428
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modeling and predicting the backstroke to breaststroke turns performance in age-group swimmers

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1700-1721 | Received 05 Jan 2021, Accepted 06 Nov 2021, Published online: 15 Dec 2021

References

  • Araujo, L., Pereira, S., Gatti, R., Freitas, E., Jacomel, G., Roesler, H., & Villas-Boas, J. (2010). Analysis of the lateral push-off in the freestyle flip turn. Journal of Sports Sciences, 28(11), 1175–1181. https://doi.org/10.1080/02640414.2010.485207
  • Barbosa, T. M., Bragada, J. A., Reis, V. M., Marinho, D. A., Carvalho, C., & Silva, A. J. (2010). Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. Journal of Science and Medicine in Sport, 13(2), 262–269. https://doi.org/10.1016/j.jsams.2009.01.003
  • Blanksby, B. A., Simpson, J. R., Elliott, B. C., & McElroy, K. (1998). Biomechanical factors influencing breaststroke turns by age-group swimmers. Journal of Applied Biomechanics, 14(2), 180–189. https://doi.org/10.1123/jab.14.2.180
  • Blanksby, B., Gathercole, D., & Marshall, R. (1996). Force plate and video analysis of the tumble turn by age-group swimmers. Journal of Swimming Research, 11(fall) , 40–45.
  • Blanksby, B., Skender, S., Elliott, B., McElroy, K., & Landers, G. (2004). An analysis of the rollover backstroke turn by age‐group swimmers. Sports Biomechanics, 3(1), 1–14. https://doi.org/10.1080/14763140408522826
  • Carrard, J., Kloucek, P., & Gojanovic, B. (2020). Modelling training adaptation in swimming using artificial neural network geometric optimisation. Sports, 8(1), 8. https://doi.org/10.3390/sports8010008
  • Chainok, P., Machado, L., De Jesus, K., Abraldes, J. A., Borgonovo-Santos, M., Fernandes, R. J., & Vilas-Boas, J. P. (2021). Backstroke to breaststroke turning performance in age-group swimmers: Hydrodynamic characteristics and pull-out strategy. International Journal of Environmental Research and Public Health, 18(4), 1858. https://doi.org/10.3390/ijerph18041858
  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system [Paper presentation. The proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, CA, USA, August 13-17].
  • Chow, J. W., & Knudson, D. V. (2011). Use of deterministic models in sports and exercise biomechanics research. Sports Biomechanics, 10(3), 219–233. https://doi.org/10.1080/14763141.2011.592212
  • Costa, L., Mantha, V., Silva, A., Fernandes, R. J., Marinho, D., Vilas-Boas, J. P., Machado, L., & Rouboa, A. (2015). Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions. Journal of Biomechanics, 48(10), 2221–2226. https://doi.org/10.1016/j.jbiomech.2015.03.005
  • Costa, M. J., Bragada, J. A., Marinho, D. A., Lopes, V. P., Silva, A. J., & Barbosa, T. M. (2013). Longitudinal study in male swimmers: A hierarchical modeling of energetics and biomechanical contributions for performance. Journal of Sports Science & Medicine, 12(4), 614.
  • De Jesus, K., Ayala, H. V., De Jesus, K., Coelho, L. D. S., Medeiros, A. I., Abraldes, J. A., & Vilas-Boas, J. P. (2018). Modelling and predicting backstroke start performance using non-linear and linear models. Journal of Human Kinetics, 61(1), 29–38. https://doi.org/10.1515/hukin-2017-0133
  • De Jesus, K., Mourão, L., Roesler, H., Viriato, N., De Jesus, K., Vaz, M., Fernandes, R. J., & Vilas-Boas, J. P. (2019). 3D device for forces in swimming starts and turns. Applied Sciences, 9(17), 3559. https://doi.org/10.3390/app9173559
  • Edelmann-Nusser, J., Hohmann, A., & Henneberg, B. (2002). Modeling and prediction of competitive performance in swimming upon neural networks. European Journal of Sport Science, 2(2), 1–10. https://doi.org/10.1080/17461390200072201
  • Fischer, S., & Kibele, A. (2016). The biomechanical structure of swim start performance. Sports Biomechanics, 15(4), 397–408. https://doi.org/10.1080/14763141.2016.1171893
  • Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224. https://doi.org/10.3200/JMBR.36.2.212-224
  • Havriluk, R. (2005). Performance level differences in swimming: A meta-analysis of passive drag force. Research Quarterly for Exercise and Sport, 76(2), 112–118. https://doi.org/10.1080/02701367.2005.10599273
  • Heazlewood, T. (2006). Prediction versus reality: The use of mathematical models to predict elite performance in swimming and athletics at the Olympic Games. Journal of Sports Science & Medicine, 5(4), 480–487.
