1,756
Views
0
CrossRef citations to date
0
Altmetric
Review

Bridging the lab-to-field gap using machine learning: a narrative review

ORCID Icon
Received 13 Dec 2022, Accepted 03 Apr 2023, Published online: 18 Apr 2023

References

  • Aljaaf, A. J., Hussain, A. J., Fergus, P., Przybyla, A., & Barton, G. J. (2016, October). Evaluation of machine learning methods to predict knee loading from the movement of body segments, Vol. 2016, 5168–5173.
  • Argent, R., Drummond, S., Remus, A., O’Reilly, M., & Caulfield, B. (2019). Evaluating the use of machine learning in the assessment of joint angle using a single inertial sensor. Journal of Rehabilitation and Assistive Technologies Engineering, 6, 1–10. http://journals.sagepub.com/doi/10.1177/2055668319868544
  • Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H., Schultz, T., & Gamboa, H. (2020). TSFEL: Time series feature extraction library. SoftwareX, 11, 100456.
  • Belacel, N., Wei, G., & Bouslimani, Y. (2020). The K closest resemblance classifier for amazon products recommender system (Vol. 2). SciTePress.
  • Bicer, M., Phillips, A. T., Melis, A., McGregor, A. H., & Modenese, L. (2022). Generative deep learning applied to biomechanics: A new augmentation technique for motion capture datasets. Journal of Biomechanics, 144, 111301. https://doi.org/10.1016/j.jbiomech.2022.111301
  • Brunner, T., Lauffenburger, J. P., Changey, S., & Basset, M. (2015). Magnetometer-augmented IMU simulator: In-depth elaboration. Sensors, 15(3), 5293–5310. https://doi.org/10.3390/s150305293
  • Bullock, G. S., Hughes, T., Arundale, A. H., Ward, P., Collins, G. S., & Kluzek, S. (2022). Black box prediction methods in sports medicine deserve a red card for reckless practice: A change of tactics is needed to advance athlete care. Sports Medicine, 52(8), 1729–1735.
  • Camargo, J., Molinaro, D., & Young, A. (2022). Predicting biological joint moment during multiple ambulation tasks. Journal of Biomechanics, 134, 111020. https://doi.org/10.1016/j.jbiomech.2022.111020
  • Cao, L., Chen, Y., Zhang, Z., & Gui, N. (2021). A multi-attention-based supervised feature selection method for multivariate time series. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/6911192
  • Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2019). OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2019.2929257
  • Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time series feature extraction on basis of scalable hypothesis tests (tsfresh – a python package). Neurocomputing, 307, 72–77. https://doi.org/10.1016/j.neucom.2018.03.067
  • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303–314. https://doi.org/10.1007/BF02551274
  • Deng, J., Dong, W., Socher, R., Li, J., Li, K., & Fei-Fei, L. ImageNet: A large-scale hierarchical image database, In 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009 (pp. 248–255), https://doi.org/10.1109/CVPR.2009.5206848.
  • Dindorf, C., Bartaguiz, E., Gassmann, F., & Frӧhlich, M. (2023). Conceptual structure and current trends in artificial intelligence, machine learning, and deep learning research in sports: A bibliometric review. International Journal of Environmental Research and Public Health, 20. https://doi.org/10.3390/ijerph20010173
  • Dindorf, C., Konradi, J., Wolf, C., Taetz, B., Bleser, G., Huthwelker, J., Drees, P., Fröhlich, M., & Betz, U. (2021). General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait. Computer Methods in Biomechanics and Biomedical Engineering, 24(3), 299–307. https://doi.org/10.1080/10255842.2020.1828375
  • Dorschky, E., Nitschke, M., Martindale, C. F., van den Bogert, A. J., Koelewijn, A. D., & Eskofier, B. (2020). CNN-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data. Frontiers in Bioengineering and Biotechnology, 8, 1–14. https://doi.org/10.3389/fbioe.2020.00604
