boas, J. P., Takagi, H., & Sanders, R. (2020). Front crawl is more efficient and has smaller active drag than backstroke swimming: kinematic and kinetic comparison between the two Techniques at the same swimming speeds. Frontiers in Bioengineering and Biotechnology, 8, 570657. https://doi.org/10.3389/fbioe.2020.570657
  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70. https://www.jstor.org/stable/4615733
  • Ichikawa, H., Kuriki, A., Taba, S., & Taguchi, M. (2014). Difference of hydrodynamic force on foot between front crawl six-beat and flutter kicking [Paper presentation]. XIIth international symposium for biomechanics and medicine in swimming, Canberra, Australia.
  • Jensen, R. K. (1978). Estimation of the biomechanical properties of three body types using a photogrammetric method. Journal of Biomechanics, 11(8–9), 349–358. https://doi.org/10.1016/0021-9290(78)90069-6
  • Kjendlie, P. L., Stallman, R. K., & Stray-Gundersen, J. (2004). Passive and active floating torque during swimming. European Journal of Applied Physiology, 93(1–2), 75–81. https://doi.org/10.1007/s00421-004-1165-7
  • Lerda, R., & Cardelli, C. (2003). Analysis of stroke organisation in the backstroke as a function of skill. Research Quarterly for Exercise and Sport, 74(2), 215–219. https://doi.org/10.1080/02701367.2003.10609083
  • McCabe, C. B., Sanders, R., & Psycharakis, S. G. (2015). Upper limb kinematic differences between breathing and non-breathing conditions in front crawl sprint swimming. Journal of Biomechanics, 48(15), 3995–4001. https://doi.org/10.1016/j.jbiomech.2015.09.012
  • McLean, S. P., & Hinrichs, R. N. (1998). Sex differences in the centre of buoyancy location of competitive swimmers. Journal of Sports Sciences, 16(4), 373–383. https://doi.org/10.1080/02640419808559365
  • Osborne, J. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research, and Evaluation, 15, Article 12. https://doi.org/10.7275/qbpc-gk17
  • Payton, C. J., & Reid, A. K. (2014). Buoyant (leg-sinking) torque in able-bodied swimmers and swimmers with impaired leg functions [Pape presentation]. XIIth international symposium for biomechanics and medicine in swimming, Canberra, Australia.
  • Pendergast, D. R., Di Prampero, P. E., Craig, A. B., Wilson, D. R., & Rennie, D. W. (1977). Quantitative analysis of the front crawl in men and women. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 43(3), 475–479. https://doi.org/10.1152/jappl.1977.43.3.475
  • Psycharakis, S. G., & Yanai, T. (2018). How does buoyancy affect performance during a 200m maximum front crawl swim? Journal of Sports Sciences, 36(18), 2061–2067. https://doi.org/10.1080/02640414.2018.1436188
  • Rosser-Stanford, B., Backx, K., Lord, R., & Williams, E. M. (2019). Static and dynamic lung volumes in swimmers and their ventilatory response to maximal exercise. Lung, 197(1), 15–19. https://doi.org/10.1007/s00408-018-0175-x
  • Sanders, R., Chiu, C. Y., Gonjo, T., Thow, J., Oliveira, N., Psycharakis, S., Payton, C.J., & McCabe, C. (2015). Reliability of the elliptical zone method of estimating body segment parameters of swimmers. Journal of Sports Science & Medicine, 14(1), 215–224. https://www.jssm.org/jssm-14-215.xml%3EFulltext
  • Sanders, R. H., Gonjo, T., & McCabe, C. B. (2015). Reliability of three-dimensional linear kinematics and kinetics of swimming derived from digitized video at 25 and 50 hz with 10 and 5 frame extensions to the 4 th order butterworth smoothing window. Journal of Sports Science & Medicine, 14(2), 441–451. https://www.jssm.org/jssm-14-441.xml%3EFulltext
  • Sanders, R. H., Gonjo, T., & McCabe, C. B. (2016). Reliability of three-dimensional angular kinematics and kinetics of swimming derived from digitized video. Journal of Sports Science & Medicine, 15(1), 158–166. https://www.jssm.org/jssm-15-158.xml%3EFulltext
  • Watanabe, Y., Wakayoshi, K., & Nomura, T. (2017). New evaluation index for the retainability of a swimmer’s horizontal posture. PLoS One, 12(5), e0177368. https://doi.org/10.1371/journal.pone.0177368
  • Yanai, T. (2001). Rotational effect of buoyancy in frontcrawl: Does it really cause the legs to sink? Journal of Biomechanics, 34(2), 235–243. https://doi.org/10.1016/s0021-9290(00)00186-x
  • Yanai, T. (2003). Stroke frequency in front crawl: Its mechanical link to the fluid forces required in non-propulsive directions. Journal of Biomechanics, 36(1), 53–62. https://doi.org/10.1016/s0021-9290(02)00299-3
  • Yanai, T. (2004). Buoyancy is the primary source of generating bodyroll in front-crawl swimming. Journal of Biomechanics, 37(5), 605–612. https://doi.org/10.1016/j.jbiomech.2003.10.004
  • Zamparo, P., Capelli, C., & Pendergast, D. (2011). Energetics of swimming: A historical perspective. European Journal of Applied Physiology, 111(3), 367–378. https://doi.org/10.1007/s00421-010-1433-7
  • Zamparo, P., Gatta, G., Pendergast, D., & Capelli, C. (2009). Active and passive drag: The role of trunk incline. European Journal of Applied Physiology, 106(2), 195–205. https://doi.org/10.1007/s00421-009-1007-8