754
Views
3
CrossRef citations to date
0
Altmetric
Review Article

How Technique Modifications in Elite 100m Swimmers Might Improve Front Crawl Performances to Podium Levels: Swimming ‘Chariots of Fire’

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1532-1551 | Received 02 Jun 2021, Accepted 19 Oct 2021, Published online: 12 Nov 2021

References

  • Blanco, S. T., de La Fuente Caynzos, B., & Colomina, R. A. (2017). Ventral swimming starts, changes and recent evolution: A systematic review. Retos, 32, 279–288. https://doi.org/10.47197/retos.v0i32.49535
  • Chollet, D., Puel, F., Marinho, D., Ramos, R., Lepretre, P. M., Louvet, B., Komar, J., Chavallard, F., Vantorre, J., Morios, C., Seifert, L., & Vilas-Boas, J. P. (2014). Evaluation of competitive jammers in expert male crawl swimmers. In B. Mason (ed.), Proceedings of the XII International Symposium on Biomechanics and Medicine in Swimming, pp 95–100. Australian Institute of Sports (AIS): Canberra, Australia.
  • Cortesi, M., & Gatta, G. (2015). Effect of swimmer’s head position on passive drag. Journal of Human Kinetics, 49(1), 37–45. https://doi.org/10.1515/hukin-2015-0106
  • Cuenca-Fernandez, F., Lopez-Contreras, G., & Arellano-Colomina, R. (2015). Effect on swimming start performance of two types of activation protocols: Lunge and YoYo squat. Journal of Strength Conditioning Research, 29(3), 647–655. https://doi.org/10.1519/JSC.0000000000000696
  • de Jesus, K., Mourão, L., Roesler, H., Viriato, N., de Jesus, K., Vaz, M., Fernandes, R. J., & Vilas-Boas, J. P. (2019). 3D device for forces in swimming starts and turns. Applied Sciences, 9(17), 3559. https://doi.org/10.3390/app9173559
  • Gatta, G., Zamparo, P., & Cortesi, M. (2013). Effect of swim cap model on passive drag. Journal of Strength and Conditioning Research, 27(10), 2904–2908. https://doi.org/10.1519/JSC.0b013e318280cc3a
  • Koga, D., Gonjo, T., Kawai, E., Tsunokawa, T., Sakai, S., Sengoku, Y., Homma, M., & Takagi, H. (2021). Effects of exceeding stroke frequency of maximal effort on hand kinematics and hand propulsive force in front crawl. Sports Biomechanics 66 , 207–218. https://doi.org/10.1080/14763141.2020.1814852
  • Koga, D., Tsunokawa, T., Sengoku, Y., Homma, M., & Takagi, H. (2021). Relationship between stroke frequency and hand propulsive force in the front crawl, Taiikugaku kenkyu. Japan Journal of Physical Education, Health and Sport Sciences, 66, 207–218. https://doi.org/10.5432/jjpehss.20123
  • Kudo, S., Mastuda, Y., Yanai, T., Sakurai, Y., & Ikuta, Y. (2019). Contribution of upper trunk rotation to hand forward-backward movement and propulsion in front crawl strokes. Human Movement Science, 66, 467–476. https://doi.org/10.1016/j.humov.2019.05.023
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (2000). Net forces during tethered simulation of underwater streamlined gliding and kicking techniques of the freestyle turn. Journal of Sports Science, 18(10), 801–807. https://doi.org/10.1080/026404100419856
  • Marinho, D. A., Barbosa, T. M., Neiva, H. P., Silva, A. J., & Morais, J. E. (2020). Comparison of the start, turn and finish performance of elite swimmers in 100 m and 200 m races. Journal of Sport Science and Medicine, 19(2), 397–407.
  • Marinho, D. A., Mantha, V. R., Vilas-Boas, J. P., Ramos, R. J., Machado, L., Rouboa, A. I., & Silva, A. J. (2012). Effect of wearing a swimsuit on hydrodynamic drag of swimmer. Brazilian Archives of Biology and Technology, 55(6), 851–856. https://doi.org/10.1590/S1516-89132012000600007
  • Marinho, D. A., Willemsen, D., Barbosa, T. M., Silva, A. J., Vilas-Boas, J. P., Neiva, H. P., & Forte, P. 2021. Numerical simulations of a swimmer’s head and cap wearing different types of goggles. Sports Biomechanics, 1–13. https://doi.org/10.1080/14763141.2021.1923793.
  • McCabe, C. B., Psycharakis, S., & Sanders, R. H. (2011). Kinematic differences between front crawl sprint and distance swimmers at sprint pace. Journal of Sports Sciences, 29(2), 115–123. https://doi.org/10.1080/02640414.2010.523090
  • McCabe, C. B., Sanders, R. H., & Psycharakis, S. G. (2015). Upper limb kinematic differences between breathing and non-breathing conditions in front crawl swimming. Journal of Biomechanics, 48(15), 3995–4001. https://doi.org/10.1016/j.jbiomech.2015.09.012
  • McCabe, C. B., & Sanders, R. H. (2012). Kinematic differences between front crawl sprint and distance swimmers at a distance pace. Journal of Sports Sciences, 30(6), 601–608. https://doi.org/10.1080/02640414.2012.660186
  • Naemi, R., Aritan, S., Goodwill, S., Haake, S., & Sanders, R. (2008). Development of immediate feedback software for optimising glide performance and time of initiating post-glide actions. In M. Estivalet & P. Brisson (eds.), The Engineering of Sport 7 (pp. 291–300). Springer.