  • F. Labs. (2022). Featuretools: Automated feature engineering. Retrieved October 27, 2022, from https://www.featuretools.com/
  • G. Ltd. (2023). Training load. https://www.garmin.com/en-AU/garmin-technology/cycling-science/physiological-measurements/training-load/
  • Goodfellow, I., Bengio, Y., & Courville, A. (1997). Deep learning. MIT Press. http://www.deeplearningbook.org
  • Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duckworth, D., Fleet, D. J., Gnanapragasam, D., Golemo, F., Herrmann, C., Kipf, T., Kundu, A., Lagun, D., Laradji, I., Liu, H. T., Meyer, H., Miao, Y., Nowrouzezahrai, D., Oztireli, C., Pot, E., Radwan, N., Rebain, D., Sabour, S., Sajjadi, M. S. M., Sela, M., Sitzmann, V., Stone, A., Sun, D., Vora, S., Wang, Z., Wu, T., Yi, K. M., Zhong, F., & Tagliasacchi, A. (2022). Kubric: A scalable dataset generator. https://arxiv.org/abs/2203.03570
  • Gurchiek, R. D., Cheney, N., & McGinnis, R. S. (2019). Estimating biomechanical time-series with wearable sensors: A systematic review of machine learning techniques. Sensors, 19, 5227. https://www.mdpi.com/14248220/19/23/5227
  • Haghayegh, S., Khoshnevis, S., Smolensky, M. H., Diller, K. R., & Castriotta, R. J. (2020). Performance assessment of new-generation Fitbit technology in deriving sleep parameters and stages. Chronobiology International, 37(1), 47–59. https://doi.org/10.1080/07420528.2019.1682006
  • Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., & Delp, S. L. (2018). Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. Journal of Biomechanics, 81, 1–11. https://doi.org/10.1016/j.jbiomech.2018.09.009
  • Honert, E. C., Hoitz, F., Blades, S., Nigg, S. R., & Nigg, B. M. (2022). Estimating running ground reaction forces from plantar pressure during graded running. Sensors, 3338. https://doi.org/10.3390/s2209333
  • Johnson, W. R., Mian, A., Lloyd, D. G., & Alderson, J. (2019). On-field player workload exposure and knee injury risk monitoring via deep learning. Journal of Biomechanics, 93, 185–193. https://doi.org/10.1016/j.jbiomech.2019.07.002
  • Kathirgamanathan, B., & Cunningham, P. (2020). A Feature Selection Method for Multi-dimension Time-Series Data. In V. Lemaire, S. Malinowski, A. Bagnall, T. Guyet, R. Tavenard, & G. Ifrim (Eds.) Advanced Analytics and Learning on Temporal Data. AALTD 2020. Lecture Notes in Computer Science(), Vol. 12588. Springer https://doi.org/10.1007/978-3-030-65742-0_15, Cham.
  • Koehrsen, W. (2022). Feature selector. Retrieved October 27, 2022, from https://github.com/WillKoehrsen/feature-selector
  • Mitchell, T. M. (1997). Machine learning. McGraw-Hill Science/Engineering/Math.
  • Moghadam, S. M., Yeung, T., & Choisne, J. (2022). A comparison of machine learning models’ accuracy in predicting lower-limb joints’ kinematics, kinetics, and muscle forces from wearable sensors. Scientific Reports. preprint. https://doi.org/10.21203/rs.3.rs-2083365/v1
  • Mundt, M., David, S., Koeppe, A., Bamer, F., Markert, B., & Potthast, W. (2019). Intelligent prediction of kinetic parameters during cutting manoeuvres. Medical & Biological Engineering & Computing, 57, 1833–1841. https://doi.org/10.1007/s11517-019-02000-2
  • Mundt, M., Goldacre, M., & Alderson, J. (2022). Synthesising 2D videos from 3D data: Enlarging sparse 2D video datasets for machine learning applications. In 40th Conference of the International Society of Biomechanics in Sports (pp. 503–506). https://commons.nmu.edu/isbs/vol40/iss1/121
  • Mundt, M., Johnson, W. R., Potthast, W., Markert, B., Mian, A., & Alderson, J. (2021). A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units. Sensors, 21, 2110–2117. https://doi.org/10.3390/s21134535
  • Mundt, M., Koeppe, A., Bamer, F., David, S., & Markert, B. (2020). Artificial neural networks in motion analysis — Applications of unsupervised and heuristic feature selection techniques. Sensors, 20, 1–15.
