1,183
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessments performed on harder surfaces can misrepresent ACL injury risk

, , &
Received 10 Mar 2023, Accepted 06 Jun 2023, Published online: 14 Jun 2023

References

  • Alcántara, E., Gámez, J., Rosa, D., & Sanchis, M. (2009). Analysis of the influence of rubber infill morphology on the mechanical performance of artificial turf surfaces for soccer. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering & Technology, 223, 1–9. https://doi.org/10.1243/17543371JSET27
  • Alentorn-Geli, E., Myer, G. D., Silvers, H. J., Samitier, G., Romero, D., Lazaro-Haro, C., & Cugat, R. (2009). Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surgery, Sports Traumatology, Arthroscopy, 17(7), 705–729. https://doi.org/10.1007/s00167-009-0813-1
  • Allgeuer, T., Torres, E., Bensason, S., Chang, A., & Martin, J. (2008). Study of shockpads as energy absorption layer in artificial turf surfaces. Sports Technology, 1(1), 29–33. https://doi.org/10.1080/19346182.2008.9648448
  • Alonzo, R., Teo, C., Pan, J. W., Teng, P. S. P., Sterzing, T., & Kong, P. W. (2020). Effects of basketball shoe midsole hardness on lower extremity biomechanics and perception during drop jumping from different heights. Applied Sciences, 10(10), 3594. https://doi.org/10.3390/app10103594
  • Awwad, G., Coleman, J., Dunkley, C., & Dewar, D. (2019). An analysis of knee injuries in rugby league: The experience at the newcastle knights professional rugby league team. Sports Medicine - Open, 5(1). https://doi.org/10.1186/s40798-019-0206-z
  • Bakker, R., Tomescu, S., Brenneman, E., Hangalur, G., Laing, A., & Chandrashekar, N. (2016). Effect of sagittal plane mechanics on ACL strain during jump landing. Journal of Orthopaedic Research, 34(9), 1636–1644. https://doi.org/10.1002/jor.23164
  • Baltich, J., Maurer, C., Nigg, B. M., & Garcia Aznar, J. M. (2015). Increased vertical impact forces and altered running mechanics with softer midsole shoes. PLos One, 10(4), e0125196. https://doi.org/10.1371/journal.pone.0125196
  • Barrett, R. S., Neal, R. J., & Roberts, L. J. (1997). The dynamic loading response of surfaces encountered in beach running. Journal of Science & Medicine in Sport, 1(1), 1–11. https://doi.org/10.1016/S1440-2440(98)80003-0
  • Bates, N. A., Schilaty, N. D., Krych, A. J., & Hewett, T. E. (2019). Influence of relative injury risk profiles on ACL and MCL strain during simulated landing leading to a non-contact ACL injury event. Clinical Biomechanics, 69, 44–51. https://doi.org/10.1016/j.clinbiomech.2019.06.018
  • Bates, N. A., Schilaty, N. D., Nagelli, C. V., Krych, A. J., & Hewett, T. E. (2019). Multiplanar loading of the knee and its influence on ACL and MCL strain during simulated landings and non-contact tears. The American Journal of Sports Medicine, 47(8), 1844–1853. https://doi.org/10.1177/0363546519850165
  • Bates, N., Schilaty, N., Ueno, R., & Hewett, T. (2020). Timing of strain response of the ACL and MCL relative to impulse delivery during simulated landings leading up to ACL failure. Journal of Applied Biomechanics, 36(3), 148–155. https://doi.org/10.1123/jab.2019-0308
  • Bell, A. L., Brand, R. A., & Pedersen, D. R. (1989). Prediction of hip-joint center location from external landmarks. Human Movement Science, 8(1), 3–16. https://doi.org/10.1016/0167-9457(89)90020-1
  • Benanti, M., Andena, L., Briatico Vangosa, F., & Pavan, A. (2013). Viscoelastic behavior of athletics track surfaces in relation to their force reduction. Polymer Testing, 32(1), 52–59. https://doi.org/10.1016/j.polymertesting.2012.09.008
  • Benjaminse, A., Otten, B., Gokeler, A., Diercks, R. L., & Lemmink, K. A. P. M. (2017). Motor learning strategies in basketball players and its implications for ACL injury prevention: A randomized controlled trial. Knee Surgery, Sports Traumatology, Arthroscopy, 25(8), 2365–2376. https://doi.org/10.1007/s00167-015-3727-0
  • Bishop, D. (2003). A comparison between land and sand-based tests for beach volleyball assessment. The Journal of Sports Medicine and Physical Fitness, 43(4), 418–423.