  • Naemi, R., & Sanders, R. H. (2008). A ‘hydro-kinematic’ method of measuring glide efficiency of a human swimmer. Journal of Biomechanical Engineering, 130(6), 9–16. https://doi.org/10.1115/1.3002764
  • Nakashima, M., Maeda, S., Miwa, T., & Ichikawa, H. (2012). Optimizing simulation of the arm stroke in crawl swimming considering muscle strength characteristics of athlete swimmers. Journal of Biomechanical Science and Engineering, 7(2), 102–117. https://doi.org/10.1299/jbse.7.102
  • Narita, K., Nakashima, M., & Takagi, H. (2018). Effect of leg kick on active drag in front-crawl swimming: Comparison of whole stroke and arms-only stroke during front-crawl and the streamlined position. Journal of Biomechanics, 76, 197–203. https://doi.org/10.1016/j.jbiomech.2018.05.027
  • Nicol, E., Ball, K., & Tor, E. (2021). The biomechanics of freestyle and butterfly turn technique in elite swimmers. Sports Biomechanics 20(4) , . https://doi.org/10.1080/14763141.2018.1561930
  • Papic, C., Andersen, J., Naemi, R., Hodierne, R., & Sanders, R. H. (2021 March). Augmented feedback can change body shape to improve glide efficiency in swimming. Sports Biomechanics, 1–20. https://doi.org/10.1080/14763141.2021.1900355
  • Papic, C., Sinclair, P., Fornusek, C., & Sanders, R. (2019). The effect of auditory stimulus training on swimming start reaction time. Sports Biomechanics, 18(4), 378–389. https://doi.org/10.1080/14763141.2017.1409260
  • Payton, C., Bartlett, R. M., Baltzopoulos, V., & Coombs, R. (1999). Upper extremity kinematics and body roll during preferred-side breathing and breath-holding front crawl swimming. Journal of Sports Sciences, 17(9), 689–696. https://doi.org/10.1080/026404199365551
  • Pereira, S. M., Ruschel, C., Hubert, M., Machado, L., Roesler, H., Fernandes, R. J., & Vilas-Boas, J. P. (2015). Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques. Journal of Sports Sciences, 33(19), 2006–2015. https://doi.org/10.1080/02640414.2015.1026374
  • Peterson Silveira, R., Soares, S., Zacca, R., Alves, F. B., Fernandes, R. J., de Souza Castro, F. A., & Vilas-Boas, J. P. (2019). A biophysical analysis on the arm stroke efficiency in front crawl swimming: Comparing methods and determining the main performance predictors. International Journal of Environmental Research and Public Health, 16(23), 4715. https://doi.org/10.3390/ijerph16234715
  • Peterson Silveira, R., Stergiou, P., Figueiredo, P., Castro, F. A. S., Katz, L., & Stefanyshyn, D. J. (2018). Key determinants of time to 5m in different ventral swimming start techniques. European Journal of Sport Science, 18(10), 1317–1326. https://doi.org/10.1080/17461391.2018.1486460
  • Psycharakis, S. G., & Sanders, R. H. (2008). Shoulder and hip roll changes during 200-m front crawl swimming. Medicine and Science in Sport and Exercise, 40(12), 2129–2136. https://doi.org/10.1249/MSS.0b013e31818160bc
  • Sanders, R., Andersen, J., & Takagi, H. (2017). The segmental movements in front crawl swimming. In B. Muller, and S. I. Wolf (eds.), Handbook of human motion (pp. 1703–1717)). Springer International Publishing.
  • Sato, Y., & Hino, T. (2013). A computational fluid dynamics analysis of hydrodynamic force acting on a swimmer’s hand in a swimming competition. Journal of Sports Science and Medicine, 12(4), 679–689.
