479
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Swimming biomechanics: from the pool to the lab … and back

ORCID Icon
Received 28 Feb 2023, Accepted 11 Jul 2023, Published online: 28 Jul 2023

References

  • Alcock, A., & Mason, B. (2007). Biomechanical analysis of active drag in swimming. Proceedings of the 25th International Symposium of Biomechanics in Sports (pp. 212–215). Brazil: ISBS, Ouro Preto.
  • Alley, L. E. (1952). An analysis of water resistance and propulsion in swimming the crawl stroke. Research Quarterly American Association for Health, Physical Education & Recreation, 23(3), 253–270. https://doi.org/10.1080/10671188.1952.10624867
  • Alves, F., Gomes-Pereira, J., & Pereira, F. (1996). Determinants of energy cost of front crawl and backstroke swimming and competitive performance. In J. Troup, A. P. Hollander, & E. D. Strass (Eds.), Biomechanics and medicine in swimming VII (pp. 185–191). E&FN SPON. Chapman & Hall.
  • Barbosa, T. M., Barbosa, A. C., Escobar, D. S., Mullen, G. J., Cossor, J. M., Hodierne, R., Arellano, R., & Mason, B. R. (2021). The role of the biomechanics analyst in swimming training and competition analysis. Sports Biomechanics, 1–18. https://doi.org/10.1080/14763141.2021.1960417
  • Barbosa, T. M., Fernandes, R., Keskinen, K. L., Colaço, P., Cardoso, C., Silva, J., & Vilas-Boas, J. P. (2006). Evaluation of the energy expenditure in competitive swimming strokes. International Journal of Sports Medicine, 27(11), 894–899. https://doi.org/10.1055/s-2006-923776
  • Barbosa, T., Keskinen, K., Fernandes, R., Colaço, P., Lima, A., & Vilas-Boas, J. P. (2005). Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. European Journal of Applied Physiology, 93(5–6), 519–523. https://doi.org/10.1007/s00421-004-1251-x
  • Berger, M. A. M., de Groot, G., & Hollander, A. P. (1995). Hydrodynamic drag and lift forces on human hand/arm models. Journal of Biomechanics, 28(2), 125–133. https://doi.org/10.1016/0021-9290(94)00053-7
  • Bixler, B., & Riewald, S. (2002). Analysis of a swimmer’s hand and arm in steady flow conditions using computational fluid dynamics. Journal of Biomechanics, 35, 713–717. https://doi.org/10.1016/S0021-9290(01)00246-9
  • Cappaert, J. M., Bone, M., & Troup, J. (1992). Intensity and performance related differences in propelling and mechanical efficiencies. In D. Maclaren, T. Reilly, & A. Lees (Eds.), Biomechanics and medicine in swimming. Swimming science VI (pp. 49–52). E&FN Spon.
  • Carvalho, D. D., Soares, S., Zacca, R., Marinho, D. A., Silva, A. J., Pyne, D. B., Vilas-Boas, J. P., & Fernandes, R. J. (2019). In-water and on land swimmers symmetry and force production. International Journal of Environmental Research and Public Health, 16(23), 5018. https://doi.org/10.3390/ijerph16245018
  • Caspersen, C., Berhelsen, P. A., Eik, M., Pâkozdi, C., & Kjendlie, P.-L. (2010). Added mass in human swimmers: Age and gender differences. Journal of Biomechanics, 43(12), 2369–2373. https://doi.org/10.1016/j.jbiomech.2010.04.022
  • Chainok, P., de Jesus, K., Coelho, L., Ayala, H. V. H., Castro Ribeiro, M. G., Fernandes, R. J., & Vilas-Boas, J. P. (2021). Modeling and predicting the backstroke to breaststroke turns performance in age-group swimmers. Sports Biomechanics, 1–22. https://doi.org/10.1080/14763141.2021.2005127
  • Chainok, P., de Jesus, K., Mourão, L., Fonseca, P. F. P., Zacca, R., Fernandes, R. J., & Vilas-Boas, J. P. (2022). Biomechanical features of backstroke to breaststroke transition techniques in age-group swimmers. Frontiers in Sports and Active Living, 4, 802967. https://doi.org/10.3389/fspor.2022.802967
  • Chainok, P., Machado, L., de Jesus, K., Abraldes, A., Borgonovo-Santos, M., Fernandes, R. J., & Vilas-Boas, J. P. (2021). Backstroke to breaststroke turning performance in age-group swimmers: Hydrodynamic characteristics and pull-out strategy. International Journal of Environmental Research and Public Health, 18(4), 1858. https://doi.org/10.3390/ijerph18041858
  • Chatard, J. C., Bourgoin, B., & Lacour, J. R. (1990). Passive drag is still a good evaluator of swimming aptitude. European Journal of Applied Physiology, 59(6), 399–404. https://doi.org/10.1007/BF02388619
  • Chollet, D., Madani, M., & Micallef, J. P. (1992). Effects of two types of biomechanical bio-feedback on crawl performance. In D. MacLaren, T. Reilly, & A. Lees (Eds.), Biomechanics and medicine in swimming, swimming science VI (pp. 57–62). E&FN Spon.