  • Boden, B., Dean, G., Scott, M., Feagin, J., & Garrett, W. (2000). Mechanisms of anterior cruciate ligament injury. Orthopedics, 23(6), 573–578. https://doi.org/10.3928/0147-7447-20000601-15
  • Boden, P., Sheehan, F., Torg, J., & Hewett, T. (2010). Non-contact ACL injuries: Mechanisms and risk factors. Journal of the American Academy of Orhtopaedic Surgeons, 18(9), 520–527. https://doi.org/10.5435/00124635-201009000-00003
  • Boden, B. P., Torg, J. S., Knowles, S. B., & Hewett, T. E. (2009). Video analysis of anterior cruciate ligament injury. The American Journal of Sports Medicine, 37(2), 252–259. https://doi.org/10.1177/0363546508328107
  • Brosnan, J. T., McNitt, A. S., & Serensits, T. J. (2009). Effects of varying surface characteristics on the hardness and traction of baseball field playing surfaces. International Turfgrass Society Research Journal, 11(2), 1053–1065.
  • Cerulli, G., Benoit, D. L., Lamontagne, M., Caraffa, A., & Liti, A. (2003). In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: Case report. Knee Surgery, Sports Traumatology, Arthroscopy, 11(5), 307–311. https://doi.org/10.1007/s00167-003-0403-6
  • Chappell, J. D., Yu, B., Kirkendall, D. T., & Garrett, W. E. (2002). A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. The American Journal of Sports Medicine, 30(2), 261–267. https://doi.org/10.1177/03635465020300021901
  • Claudino, J., Mezêncio, B., Soncin, R., Pennone, J., Pinho, J., Borges, E., Castiglio, L., Miyashiro, P. S., Pomi, E., Masuko, W., & Serrão, J. (2017). Relationship between knee valgus and ground reaction force in soccer players using soccer boots landing on an official artificial turf. The Open Sports Sciences Journal, 10(1), 257–262. https://doi.org/10.2174/1875399X01710010257
  • Cochrane, J. L., Lloyd, D. G., Buttfield, A., Seward, H., & McGivern, J. (2007). Characteristics of anterior cruciate ligament injuries in Australian football. Journal of Science & Medicine in Sport, 10(2), 96–104. https://doi.org/10.1016/j.jsams.2006.05.015
  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press. https://doi.org/10.4324/9780203771587
  • Colino, E., Felipe, J. L., Van Hooren, B., Gallardo, L., Meijer, K., Lucia, A., Lopez-Fernandez, J., & Garcia-Unanue, J. (2020). Mechanical properties of treadmill surfaces compared to other overground sport surfaces. Sensors, 20(14), 3822. https://doi.org/10.3390/s20143822
  • Colino, E., Sánchez-Sánchez, J., García-Unanue, J., Ubago-Guisado, E., Haxaire, P., Le Blan, A., & Gallardo, L. (2017). Validity and reliability of two standard test devices in assessing mechanical properties of different sport surfaces. Polymer Testing, 62, 61–67. https://doi.org/10.1016/j.polymertesting.2017.06.011
  • Coventry, E., O’Connor, K., Hart, B., Earl, J., & Ebersole, K. (2006). The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clinical Biomechanics, 21(10), 1090–1097. https://doi.org/10.1016/j.clinbiomech.2006.07.004
  • Dai, B., Butler, R. J., Garrett, W. E., & Queen, R. M. (2014). Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction. Scandinavian Journal of Medicine & Science in Sports, 24(6), 974–981. https://doi.org/10.1111/sms.12118
  • Decker, M. J., Torry, M. R., Wyland, D. J., Sterett, W. I., & Richard Steadman, J. (2003). Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clinical Biomechanics, 18(7), 662–669. https://doi.org/10.1016/S0268-0033(03)00090-1
  • DeMorat, G., Weinhold, P., Blackburn, T., Chudik, S., & Garrett, W. (2004). Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. The American Journal of Sports Medicine, 32(2), 477–483. https://doi.org/10.1177/0363546503258928
  • Dempster, W. (1955). Space requirements of the seated operator, geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs. WADC Technical Report, 55–159.