  • Shimojo, H., Gonjo, T., Sakakibara, J., Sengoku, Y., Sanders, R., & Takagi, H. (2019). A quasi three-dimensional visualization of unsteady wake flow in human undulatory swimming. Journal of Biomechanics, 93, 60–69. https://doi.org/10.1016/j.jbiomech.2019.06.013
  • Shimojo, H., Sengoku, Y., Miyoshi, T., Tsubakimoto, S., & Takagi, H. (2014). Effect of imposing changes in kick frequency on kinematics during undulatory underwater swimming at maximal effort in male swimmers. Human Movement Science, 38, 94–105. https://doi.org/10.1016/j.humov.2014.09.001
  • Suito, H., Ikegami, Y., Nunome, H., Sano, S., Shinkai, H., & Tsujimoto, N. (2008). The effect of fatigue on the underwater arm stroke motion in the 100-m front crawl. Journal of Applied Biomechanics, 24(4), 316–324. https://doi.org/10.1123/jab.24.4.316
  • Takagi, H., Nakashima, M., Ozaki, T., & Matsuuchi, K. (2014). Unsteady hydrodynamic forces acting on a robotic arm and its flow field: Application to the crawl stroke. Journal of Biomechanics, 47(6), 1401–1408. https://doi.org/10.1016/j.jbiomech.2014.01.046
  • Takagi, H., Nakashima, M., Sato, Y., Matsuuchi, K., & Sanders, R. H. (2016). Numerical and experimental investigations of human swimming motions. Journal of Sports Sciences, 34(16), 1564–1580. https://doi.org/10.1080/02640414.2015.1123284
  • Takeda, T., Sakai, S., & Takagi, H. (2020). Underwater flutter kicking causes deceleration in start and turn segments of front crawl. Sports Biomechanics, 1–10. https://doi.org/10.1080/14763141.2020.1747528
  • Taladriz, S., de La Fuente-caynzos, B., & Arellano, R. (2016). Analysis of angular momentum effect on swimming kick-start performance. Journal of Biomechanics, 49(9), 1789–1793. https://doi.org/10.1016/j.jbiomech.2016.04.012
  • Thow, J. L., Naemi, R., & Sanders, R. H. (2012). Comparison of modes of feedback on glide performance in swimming. Journal of Sports Sciences, 30(1), 43–52. https://doi.org/10.1080/02640414.2011.624537
  • Tor, E., Pease, D. L., & Ball, K. A. (2014a). Characteristics of an elite swimming start. Paper presented at the Biomechanics and Medicine in Swimming Conference, Australian Institute of Sport Publishers, Canberra.
  • Tor, E., Pease, D. L., & Ball, K. A. (2015a). Do Swimmers always perform better using their preferred technique? Paper presented at the International Conference of Biomechanics in Sports, University of Poitiers Publishers, Poitiers, France.
  • Tor, E., Pease, D. L., & Ball, K. A. (2014b). Comparing three underwater trajectories of the swimming start. Journal of Science and Medicine in Sport, 18(6), 725–729. https://doi.org/10.1016/j.jsams.2014.10.005
  • Tor, E., Pease, D. L., & Ball, K. A. (2015b). How does drag affect the underwater phase of a swimming start? Journal of Applied Biomechanics, 31(1), 8–12. https://doi.org/10.1123/jab.2014-0081
  • Tsunokawa, T., Mankyu, H., Takagi, H., & Ogita, F. (2019). The effect of using paddles on hand propulsive forces and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities. Human Movement Science, 64, 378–388. https://doi.org/10.1016/j.humov.2019.03.007
  • Van Dijk, M. P., Beek, P. J., & van Soest, A. J. K. (2020). Predicting dive start performance from kinematic variables at water entry in (sub-) elite swimmers. PLoS ONE, 15(October), e0241345. https://doi.org/10.1371/journal.pone.0241345
  • Vilas-Boas, J. P., Cruz, M. J., Sousa, F., Conceição, F., Fernandes, R., & Carvalho, J. M. (2003). Biomechanical analysis of ventral swimming starts: Comparison of the grab start with two track-start techniques. In J. C. Chatard (Ed.), Biomechanics and Medicine in Swimming IX (pp. 249–254). Publications de L’Université de Saint-Étienne.
  • Vilas-Boas, J. P., Ramos, R. J., Fernandes, R., Silva, A. J., Rouboa, A. I., Machado, L., Barbosa, T. M., & Marinho, D. (2015). Hydrodynamic analysis of different finger positions in swimming: A computational fluid dynamics approach. Journal of Applied Biomechanics, 31(1), 48–55. https://doi.org/10.1123/JAB.2013-0296
  • Yamakawa, K. K., Shimojo, H., Takagi, H., Tsubakimoto, S., & Sengoku, Y. (2017). Effect of increased kick frequency on propelling efficiency and muscular co-activation during underwater dolphin kick. Human Movement Science, 54, 276–286. https://doi.org/10.1016/j.humov.2017.06.002
  • Yanai, T. (2001). Rotational effect of buoyancy in front crawl: Does it really cause the legs to sink? Journal of Biomechanics, 34(2), 235–243. https://doi.org/10.1016/S0021-9290(00)00186-X
  • Zacca, R., Mezêncio, B., Castro, F., Nakamura, F., Pyne, D., Vilas-Boas, J. P., & Fernandes, R. J. (2021). Case study: Comparison of swimsuits and wetsuits through biomechanics and energetics in elite female open water swimmers. International Journal of Sports Physiology and Performance, 1–7. https://doi.org/10.1123/ijspp.2021-0044
  • Zamparo, P., Cortesi, M., & Gatta, G. (2020). The energy cost of swimming and its determinants. European Journal of Applied Physiology, 120(1), 41–66. https://doi.org/10.1007/s00421-019-04270-y
  • Zamparo, P., Turri, E., Peterson Silveira, R., & Polli, A. (2014). The interplay between arms-only propelling efficiency, power output and speed in master swimmers. European Journal of Applied Physiology, 114(6), 1259–1268. https://doi.org/10.1007/s00421-014-2860-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.