  • Cochrum, R. G., Conners, R. T., Caputo, J. L., Coons, J. M., Fuller, D. K., Frame, M. C., & Morgan, D. W. (2021). Visual classification of running economy by distance running coaches. European Journal of Sport Science, 21(8), 1111–1118. https://doi.org/10.1080/17461391.2020.1824020
  • Cohen, R. C. Z., Cleary, P. W., & Mason, B. (2009). Simulations of human swimming using smoothed particle hydrodynamics. Seventh International Conference on CFD in the Minerals and Process Industries (pp. 1–6). Melbourne, Australia: CSIRO.
  • Colwin, C. (1984). Fluid dynamics, vortex circulation in swimming propulsion. In ASCA world clinic year book 1984 (pp. 38–46). American Swimming Coaches Association, Fort Lauderdale.
  • Counsilman, J. (1955). Forces in swimming two types of crawl stroke. Research Quarterly American Association for Health, Physical Education & Recreation, 26(2), 127–139. https://doi.org/10.1080/10671188.1955.10612813
  • Counsilman, J. E. (1968). The science of swimming. Prentice-Hall.
  • Counsilman, J. E. (1970). The application of the bernoulli’s principle to human propulsion in water. In: L. Lewillie & J. P. Clarys (Eds.), Proceedings of the First International Symposium on “biomechanics in swimming” (pp. 59–71). Brussels: Université Libre de Bruxelles, Laboratoire de l’effort.
  • Craig, A. B., Jr., & Pendergast, D. R. (1979). Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Medicine and Science in Sports, 11(3), 278–283. PMID: 522640. https://doi.org/10.1249/00005768-197901130-00011
  • Cureton, T. K. (1930). Mechanics and kinesiology of swimming - the crawl flutter kick. Research Quarterly American Association for Health, Physical Education & Recreation, 1(4), 87–121. https://doi.org/10.1080/23267402.1930.10625804
  • Dadashi, F., Crettenand, F., Millet, G. P., & Aminian, K. (2012). Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit. Sensors, 12(10), 12927–12939. https://doi.org/10.3390/s121012927
  • De Jesus, K., Ayala, H. V. H., de Jesus, K., Coelho, L. S., Medeiros, A. I. A., Vaz, M. A. P., Fernandes, R., & Vilas-Boas, J. P. (2018). Modelling and predicting backstroke start performance using non-linear and linear models. Journal of Human Kinetics, 61(1), 29–38. https://doi.org/10.1515/hukin-2017-0133
  • De Jesus, K., de Jesus, K., Abraldes, A., Medeiros, A. I., Fernandes, R. J., & Vilas-Boas, J. P. (2016). Are the new starting block facilities beneficial for backstroke start performance? Journal of Sports Sciences, 34(9), 871–877. https://doi.org/10.1080/02640414.2015.1076166
  • De Jesus, K., de Jesus, K., Abraldes, J. A., Mourão, L., Borgonovo-Santos, M., Medrios, A. I. A., Gonçalves, P., Phornpot, C., Fernandes, R. J., Vaz, M. A. P., & Vilas-Boas, J. P. (2016). The effect of different foot and hand set-up positions on backstroke start performance. Sports Biomechanics, 15(4), 481–496. https://doi.org/10.1080/14763141.2016.1182580
  • De Jesus, K., de Jesus, K., Fernandes, R., & Vilas-Boas, J. P. (2021). Back plate and wedge use and individual ventral and dorsal swimming start performance: A systematic review. Sports Biomechanics, 1–25. https://doi.org/10.1080/14763141.2021.2016924