  • Dixon, S., Collop, A., & Batt, M. (2000). Surface effects on ground reaction forces and lower extremity kinematics in running. Medicine & Science in Sports and Exercise, 32(11), 1919–1926. https://doi.org/10.1097/00005768-200011000-00016
  • Dixon, S., Collop, A., & Batt, M. (2005). Compensatory adjustments in lower extremity kinematics in response to a reduced cushioning of the impact interface in heel–toe running. Sports Engineering, 8(1), 47–55. https://doi.org/10.1007/BF02844131
  • Dragoo, J. L., Braun, H. J., & Harris, A. H. (2013). The effect of playing surface on the incidence of ACL injuries in national collegiate athletic association american football. The Knee, 20(3), 191–195. https://doi.org/10.1016/j.knee.2012.07.006
  • Eime, R., Charity, M., Harvey, J., & Westerbeek, H. (2021). Five-year changes in community-level sport participation, and the role of gender strategies. Frontiers in Sports and Active Living, 3, 710666. https://doi.org/10.3389/fspor.2021.710666
  • Farhang, B., Araghi, F. R., Bahmani, A., Moztarzadeh, F., & Shafieian, M. (2016). Landing impact analysis of sport surfaces using three-dimensional finite element model. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering & Technology, 230(3), 180–185. https://doi.org/10.1177/1754337115591755
  • Fleming, P. R., Forrester, S. E., & McLaren, N. J. (2015). Understanding the effects of decompaction maintenance on the infill state and play performance of third-generation artificial grass pitches. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering & Technology, 229(3), 169–182. https://doi.org/10.1177/1754337114566480
  • Ford, K., Myer, G., & Hewett, T. (2003). Valgus knee motion during landing in high school female and male basketball players. Medicine & Science in Sports & Exercise, 35(10), 1745–1750. https://doi.org/10.1249/01.MSS.0000089346.85744.D9
  • Garrett, W. E., & Yu, B. (2007). Anterior cruciate ligament injury mechanisms and risk factors. The Journal of orthopaedic and sports physical therapy, 37(2), A10–A11. https://doi.org/10.2519/jospt.2007.37.1.A10
  • Gerritsen, K., van den Bogert, A., & Nigg, B. (1995). Direct dynamics simulation of the impact phase in heel-toe running. Journal of Biomechanics, 28(6), 661–668. https://doi.org/10.1016/0021-9290(94)00127-P
  • Grood, E., & Suntay, W. (1983). A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. Journal of Biomechanical Engineering, 105(2), 136–144. https://doi.org/10.1115/1.3138397
  • Grund, T., Reihl, I., Krosshaug, T., Senner, V., & Gruber, K. (2010). Calculation of ankle and knee joint moments during ACL-injury situations in soccer. Procedia Engineering, 2(2), 3255–3261. https://doi.org/10.1016/j.proeng.2010.04.141
  • Hanavan, E. (1964). A mathematical model for the human body. WADC Technical Report, 64–102.