  • Mundt, M., Koeppe, A., David, S., Bamer, F., Potthast, W., & Markert, B. (2020). Prediction of ground reaction force and joint moments based on optical motion capture data during gait. Medical Engineering & Physics, 86. https://doi.org/10.1016/j.medengphy.2020.10.001
  • Mundt, M., Koeppe, A., David, S., Witter, T., Bamer, F., Potthast, W., & Markert, B. (2020). Estimation of gait mechanics based on simulated and measured IMU data using an artificial neural network. Frontiers in Bioengineering and Biotechnology, 8, 41. https://doi.org/10.3389/fbioe.2020.00041
  • Mundt, M., Oberlack, H., Goldacre, M., Powles, J., Funken, J., Morris, C., Potthast, W., & Alderson, J. (2022). Synthesising 2D video from 3D motion data for machine learning applications. Sensors, 22(17), 6522. https://doi.org/10.3390/s22176522
  • Mundt, M., Oberlack, H., Morris, C., Funken, J., Potthast, W., & Alderson, J. (2021). No dataset too small! Animating 3D motion data to enlarge 2D video databases. In 39th Conference of the International Society of Biomechanics in Sports (pp. 25–28). https://commons.nmu.edu/isbs/vol39/iss1/8
  • Mundt, M., Thomsen, W., Witter, T., Koeppe, A., David, S., Bamer, F., Potthast, W., & Markert, B. (2019). Prediction of lower limb joint angles and moments during gait using artificial neural networks. Medical & Biological Engineering & Computing, 58(1), 211–225. https://doi.org/10.1007/s11517-019-02061-3
  • Powles, J., Alderson, J., Henne, K., Moses, L. B., Elliott, A., Graham, M., Harris, R., Hughes, D., Innes, S., Walsh, T., & Weber, J. (2022). Getting ahead of the game: Athlete data in professional sport. White paper, Australian Academy of Science. https://science.org.au/datainsport/
  • Rapczy Nski, M., Werner, P., Handrich, S., & Al-Hamadi, A. (2021). A baseline for cross-database 3D human pose estimation. Sensors, 21(11), 3769. https://doi.org/10.3390/s21113769
  • Rapp, E., Shin, S., Thomsen, W., Ferber, R., & Halilaj, E. (2021). Estimation of kinematics from inertial measurement units using a combined deep learning and optimization framework. Journal of Biomechanics, 116, 110229. https://doi.org/10.1016/j.jbiomech.2021.110229
  • Renani, M. S., Eustace, A. M., Myers, C. A., & Clary, C. W. (2021). The use of synthetic IMU signals in the training of deep learning models significantly improves the accuracy of joint kinematic predictions. Sensors, 21(17), 5876. https://doi.org/10.3390/s21175876
  • Richter, C., O’Reilly, M., & Delahunt, E. (2021). Machine learning in sports science: Challenges and opportunities. Sports Biomechanics, 1–7. https://doi.org/10.1080/14763141.2021.1910334
  • Scikit learn. (2022). Feature selection. Retrieved October 27, 2022, from https://scikit-learn.org/stable/modules/featureselection.html
  • Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., & Basilico, J. (2021). Deep learning for recommender systems: A Netflix case study. Recommender Systems, 42(3), 7–18. https://doi.org/10.1609/aimag.v42i3.18140
  • Stetter, B. J., Krafft, F. C., Ringhof, S., Stein, T., & Sell, S. (2020). A machine learning and wearable sensor based approach to estimate external knee flexion and adduction moments during various locomotion tasks. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00009
  • Thilakeswaran, D., McManis, S., & Wang, X. R. (2021). Chameleon: A Python workflow toolkit for feature selection. In Communications in computer and information science (Vol. 1504 CCIS, pp. 121–135). Springer Science and Business Media Deutschland GmbH.
  • Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., & Welling, M. (2018). Rotation equivariant CNNs for digital pathology. http://arxiv.org/abs/1806.03962
  • Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. http://arxiv.org/abs/1705.02315
  • Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D. D., Cristofolini, L., Witte, H., Schmid, O., & Stokes, I. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. Journal of Biomechanics, 35(4), 543–548. https://doi.org/10.1016/S0021-9290(01)00222-6
  • Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C. W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., Roepman, R., Dietmann, S., Virta, M., Kengara, F., Zhang, Z., Zhang, L., Zhao, T., Dai, J., Yang, J., Lan, L., Luo, M., Liu, Z., An, T., Zhang, B., He, X., Cong, S., Liu, X., Zhang, W., Lewis, J. P., Tiedje, J. M., Wang, Q., An, Z., Wang, F., Zhang, L., Huang, T., Lu, C., Cai, Z., Wang, F., & Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179
  • Young, A. D., Ling, M. J., & Arvind, D. K. (2011). IMUSim: A simulation environment for inertial sensing algorithm design and evaluation. In Proceedings of the 10th ACMIEEE International Conference on Information Processing in Sensor Networks. Networks (pp. 199–210).
  • Zimmermann, T., Taetz, B., & Bleser, G. (2018). IMU-to-segment assignment and orientation alignment for the lower body using deep learning. Sensors, 18(1), 1–35. https://doi.org/10.3390/s18010302