  • De Jesus, K., de Jesus, K., Figueiredo, P., Gonçalves, P., Pereira, S., Vilas-Boas, J. P., & Fernandes, R. J. (2011). Biomechanical analysis of backstroke swimming starts. International Journal of Sports Medicine, 32(7), 546–551. https://doi.org/10.1055/s-0031-1273688
  • De Jesus, K., De Jesus, K., Gonçalves, P., Vasconcelos, M., Medeiros, A., Carvalso, D., Fernandes, R., & Vilas-Boas, J. P. (2021). Lateral kinetic proficiency and asymmetry in backstroke start performed with horizontal and vertical handgrips. Sports Biomechanics, 20(1), 71–85. https://doi.org/10.1080/14763141.2018.1522368
  • De Jesus, K., De Jesus, K., Gonçalves, P., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Backstroke start kinematic and kinetic changes due to different feet positioning. Journal of Sports Sciences, 31(15), 1665–1675. https://doi.org/10.1080/02640414.2013.794298
  • De Jesus, K., Mourão, L., Roesler, H., Viriato, N., de Jesus, K., Vaz, M., Fernandes, R. J., & Vilas-Boas, J. P. (2019). 3D device for forces in swimming starts and turns. Applied Sciences, 9(17), 3559. https://doi.org/10.3390/app9173559
  • Delhaye, E., Bouvet, A., Nicolas, G., Vilas-Boas, J. P., Bideau, B., & Bideau, N. (2022). Automatic swimming activity recognition and lap time assessment based on a single IMU: A deep learning approach. Sensors, 22(15), 5786. https://doi.org/10.3390/s22155786
  • DiPrampero, P. (2015). La locomozione umana su terra, in acqua, in aria - Fatti e teorie (2nd ed.). Edi-Ermes.
  • DiPrampero, P., Pendergast, D., Wilson, D., & Rennie, D. (1974). Energetics of swimming in man. Journal of Applied Physiology, 37(1), 1–5. https://doi.org/10.1152/jappl.1974.37.1
  • DiPrampero, P. E., Pendergast, D. R., Wilson, D. R., & Rennie, D. W. (1978). Blood lactic acid concentrations in high velocity swimming. In B. Eriksson & B. Furberg (Eds.), Swimming medicine IV (pp. 249–261). UniversityPark Press.
  • Du Bois-Reymond, R. (1905). Zur Physiologie des Schwimmens. Arch Anatomy Physiology Abteilung Physiology, 29, 252–278. https://doi.org/10.1111/j.1748-1716.1920.tb00731.x
  • Fernandes, R., Billat, V. L., Cruz, A. C., Colaço, P., Cardoso, C., & Vilas-Boas, J. P. (2006). Does net energy cost of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? Journal of Sports Medical Physical Fitness, 46, 373–380. PMID: 16998440.
  • Fernandes, A., Goethel, M., Marinho, D. A., Mezêncio, B., Vilas-Boas, J. P., & Fernandes, R. J. (2022). Velocity variability and performance in elite and good level backstrokers. International Journal of Environmental Research and Public Health, 19(11), 6744. https://doi.org/10.3390/ijerph19116744
  • Figueiredo, P., Kjendlie, P.-L., Vilas-Boas, J. P., & Fernandes, R. J. (2012). Intracycle velocity variation of the body centre of mass in front crawl. International Journal of Sports Medicine, 33(4), 285–290. https://doi.org/10.1055/s-0031-1301323
  • Figueiredo, P., Pendergast, D. R., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Interplay of biomechanical, energetic, coordinative, and muscular factors in a 200 m front crawl swim. BioMed Research International, 2013, 1–12. https://doi.org/10.1155/2013/897232
  • Gadd, G. E. (1963). The hydrodynamics of swimming. New Scientist, 355, 483–485.