  • Hewett, T., Myer, G., Ford, K., Heidt, R., Colosimo, A., McLean, S., Van den Bogert, A. J., Paterno, M. V., & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. The American Journal of Sports Medicine, 33(4), 492–501. https://doi.org/10.1177/0363546504269591
  • Howard, M., Solaru, S., Kang, H. P., Bolia, I. K., Hatch, G. F., Tibone, J. E., Gamradt, S. C., & Weber, A. E. (2020). Epidemiology of anterior cruciate ligament injury on natural grass versus artificial turf in soccer: 10-year data frOm the national collegiate athletic association injury surveillance system. Orthopaedic Journal of Sports Medicine, 8(7), 2325967120934434. https://doi.org/10.1177/2325967120934434
  • Huang, Y.-L., Chang, E., Johnson, S. T., Pollard, C. D., Hoffman, M. A., & Norcross, M. F. (2020). Explosive quadriceps strength and landing mechanics in females with and without anterior cruciate ligament reconstruction. International Journal of Environmental Research and Public Health, 17(20), 7431. https://doi.org/10.3390/ijerph17207431
  • Hunter, J. G., Smith, A. M. B., Sciarratta, L. M., Suydam, S., Shim, J. K., & Miller, R. H. (2020). Standardized lab shoes do not decrease loading rate variability in recreational runners. Journal of Applied Biomechanics, 36(5), 340–344. https://doi.org/10.1123/jab.2019-0337
  • Johnston, J., Mandelbaum, B., Schub, D., Rodeo, S., Matava, M., Silvers-Granelli, H., Cole, B. J., ElAttrache, N. S., McAdams, T. R., & Brophy, R. (2018). Video analysis of anterior cruciate ligament tears in professional American football athletes. The American Journal of Sports Medicine, 46(4), 862–868. https://doi.org/10.1177/0363546518756328
  • Jones, H., Moore, I., King, E., Stiles, V., Laudani, L., McCarthy‐Ryan, M., McFadden, C., & Daniels, K. (2022). Movement strategy correspondence across jumping and cutting tasks after anterior cruciate ligament reconstruction. Scandinavian Journal of Medicine & Science in Sports, 32(3), 612–621. https://doi.org/10.1111/sms.14104
  • Jones, H., Moore, I., King, E., Stiles, V., Verheul, J., & Daniels, K. (2022). Differences in lower limb joint stiffness in multiple movements following anterior cruciate ligament reconstruction [Paper presentation]. ISBS Proceedings Archive, International Society of Biomechanics in Sports Conference, Liverpool, UK.
  • King, E., Richter, C., Franklyn-Miller, A., Daniels, K., Wadey, R., Jackson, M., Moran, R., & Strike, S. (2018). Biomechanical but not timed performance asymmetries persist between limbs 9 months after ACL reconstruction during planned and unplanned change of direction. Journal of Biomechanics, 81, 93–103. https://doi.org/10.1016/j.jbiomech.2018.09.021
  • King, E., Richter, C., Franklyn-Miller, A., Daniels, K., Wadey, R., Moran, R., & Strike, S. (2018). Whole-body biomechanical differences between limbs exist 9 months after ACL reconstruction across jump/landing tasks. Scandinavian Journal of Medicine & Science in Sports, 28(12), 2567–2578. https://doi.org/10.1111/sms.13259
  • Knudson, D. (2009). Significant and meaningful effects in sports biomechanics research. Sports Biomechanics, 8(1), 96–104. https://doi.org/10.1080/14763140802629966
  • Kristianslund, E., Krosshaug, T., & Van Den Bogert, A. J. (2012). Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. Journal of Biomechanics, 45(4), 666–671. https://doi.org/10.1016/j.jbiomech.2011.12.011
  • Krosshaug, T., Steffen, K., Kristianslund, E., Nilstad, A., Mok, K.-M., Myklebust, G., Andersen, T. E., Holme, I., Engebretsen, L., & Bahr, R. (2016). The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players. The American Journal of Sports Medicine, 44(4), 874–883. https://doi.org/10.1177/0363546515625048
