2,049
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The role of stroke rate and intensity on rowing technique

ORCID Icon, , & ORCID Icon
Received 23 Mar 2022, Accepted 07 Oct 2022, Published online: 27 Oct 2022

References

  • Attenborough, A. S., Smith, R. M., & Sinclair, P. J. (2012). Effect of gender and stroke rate on joint power characteristics of the upper extremity during simulated rowing. Journal of Sports Sciences, 30(5), 449–458. https://doi.org/10.1080/02640414.2011.616949
  • Bobbert, M. F., & van Soest, A. J. (2001). Why do people jump the way they do? Exercise and Sport Sciences Reviews, 29(3), 95–102. https://doi.org/10.1097/00003677-200107000-00002
  • Danielsen, J., Sandbakk, O., McGhie, D., & Ettema, G. (2019). Mechanical energetics and dynamics of uphill double-poling on roller-skis at different incline-speed combinations. Plos One, 14(2), e0212500. https://doi.org/10.1371/journal.pone.0212500
  • de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. Journal of Biomechanics, 29(9), 1223–1230. https://doi.org/10.1016/0021-9290(95)00178-6
  • Elftman, H. (1939). Forces and energy changes in the leg during walking. The American Journal of Physiology, 125(2), 339–356. https://doi.org/10.1152/ajplegacy.1939.125.2.339
  • Elliott, B., Lyttle, A., & Birkett, O. (2002). Rowing. Sports Biomechanics, 1(2), 123–134. https://doi.org/10.1080/14763140208522791
  • Ettema, G., & Lorås, H. W. (2009). Efficiency in cycling: A review. European Journal of Applied Physiology, 106(1), 1–14. https://doi.org/10.1007/s00421-009-1008-7
  • Gorman, A. J., Willmott, A. P., & Mullineaux, D. R. (2021). The effects of concurrent biomechanical biofeedback on rowing performance at different stroke rates. Journal of Sports Sciences, 39(23), 2716–2726. https://doi.org/10.1080/02640414.2021.1954349
  • Greene, A. J., Sinclair, P. J., Dickson, M. H., Colloud, F., & Smith, R. M. (2009). Relative shank to thigh length is associated with different mechanisms of power production during elite male ergometer rowing. Sports Biomechanics, 8(4), 302–317. https://doi.org/10.1080/14763140903414391
  • Greene, A. J., Sinclair, P. J., Dickson, M. H., Colloud, F., & Smith, R. M. (2013). The effect of ergometer design on rowing stroke mechanics. Scandinavian Journal of Medicine & Science in Sports, 23(4), 468–477. https://doi.org/10.1111/j.1600-0838.2011.01404.x
  • Gregor, R. J., Cavanagh, P. R., & LaFortune, M. (1985). Knee flexor moments during propulsion in cycling—A creative solution to Lombard’s Paradox. Journal of Biomechanics, 18(5), 307–316. https://doi.org/10.1016/0021-9290(85)90286-6
  • Held, S., Siebert, T., & Donath, L. (2020). Changes in mechanical power output in rowing by varying stroke rate and gearing. European Journal of Sport Science, 20(3), 357–365. https://doi.org/10.1080/17461391.2019.1628308
  • Hofmijster, M. J., Landman, E. H., Smith, R. M., & Van Soest, K. (2007). Effect of stroke rate on the distribution of net mechanical power in rowing. Journal of Sports Sciences, 25(4), 403–411. https://doi.org/10.1080/02640410600718046
  • Hofmijster, M. J., Van Soest, A. J., & De Koning, J. J. (2008). Rowing skill affects power loss on a modified rowing ergometer. Medicine and Science in Sports and Exercise, 40(6), 1101–1110. https://doi.org/10.1249/MSS.0b013e3181668671
  • Hofmijster, M. J., Van Soest, A. J., & De Koning, J. J. (2009). Gross efficiency during rowing is not affected by stroke rate. Medicine and Science in Sports and Exercise, 41(5), 1088–1095. https://doi.org/10.1249/MSS.0b013e3181912272
  • Holsgaard Larsen, A., & Jensen, K. (2010). Ergometer rowing with and without slides. International Journal of Sports Medicine, 31(12), 870–874. https://doi.org/10.1055/s-0030-1265148
  • Holt, A. C., Ball, K., Siegel, R., Hopkins, W. G., & Aughey, R. J. (2021). Relationships between measures of boat acceleration and performance in rowing, with and without controlling for stroke rate and power output. Plos One, 16(8), e0249122. https://doi.org/10.1371/journal.pone.0249122
  • Ingham, S. A., Whyte, G. P., Jones, K., & Nevill, A. M. (2002). Determinants of 2,000 m rowing ergometer performance in elite rowers. European Journal of Applied Physiology, 88(3), 243–246. https://doi.org/10.1007/s00421-002-0699-9
  • Martin, J. C., & Nichols, J. A. (2018). Simulated work loops predict maximal human cycling power. The Journal of Experimental Biology, 221, 13. https://doi.org/10.1242/jeb.180109
  • McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). Abandon Statistical Significance. The American Statistician, 73(sup1), 235–245. https://doi.org/10.1080/00031305.2018.1527253
  • Pataky, T. C., Robinson, M. A., & Vanrenterghem, J. (2013). Vector field statistical analysis of kinematic and force trajectories. Journal of Biomechanics, 46(14), 2394–2401. https://doi.org/10.1016/j.jbiomech.2013.07.031
  • Peronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: An update. Canadian Journal Sport Science, 16(1), 23–29.
  • Schache, A. G., Dorn, T. W., Williams, G. P., Brown, N. A. T., & Pandy, M. G. (2014). Lower-limb muscular strategies for increasing running speed. The Journal of Orthopaedic and Sports Physical Therapy, 44(10), 813–824. https://doi.org/10.2519/jospt.2014.5433
  • Tomiak, T., Gorkovenko, A. V., Mishchenko, V. S., Korol, A., Bulinski, P., Vereschaka, I. V., Tal’nov, A. N., & Vasilenko, D. A. (2016). Control of the power of strokes and muscle activities in cyclic rowing movements (a research using rowing simulators). Neurophysiology, 48(4), 297–311. https://doi.org/10.1007/s11062-016-9602-x
  • van Ingen Schenau, G. J., Boots, P. J., de Groot, G., Snackers, R. J., & van Woensel, W. W. (1992). The constrained control of force and position in multi-joint movements. Neuroscience, 46(1), 197–207. https://doi.org/10.1016/0306-4522(92)90019-X
  • van Ingen Schenau, G. J., & Cavanagh, P. R. (1990). Power equations in endurance sports. Journal of Biomechanics, 23(9), 865–881. https://doi.org/10.1016/0021-9290(90)90352-4