  • Ganzevles, S., Beek, P. J., Daanen, H. A. M., Coolen, B. M. A., & Truijens, M. J. (2019). Differences in swimming smoothness between elite and non-elite swimmers. Sports Biomechanics, 22(5), 675–688. https://doi.org/10.1080/14763141.2019.1650102
  • Gatta, G., Cortesi, M., Zamparo, P., & Aegerter, C. M. (2016). The relationship between power generated by thrust and power to overcome drag in elite short distance swimmers. PLoS ONE, 11(9), e0162387. https://doi.org/10.1371/journal.pone.0162387
  • Gomes, L. E., Diogo, V., Castro, F. A. S., Vilas-Boas, J. P., Fernandes, R. J., & Figueiredo, P. (2019). Biomechanical analyses of synchronised swimming standard and contra-standard sculling. Sports Biomechanics, 18(4), 354–365. https://doi.org/10.1080/14763141.2017.1409258
  • Gonjo, T., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2020). Upper body kinematic differences between maximum front crawl and backstroke swimming. Journal of Biomechanics, 98, 109452. https://doi.org/10.1016/j.jbiomech.2019.109452
  • Gonjo, T., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2021a). Body roll amplitude and timing in backstroke swimming and their differences from front crawl at the same swimming intensities. Scientific Reports, 11(1), 824. https://doi.org/10.1038/s41598-020-80711-5
  • Gonjo, T., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2021b). Differences in the rotational effect of buoyancy and trunk kinematics between front crawl and backstroke swimming. Sports Biomechanics, 1–12. https://doi.org/10.1080/14763141.2021.1921835
  • Gonjo, T., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2023). Is the use of coefficient of variation a valid way to assess the swimming intra-cycle velocity fluctuation? Journal of Science and Medicine in Sport, 26(6), 328–334. https://doi.org/10.1016/j.jsams.2023.05.004
  • Gonjo, T., McCabe, C., Sousa, A., Ribeiro, J., Fernandes, R. J., Vilas-Boas, J. P., & Sanders, R. (2018). Differences in kinematics and energy cost between front crawl and backstroke below the anaerobic threshold. European Journal of Applied Physiology, 118(6), 1107–1118. https://doi.org/10.1007/s00421-018-3841-z
  • Gonjo, T., Narita, K., McCabe, C., Fernandes, R. J., Vilas-Boas, J. P., Takagi, H., & Sanders, R. (2020). Front crawl is more efficient and has smaller active drag than backstroke swimming: Kinematic and kinetic comparison between the two techniques at the same swimming speeds. Frontiers in Bioengineering and Biotechnology, 8, 570657. https://doi.org/10.3389/fbioe.2020.570657
  • Harrison, S. M., Cohen, R. C. Z., Cleary, P. W., Mason, B. R., & Pease, D. L. (2014). Torque and power about the joints of the arm during the freestyle stroke. In: B. Mason (Ed.), Proceedings of the XIIth International Symposium Biomechanics and Medicine in Swimming (pp. 349–355). Canberra, AIS.
  • Havriluk, R. (1988). Validation of a criterion measure for swimming technique. Journal of Swimming Research, 4, 11–16.
  • Hochstain, S., & Blickhan, R. (2011). Vortex re-capturing and kinematics in human underwater undulatory swimming. Human Movement Science, 30(5), 998–1007. https://doi.org/10.1016/j.humov.2010.07.002
  • Hollander, A. P., de Groot, G., & van Ingen Schenau, G. J. (1988). Contribution of the legs to propulsion in frontcrawl swimming. In B. E. Ungerechts, K. Wilke, & K. Reischle (Eds.), Swimming science V, international series of sport sciences (Vol. 18, pp. 39–43). Human Kinetics, Champaign, Illinois.
  • Hollander, A. P., de Groot, G., van Ingen Schenau, G. J., Toussaint, H. M., de Best, H., Peeters, W., Meulemans, A., & Schreurs, A. W. (1986). Measurement of active drag during crawl arm stroke swimming. Journal of Sports Sciences, 4(1), 21–30. https://doi.org/10.1080/02640418608732094
  • Holmér, I. (1974). Physiology of swimming man. Acta Physiologica Scandinavica, (407), 1–55. PMID: 4530609.
  • Holmér, I. (1979). Analysis of acceleration as a measure of swimming proficiency. In J. Terauds & E. W. Bedingfield (Eds.), Swimming III (pp. 118–126). University Park Press.