  • Leppänen, M., Pasanen, K., Krosshaug, T., Kannus, P., Vasankari, T., Kujala, U., Bahr, R., Perttunen, J., & Parkkari, J. (2017). Sagittal plane hip, knee, and ankle biomechanics and the risk of anterior cruciate ligament injury: A prospective study. Orthopaedic Journal of Sports Medicine, 5(12), 232596711774548. https://doi.org/10.1177/2325967117745487
  • Lima, Y. L., Ferreira, V. M. L. M., de Paula Lima, P. O., Bezerra, M. A., de Oliveira, R. R., & Almeida, G. P. L. (2018). The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Physical Therapy in Sport, 29, 61–69. https://doi.org/10.1016/j.ptsp.2017.07.003
  • Loughran, G. J., Vulpis, C. T., Murphy, J. P., Weiner, D. A., Svoboda, S. J., Hinton, R. Y., & Milzman, D. P. (2019). Incidence of knee injuries on artificial turf versus natural grass in national collegiate athletic association american football: 2004-2005 through 2013-2014 seasons. The American Journal of Sports Medicine, 47(6), 1294–1301. https://doi.org/10.1177/0363546519833925
  • Lozano-Berges, G., Clansey, A. C., Casajús, J. A., & Lake, M. J. (2021). Lack of impact moderating movement adaptation when soccer players perform game specific tasks on a third-generation artificial surface without a cushioning underlay. Sports Biomechanics, 20(6), 665–679. https://doi.org/10.1080/14763141.2019.1579365
  • Markolf, K., Gorek, J., Kabo, J., & Shapiro, M. (1990). Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. The Journal of Bone and Joint Surgery, 72(4), 557–567. https://doi.org/10.2106/00004623-199072040-00014
  • McGhie, D., & Ettema, G. (2013). Biomechanical analysis of surface-athlete impacts on third-generation artificial turf. The American Journal of Sports Medicine, 41(1), 177–185. https://doi.org/10.1177/0363546512464697
  • McNitt-Gray, J., Yokoi, T., & Millward, C. (1994). Landing strategies used by gymnasts on different surfaces. Journal of Applied Biomechanics, 10(3), 237–252. https://doi.org/10.1123/jab.10.3.237
  • Montalvo, A. M., Schneider, D. K., Yut, L., Webster, K. E., Beynnon, B., Kocher, M. S., & Myer, G. D. (2019). “What’s my risk of sustaining an ACL injury while playing sports?” a systematic review with meta-analysis. British Journal of Sports Medicine, 53(16), 1003–1012. https://doi.org/10.1136/bjsports-2016-096274
  • Murphy, J., O’Malley, E., Gissane, C., & Blake, C. (2012). Incidence of injury in gaelic football. The American Journal of Sports Medicine, 40(9), 2113–2120. https://doi.org/10.1177/0363546512455315
  • Myer, G. D., Ford, K. R., DiStasi, S. L., Foss, K. D. B., Micheli, L. J., & Hewett, T. E. (2015). High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: Is PFP itself a predictor for subsequent ACL injury? British Journal of Sports Medicine, 49(2), 118–122. https://doi.org/10.1136/bjsports-2013-092536
  • Myer, G. D., Ford, K. R., Khoury, J., Succop, P., & Hewett, T. E. (2010). Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Clinical Biomechanics, 25(7), 693–699. https://doi.org/10.1016/j.clinbiomech.2010.04.016
  • Nigg, B. M., & Yeadon, M. R. (1987). Biomechanical aspects of playing surfaces. Journal of Sports Sciences, 5(2), 117–145. https://doi.org/10.1080/02640418708729771
  • Norcross, M., Blackburn, J., Goerger, B., & Padua, D. (2010). The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury. Clinical Biomechanics, 25(10), 1031–1036. https://doi.org/10.1016/j.clinbiomech.2010.07.013
  • Pataky, T. (2012). One-dimensional statistical parametric mapping in python. Computer Methods in Biomechanics and Biomedical Engineering, 15(3), 295–301. https://doi.org/10.1080/10255842.2010.527837