  • Hellard, P., Dekerle, J., Avalos, M., Caudal, N., Knopp, M., & Hausswirth, C. (2008). Kinematic measures and stroke rate variability in elite female 200-m swimmers in the four swimming techniques: Athens 2004 Olympic semi-finalists and French National 2004 Championship semi-finalists. Journal of Sports Sciences, 26(1), 35–46. https://doi.org/10.1080/02640410701332515
  • Jovanovic, M. (2019). Statistical modelling for sports scientists: Practical introduction using R (part 1). SportRxiv. doi:10.31236/osf.io/dnq3.
  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (Vol. 5). McGraw-Hill Irwin Boston.
  • Ling, B., Blanksby, B., & Elliot, B. (2004). Force-time characteristics of the butterfly turns by age-group swimmers. Journal of Human Movement Studies, 47(5), 429–451.
  • Maneiro, R., Casal, C. A., Ardá, A., & Losada, J. L. (2019). Application of multivariant decision tree technique in high performance football: The female and male corner kick. PLoS One, 14(3), e0212549. https://doi.org/10.1371/journal.pone.0212549
  • Marinho, D. A., Barbosa, T. M., Neiva, H. P., Silva, A. J., & Morais, J. E. (2020). Comparison of the start, turn and finish performance of elite swimmers in 100 m and 200 m races. Journal of Sports Science & Medicine, 19(2), 397–407.
  • Maszczyk, A., Roczniok, R., Czuba, M., Zajαc, A., Waśkiewicz, Z., Mikołajec, K., & Stanula, A. (2012). Application of regression and neural models to predict competitive swimming performance. Perceptual and Motor Skills, 114(2), 610–626. https://doi.org/10.2466/05.10.PMS.114.2.610-626
  • McGibbon, K. E., Pyne, D., Shephard, M., & Thompson, K. (2018). Pacing in swimming: A systematic review. Sports Medicine, 48(7), 1621–1633. https://doi.org/10.1007/s40279-018-0901-9
  • Morais, J. E., Jesus, S., Lopes, V., Garrido, N., Silva, A., Marinho, D., & Barbosa, T. M. (2012). Linking selected kinematic, anthropometric and hydrodynamic variables to young swimmer performance. Pediatric Exercise Science, 24(4), 649–664. https://doi.org/10.1123/pes.24.4.649
  • Morais, J. E., Marques, M. C., Marinho, D. A., Silva, A. J., & Barbosa, T. M. (2014). Longitudinal modeling in sports: Young swimmers’ performance and biomechanics profile. Human Movement Science, 37(2014), 111–122. https://doi.org/10.1016/j.humov.2014.07.005
  • Mourão, L., De Jesus, K., Viriato, N., Fernandes, R. J., Vilas-Boas, J. P., & Vaz, M. A. (2016). Design and construction of a 3D force plate prototype for developing an instrumented swimming start block. Journal of Biomedical Engineering and Informatics, 2(2), 99. https://doi.org/10.5430/jbei.v2n2p99
  • Naemi, R., Easson, W. J., & Sanders, R. H. (2010). Hydrodynamic glide efficiency in swimming. Journal of Science and Medicine in Sport, 13(4), 444–451. https://doi.org/10.1016/j.jsams.2009.04.009
  • Nicol, E., Ball, K., & Tor, E. (2019). The biomechanics of freestyle and butterfly turn technique in elite swimmers. Sports biomechanics, 20(4) , 444–457. https://doi.org/10.1080/14763141.2018.1561930
  • Pereira, S. M., Ruschel, C., Hubert, M., Machado, L., Roesler, H., Fernandes, R. J., & Vilas-Boas, J. P. (2015). Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques. Journal of Sports Sciences, 33(19), 2006–2015. https://doi.org/10.1080/02640414.2015.1026374
  • Peterson Silveira, R., Stergiou, P., Figueiredo, P., Castro, F. d. S., Katz, L., & Stefanyshyn, D. J. (2018). Key determinants of time to 5 m in different ventral swimming start techniques. European Journal of Sport Science, 18(10), 1317–1326.