  • Hopper, R. T., Hadley, C., Piva, M., & Bambauer, B. (1983). Measurement of power delivered to an external weight. In A. P. Hollander, P. A. Huijing, & G. Groot (Eds.), Biomechanics and medicine in swimming IV (pp. 113–119). Human Kinetics, Champaign, Illinois.
  • Houssay, R. (1912). Forme, puissance et stabilité des poissons. Hermann et Fils.
  • Karpovich, P. V. (1930). Swimming speed analysed. Scientific American, 146(3), 224–225. https://doi.org/10.1038/scientificamerican0330-224
  • Karpovich, P. V. (1933). Water resistance in swimming. Research Quarterly American Association for Health, Physical Education & Recreation, 4, 21–28. https://doi.org/10.1080/23267402.1933.10626627
  • Karpovich, P. V., & Pestrecov, K. (1939). Mechanical work and efficiency in swimming crawl and back strokes. Arbeitsphysiologie, 10(5), 504–515. https://doi.org/10.1007/BF02012167
  • Kent, M. R., & Atha, J. (1975). A device for the on-line measurement of instantaneous swimming velocity. In L. Lewillie & J. P. Clarys (Eds.), Swimming II (pp. 58–63). University Park Press.
  • Klauck, J. M. (1999). Man’s water resistance in accelerated motion: An experimental evaluation of the added mass concept. In K. L. Keskinen, P. V. Komi, & A. P. Hollander (Eds.), Biomechanics and medicine in swimming VIII (pp. 83–88). Jyväskylä, University of Jyväskylä.
  • Kolmogorov, S. (2023). Development of the technology to measure active drag of swimmers by the method of small perturbations. Journal of Biomechanics, 149, 111486. https://doi.org/10.1016/j.jbiomech.2023.111486
  • Kolmogorov, S. V. (2003). Biomechanics of steady non-stationary movement of elite swimmers. Journal of Bulletin Pomor University, 1, 88–101.
  • Kolmogorov, S. V. (2008). Kinematic and dynamic characteristics of steady-state non-stationary motion of elite swimmers. Russian Journal of Biomechanics, 12(4), 56–70.
  • Kolmogorov, S. V., & Duplishcheva, O. A. (1992). Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity. Journal of Biomechanics, 25(3), 311–318. https://doi.org/10.1016/0021-9290(92)90028-Y
  • Kolmogorov, S. V., Rumyantseva, O. A., Gordon, B. J., & Cappaert, J. M. (1997). Hydrodynamic characteristics of competitive swimmers of different genders and performance levels. Journal of Applied Biomechanics, 13(1), 88–97. https://doi.org/10.1123/jab.13.1.88
  • Kolmogorov, S., Vorontsov, A., & Vilas-Boas, J. P. (2021). Metabolic power, active drag, mechanical and propelling efficiency of elite swimmers at 100 meter events in different competitive swimming techniques. Applied Sciences, 11(18), 8511. https://doi.org/10.3390/app11188511
  • Kudo, S., Vennell, R., & Wilson, B. (2013). The effect of unsteady flow due to acceleration on hydrodynamic forces acting on the hand in swimming. Journal of Biomechanics, 46(10), 1697–1704. https://doi.org/10.1016/j.jbiomech.2013.04.002
  • Kudo, S., Wilson, B., & Takagi, H. (2007). The error of a quasi-static approach in predicting fluid forces on the hand in unsteady conditions. Japanese Journal of Sciences in Swimming and Water Exercise, 10(1), 1–11. https://doi.org/10.2479/swex.10.1
  • Kudo, S., Yanai, T., Wilsonm, B., Takagi, H., & Vennell, R. (2008). Prediction of fluid forces acting on a hand model in unsteady flow conditions. Journal of Biomechanics, 41(5), 1131–1136. https://doi.org/10.1016/j.jbiomech.2007.12.007
  • Lauer, J. (2022). Video-driven simulation of lower limb mechanical loading during aquatic exercises. bioRxiv preprint. https://doi.org/10.1101/2022.11.23.517406
  • Lauer, J., Rouard, A. H., & Vilas-Boas, J. P. (2016). Upper limb joint forces and moments during underwater cyclical movements. Journal of Biomechanics, 49(14), 3355–3361. https://doi.org/10.1016/j.jbiomech.2016.08.027
  • Lauer, J., Rouard, A. H., & Vilas-Boas, J. P. (2017). Modulation of upper limb joint work and power during sculling while ballasted with varying loads. The Journal of Experimental Biology, 220, 1729–1736. https://doi.org/10.1242/jeb.154781
  • Lauer, J., Vilas-Boas, J. P., & Rouard, A. H. (2018a). Shoulder joint kinetics and dynamics during underwater forward arm elevation. Journal of Biomechanics, 71, 144–150. https://doi.org/10.1016/j.jbiomech.2018.01.043
  • Lauer, J., Vilas-Boas, J. P., & Rouard, A. H. (2018b). Shoulder mechanical demands of slow underwater exercises in the scapular plane. Clinical Biomechanics, 53, 117–123. https://doi.org/10.1016/j.clinbiomech.2018.02.014
  • Lewillie, L. (1970). Quantitative comparison of the electromyogram of the swimmer. In: L. Lewillie & J. P. Clarys (Eds.), Proceedings of the First International Symposium on “biomechanics in swimming” (pp. 155–160). Brussels: Université Libre de Bruxelles, Laboratoire de l’effort.