  • Pataky, T. C., Robinson, M. A., & Vanrenterghem, J. (2013). Vector field statistical analysis of kinematic and force trajectories. Journal of Biomechanics, 46(14), 2394–2401. https://doi.org/10.1016/j.jbiomech.2013.07.031
  • Pataky, T. C., Vanrenterghem, J., & Robinson, M. A. (2015). Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. Journal of Biomechanics, 48(7), 1277–1285. https://doi.org/10.1016/j.jbiomech.2015.02.051
  • Paterno, M., Ford, K., Myer, G., Heyl, R., & Hewett, T. (2007). Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clinical Journal of Sport Medicine, 17(4), 258–262. https://doi.org/10.1097/JSM.0b013e31804c77ea
  • Peebles, A. T., Dickerson, L. C., Renner, K. E., & Queen, R. M. (2020). Sex-based differences in landing mechanics vary between the drop vertical jump and stop jump. Journal of Biomechanics, 105, 109818. https://doi.org/10.1016/j.jbiomech.2020.109818
  • Peters, M. (1988). Footedness: Asymmetries in foot preference and skill and neuropsychological assessment of foot movement. Psychological Bulletin, 103(2), 179–192. https://doi.org/10.1037/0033-2909.103.2.179
  • Podraza, J. T., & White, S. C. (2010). Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: Implications for the non-contact mechanism of ACL injury. The Knee, 17(4), 291–295. https://doi.org/10.1016/j.knee.2010.02.013
  • Pulici, L., Certa, D., Zago, M., Volpi, P., & Esposito, F. (2022). Injury burden in professional european football (soccer): Systematic review, meta-analysis, and economic considerations. Clinical Journal of Sport Medicine, 10–1097. https://doi.org/10.1097/JSM.0000000000001107
  • Quatman, C., & Hewett, T. (2009). The anterior cruciate ligament injury controversy: Is “valgus collapse” a sex-specific mechanism? British Journal of Sports Medicine, 43(5), 328–335. https://doi.org/10.1136/bjsm.2009.059139
  • Qu, H., Zhang, S., Sorochan, J., Weinhandl, J., Thoms, A., & Dickson, K. (2022). Effects of synthetic turf and shock pad on impact attenuation related biomechanics during drop landing. Sports Biomechanics, 21(6), 748–760. https://doi.org/10.1080/14763141.2019.1690570
  • Robertson, C. M., Williams, S., West, S. W., Starling, L., Kemp, S., Cross, M., & Stokes, K. A. (2022). Influence of playing surface on match injury risk in men’s professional rugby union in England (2013–2019). Scandinavian Journal of Medicine & Science in Sports, 32(11), 1615–1624. https://doi.org/10.1111/sms.14226
  • Rogers, J. N., III. (1988). Impact absorption and traction characteristics of turf and soil surfaces [ Ph.D. dissertation]. Pennsylvania State University.
  • Schrier, N. M., Wannop, J. W., Lewinson, R. T., Worobets, J., & Stefanyshyn, D. (2014). Shoe traction and surface compliance affect performance of soccer-related movements. Footwear Science, 6(2), 69–80. https://doi.org/10.1080/19424280.2014.886302
  • Sell, T., Ferris, C., Abt, J., Tsai, Y., Myers, J., Fu, F., & Lephart, S. (2007). Predictors of proximal tibia anterior shear force during a vertical stop-jump. Journal of Orthopaedic Research, 25(12), 1589–1597. https://doi.org/10.1002/jor.20459
  • Shelburne, K., Torry, M., & Pandy, M. (2005). Muscle, ligament, and joint-contact forces at the knee during walking. Medicine & Science in Sports and Exercise, 37(11), 1948–1956. https://doi.org/10.1249/01.mss.0000180404.86078.ff
  • Shimokochi, Y., Ambegaonkar, J., Meyer, E., Lee, S., & Shultz, S. (2013). Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury. Knee Surgery, Sports Traumatology, Arthroscopy, 21(4), 888–897. https://doi.org/10.1007/s00167-012-2011-9
  • Shorten, M. R., & Himmelsbach, J. A. (2002). Shock attenuation of sports surfaces. In The engineering of sport IV: Proceedings of the 4th international conference on the engineering of sport (Vol. 4, pp. 152–159). Blackwell Science.