  • Prins, J. H., & Patz, A. (2006). The influence of tuck index, depth of foot-plant, and wall contact time on the velocity of push-off in the freestyle flip turn. Portuguese Journal of Sport Sciences, 6(2), 82–85.
  • Puel, F., Morlier, J., Avalos, M., Mesnard, M., Cid, M., & Hellard, P. (2012). 3D kinematic and dynamic analysis of the front crawl tumble turn in elite male swimmers. Journal of Biomechanics, 45(3), 510–515. https://doi.org/10.1016/j.jbiomech.2011.11.043
  • Saavedra, J. M., Escalante, Y., García-Hermoso, A., Arellano, R., & Navarro, F. (2012). A twelve-year analysis of pacing strategies in 200 m and 400 m individual medley in international swimming competitions. Journal of Strength and Conditioning Research, 26(12), 3289–3296. https://doi.org/10.1519/JSC.0b013e318248aed5
  • Seifert, L., Boulesteix, L., Carter, M., & Chollet, D. (2005). The spatial-temporal and coordinative structures in elite male 100-m front crawl swimmers. International Journal of Sports Medicine, 26(4), 286–293. https://doi.org/10.1055/s-2004-821010
  • Silva, A. J., Costa, A. M., Oliveira, P. M., Reis, V. M., Saavedra, J., Perl, J., & Marinho, D. A. (2007). The use of neural network technology to model swimming performance. Journal of Sports Science & Medicine, 6(1), 117–125.
  • Stanula, A., Maszczyk, A., Roczniok, R., Pietraszewski, P., Ostrowski, A., Zając, A., & Strzała, M. (2012). The development and prediction of athletic performance in freestyle swimming. Journal of Human Kinetics, 32(2012), 97–107. https://doi.org/10.2478/v10078-012-0027-3
  • Termin, B., & Pendergast, D. R. (1998). How to optimize performance. Swim Technique, 34(4), 41–46.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1016/j.compbiomed.2017.01.0112
  • Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., & Tischer, T. (2021). Machine learning methods in sport injury prediction and prevention: A systematic review. Journal of Experimental Orthopaedics, 8(1), 1–15. https://doi.org/10.1186/s40634-021-00346-x
  • Vilas-Boas, J. P., Costa, L., Fernandes, R. J., Ribeiro, J., Figueiredo, P., Marinho, D., Silva, A. J., Rouboa, A., & Machado, L. (2010). Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke. Journal of Applied Biomechanics, 26(3), 324–331. https://doi.org/10.1123/jab.26.3.324
  • Webster, J., West, A., Conway, P., & Cain, M. (2011). Development of a pressure sensor for swimming turns. Procedia Engineering, 13, 126–132. https://doi.org/10.1016/j.proeng.2011.05.062
  • Wei, S., Huang, P., Li, R., Liu, Z., & Zou, Y. (2021). Exploring the application of artificial intelligence in sports training: A case study approach. Complexity, 2021(8), 1–8. https://doi.org/10.1155/2021/4658937
  • Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393
  • Zamparo, P., Dall’Ora, A., Toneatto, A., Cortesi, M., & Gatta, G. (2012). The determinants of performance in master swimmers: A cross-sectional study on the age-related changes in propelling efficiency, hydrodynamic position and energy cost of front crawl. European Journal of Applied Physiology, 112(12), 3949–3957. https://doi.org/10.1007/s00421-012-2376-y
  • Zhang, W., Wu, C., Li, Y., Wang, L., & Samui, P. (2021). Assessment of pile drivability using random forest regression and multivariate adaptive regression splines. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15(1), 27–40. https://doi.org/10.1080/17499518.2019.1674340

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.