  • Liljestrand, G., & Stenström, N. (1919). Studiën uber die physiologie des chwimmens. Skandinavisches Archiv Für Physiologie, 39(1), 1–63.
  • Marinho, D. A., Silva, A. J., Reis, V. M., Barbosa, T. M., Vilas-Boas, J. P., Alves, F. B., Machado, L., & Rouboa, A. I. (2009). Hydrodynamic analysis of different thumb positions in swimming. Journal of Sports Science & Medicine, 8, 58–66.
  • Marinho, D. A., Silva, A. J., Reis, V. M., Barbosa, T. M., Vilas-Boas, J. P., Alves, F. B., Machado, L., & Rouboa, A. I. (2011). Three-dimensional CFD analysis of the hand and forearm in swimming. Journal of Applied Biomechanics, 27(1), 74–80. https://doi.org/10.1123/jab.27.1.74
  • Mason, B., Sacilotto, G., & Menzies, T. (2011). Estimation of active drag using an assisted tow of higher than max swim velocity that allows fluctuating velocity & varying tow force. Portuguese Journal of Sport Sciences, 11, 327–330.
  • Matsuuchi, K., Miwa, T., Nomura, T., Sakakibara, J., Shintani, H., & Ungerechts, B. (2009). Unsteady flow field around a human hand and propulsive force in swimming. Journal of Biomechanics, 42(1), 42–47. https://doi.org/10.1016/j.jbiomech.2008.10.009
  • Miyashita, M. (1970). An analysis of fluctuations of swimming speed. In: L. Lewillie & J. P. Clarys (Eds.), Proceedings of the First International Symposium on “biomechanics in swimming” (pp. 53–58). Brussels: Université Libre de Bruxelles, Laboratoire de l’effort.
  • Morais, J. E., Marinho, D. A., Oliveira, J. P., Sampaio, T., Lopes, T., & Barbosa, T. M. (2022). Using statistical parametric mapping to compare the propulsion of age-group swimmers in front crawl acquired with the aquanex system. Sensors, 22(21), 8549. https://doi.org/10.3390/s22218549
  • Morouço, P., Barbosa, T., Arellano, R., & Vilas-Boas, J. P. (2018). Intra-cyclic variation of force and swimming performance. International Journal of Sports Physiology and Performance, 13(7), 897–902. https://doi.org/10.1123/ijspp.2017-0223
  • Morouço, P., Keskinen, K. L., Vilas-Boas, J. P., & Fernandes, R. J. (2011). Relationship between tethered forces and performance in the four conventional swimming techniques. Journal of Applied Biomechanics, 27(2), 161–169. https://doi.org/10.1123/jab.27.2.161
  • Nakashima, M., Maeda, S., Miwa, T., & Ichikawa, H. (2012). Optimizing simulation of the arm stroke in crawl swimming considering muscle strength characteristics of athlete swimmers. Journal of Biomechanical Science and Engineering, 7(2), 102–117. https://doi.org/10.1299/jbse.7.102
  • Nakashima, M., Ono, A., & Nakamura, T. (2015). Effect of knee joint motion for the transfemoral prosthesis in swimming. Journal of Biomechanical Science and Engineering, 10(3), 15–00375. https://doi.org/10.1299/jbse.15-00375
  • Nakashima, M., Satou, K., & Miura, Y. (2007). Development of swimming human simulation model considering rigid body dynamics and unsteady fluid force for whole body. Journal of Fluid Science and Technology, 2(1), 56–67. https://doi.org/10.1299/jfst.2.56
  • Narita, K., Nakashima, M., & Takagi, H. (2017). Developing a methodology for estimating the drag in front-crawl swimming at various velocities. Journal of Biomechanics, 54, 123–128. https://doi.org/10.1016/j.jbiomech.2017.01.037
  • Otten, E. (2003). Inverse and forward dynamics: Models of multi–body systems. Philosophical Transactions of the Royal Society of London Series B, 358(1437), 1493–1500. https://doi.org/10.1098/rstb.2003.1354
  • Paniccia, D., Graziani, G., Lugni, C., & Piva, R. (2021). On the role of added mass and vorticity release for self-propelled aquatic locomotion. Journal of Fluid Mechanics, 918, A45. https://doi.org/10.1017/jfm.2021.375