  • Silva, R. M., Rodrigues, J. L., Pinto, V. V., Ferreira, M. J., Russo, R., & Pereira, C. M. (2009). Evaluation of shock absorption properties of rubber materials regarding footwear applications. Polymer Testing, 28(6), 642–647. https://doi.org/10.1016/j.polymertesting.2009.05.007
  • Skinner, N. E., Zelik, K. E., & Kuo, A. D. (2015). Subjective valuation of cushioning in a human drop landing task as quantified by trade-offs in mechanical work. Journal of Biomechanics, 48(10), 1887–1892. https://doi.org/10.1016/j.jbiomech.2015.04.029
  • Stefanyshyn, D. J., Lee, J.-S., & Park, S.-K. (2010). The influence of soccer cleat design on resultant joint moments. Footwear Science, 2(1), 13–19. https://doi.org/10.1080/19424280903535454
  • Stiles, V., & Dixon, S. (2006). The influence of different playing surfaces on the biomechanics of a tennis running forehand foot plant. Journal of Applied Biomechanics, 22(1), 14–24. https://doi.org/10.1123/jab.22.1.14
  • Stiles, V., & Dixon, S. (2007). Biomechanical response to systematic changes in impact interface cushioning properties while performing a tennis-specific movement. Journal of Sports Sciences, 25(11), 1229–1239. https://doi.org/10.1080/02640410600983616
  • Tran, A. A., Gatewood, C., Harris, A. H. S., Thompson, J. A., & Dragoo, J. L. (2016). The effect of foot landing position on biomechanical risk factors associated with anterior cruciate ligament injury. Journal of Experimental Orthopaedics, 3(1). https://doi.org/10.1186/s40634-016-0049-1
  • Victor, J., Labey, L., Wong, P., Innocenti, B., & Bellemans, J. (2010). The influence of muscle load on tibiofemoral knee kinematics. Journal of Orthopaedic Research, 28(4), 419–428. https://doi.org/10.1002/jor.21019
  • Wang, H., Zheng, W., Ma, Y., & Tang, Y. (2019). Shock absorption properties of synthetic sports surfaces: A review. Polymers for Advanced Technologies, 30(12), 2954–2967. https://doi.org/10.1002/pat.4739
  • Wannop, J. W., Foreman, T., Madden, R., & Stefanyshyn, D. (2019). Influence of the composition of artificial turf on rotational traction and athlete biomechanics. Journal of Sports Science, 37(16), 1849–1856. https://doi.org/10.1080/02640414.2019.1598923
  • Weinhandl, J. T., & O’Connor, K. M. (2017). Influence of ground reaction force perturbations on anterior cruciate ligament loading during sidestep cutting. Computer Methods in Biomechanics and Biomedical Engineering, 20(13), 1394–1402. https://doi.org/10.1080/10255842.2017.1366993
  • Weiss, K., & Whatman, C. (2015). Biomechanics associated with patellofemoral pain and ACL injuries in sports. Sports Medicine, 45(9), 1325–1337. https://doi.org/10.1007/s40279-015-0353-4
  • Winter, D. (2009). Biomechanics and motor control of human movement. John Wiley & Sons. https://doi.org/10.1002/9780470549148
  • Wyndow, N., De Jong, A., Rial, K., Tucker, K., Collins, N., Vicenzino, B., Russell, T., & Crossley, K. (2016). The relationship of foot and ankle mobility to the frontal plane projection angle in asymptomatic adults. Journal of Foot and Ankle Research, 9(1). https://doi.org/10.1186/s13047-016-0134-9
  • Yeomans, C., Kenny, I. C., Cahalan, R., Warrington, G. D., Harrison, A. J., Purtill, H., Lyons, M., Campbell, M. J., Glynn, L. G., & Comyns, T. M. (2021). Injury trends in Irish amateur rugby: An epidemiological comparison of men and women. Sports Health, 13(6), 540–547. https://doi.org/10.1177/1941738121997145
  • Yeow, C., Lee, P., & Goh, J. (2011). An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Human Movement Science, 30(3), 624–635. https://doi.org/10.1016/j.humov.2010.11.010
  • Yu, B., & Garrett, W. (2007). Mechanisms of non-contact ACL injuries. British Journal of Sports Medicine, 41(Supplement 1), i47–i51. https://doi.org/10.1136/bjsm.2007.037192
  • Yu, B., Lin, C.-F., & Garrett, W. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics, 21(3), 297–305. https://doi.org/10.1016/j.clinbiomech.2005.11.003
  • Zavatsky, A., Beard, D., & O’Conner, J. (1994). Cruciate ligament loading during isometricmuscle contractions. A theoretical basis for rehabilitation. The American Journal of Sports Medicine, 22(3), 418–423. https://doi.org/10.1177/036354659402200320