  • Pereira, S., Ruschel, L., Hubert, M., Machado, L., Roesler, H., Fernandes, R. J., & Vilas-Boas, J. P. (2015). Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques. Journal of Sports Sciences, 33(19), 2006–2015. https://doi.org/10.1080/02640414.2015.1026374
  • Pereira, G. S., Schut, G. R., Ruschel, C., Roesler, H., & Pereira, S. M. (2015). Propulsive force symmetry generated during butterfly swimming. Revista Brasileira de Cineantropometria & Desempenho Humano, 17(6), 704–712. https://doi.org/10.5007/1980-0037.2015v17n6p704
  • Pereira, S., Vilar, S., Gonçalves, P., Figueiredo, P., Fernandes, R., Roesler, H., & Vilas-Boas, J. P. (2008). A combined biomechanical analysis of the flip turn technique. In: Y. Kwon, J. Shim, J. K. Shim, & I. Shim (Eds.), Proceedings of the XXVI International Conference on Biomechanics in Sports (pp. 699–702). Seoul, Korea.
  • Persyn, U., Colman, V., & van Tilborgh, L. (1992). Movement analysis of the of the flat and the undulating breaststroke pattern. In D. Maclaren, T. Reilly, & A. Lees (Eds.), Biomechanics and medicine in swimming, swimming science VI (pp. 75–80). E&FN Spon.
  • Pyne, D. B., & Sharp, R. L. (2014). Physical and energy requirements of competitive swimming events. International Journal of Sport Nutrition and Exercise Metabolism, 24(4), 351–359. https://doi.org/10.1123/ijsnem.2014-0047
  • Quental, C., Simões, F., Sequeira, M., Ambrósio, J., Vilas-Boas, J. P., & Nakashima, M. (2022). A multibody methodological approach to the biomechanics of swimmers including hydrodynamic forces. Multibody System Dynamics, 57(3–4), 413–426. https://doi.org/10.1007/s11044-022-09865-6
  • Ribeiro, J., Figueiredo, P., Guidetti, L., Alves, F., Toussaint, H., Vilas-Boas, J. P., Baldari, C., & Fernandes, R. J. (2016). AquaTrainer® snorkel does not increase hydrodynamic drag but influences turning time. International Journal of Sports Medicine, 37(4), 324–328. https://doi.org/10.1055/s-0035-1555859
  • Rouboa, A., Silva, A., Leal, L., Rocha, J., & Alves, F. (2006). The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. Journal of Biomechanics, 39(7), 1239–1248. https://doi.org/10.1016/j.jbiomech.2005.03.012
  • Rudnik, D., Rejman, M., Machado, L., Fernandes, R. J., & Vilas-Boas, J. P. (2022). Does the back plate position influence swimming start temporal characteristics? International Journal of Environmental Research and Public Health, 19(5), 2722. https://doi.org/10.3390/ijerph19052722
  • Sacilotto, G., Roozbeh, D., Papic, B., Marinho, N., Mason, C., Gonjo, T., Sanders, R., & Vilas-Boas, J. P. (2023). “Selecting the right tool for the job” a narrative overview of experimental methods used to measure or estimate active and passive drag in competitive swimming. Sports Biomechanics, 1–18. https://doi.org/10.1080/14763141.2023.2197858
  • Samson, M., Monnet, T., Bernard, A., Lacouture, P., & David, L. (2018). Analysis of a swimmer’s hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions. Journal of Biomechanics, 67, 157–165. https://doi.org/10.1016/j.jbiomech.2017.12.003
  • Sanders, R. H. (1999). HydrodynamiC characteristics of a swimmer’s hand. Journal of Applied Biomechanics, 15(1), 13–26. https://doi.org/10.1123/jab.15.1.3
  • Sanders, R. H., Takagi, H., & Vilas-Boas, J. P. (2021). How technique modifications in elite 100m swimmers might improve front crawl performances to podium levels: Swimming ‘chariots of fire’. Sports Biomechanics, 1–20. https://doi.org/10.1080/14763141.2021.1998590
  • Schleihauf, R. (1986). Swimming skill: A review of basic theory. Journal of Swimming Research, 2(2), 11–20.
  • Schleihauf, R. E., Higgins, J. R., & Hinrichs, R. (1988). Propulsive techniques: Front crawl stroke, butterfly, backstroke and breaststroke. In B. E. Ungerechts, K. Wilke, & K. Reischle (Eds.), Swimming science V (Vol. 18, pp. 53–59). International Series of Sport Sciences, Human Kinetics.
  • Segall, M., Herrel, A., & Godoy-Diana, R. (2019). Hydrodynamics of frontal striking in aquatic snakes: Drag, added mass, and the possible consequences for prey capture success. Bioinspiration & Biomimetics, 14(3), 036005. https://doi.org/10.1088/1748-3190/ab0316
  • Seixas, A., Gonjo, T., Vardasca, R., Gabriel, J., Fernandes, R., & Vilas-Boas, J. P. (2014). A preliminary study on the relationship between energy expenditure and skin temperature in swimming. 12th International Conference on Quantitative InfraRed Thermography, Quantitative InfraRed Thermography Association. Bordeaux, France.
  • Sequeira, M., Simões, F., Quental, C., Ambrósio, J., Fonseca, P., Vilas-Boas, J. P., & Nakashima, M. (2022). Biomechanical framework for the inverse dynamic analysis of swimming using hydrodynamic forces from swumsuit. Computer Methods in Biomechanics and Biomedical Engineering, 1–9. https://doi.org/10.1080/10255842.2022.2119384
  • Shleihauf, R. E. (1979). A hydrodynamical analysis of swimming propulsion. In J. Terauds & E. W. Bedingfield (Eds.), Swimming III (pp. 70–109). University Park Press.
  • Silva, A. F., Figueiredo, P., Vilas-Boas, J. P., Fernandes, R. J., & Seifert, L. (2022). The effect of a coordinative training in young swimmers’ performance. International Journal of Environmental Research and Public Health, 19(12), 7020. https://doi.org/10.3390/ijerph19127020
  • Soncin, R., Szmuchrowski, L. A., Claudino, J. G. O., Ferreira, J. C., Pinho, J., Vilas-Boas, J. P., Amadio, A. C., Huebner, R., Serrão, J. C., & Mezêncio, B. (2021). A semi-tethered swimming test better predicts maximal swimming velocity if drag force is considered. Revista Portuguesa de Ciências Do Desporto (Portuguese Journal of Sport Sciences), 21(1), 13–23. https://doi.org/10.5628/rpcd.21.01.11
  • Stokes, G. G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Transaction of the Cambridge Philosophical Society, 9(2), 8–106.
  • Takagi, H., Nakashima, M., Ozaki, T., & Matsuuchi, K. (2014). Unsteady hydrodynamic forces acting on a robotic arm and its flow field: Application to the crawl stroke. Journal of Biomechanics, 47(6), 1401–1408. https://doi.org/10.1016/j.jbiomech.2014.01.046
  • Takagi, H., Nakashima, M., Sato, Y., Matsuuchi, K., & Sanders, R. H. (2016). Numerical and experimental investigations of human swimming motions. Journal of Sports Sciences, 34(16), 1564–1580. https://doi.org/10.1080/02640414.2015.1123284
  • Takagi, H., Nakashima, M., Sengoku, Y., Tsunokawa, T., Koga, D., Narita, K., Kudo, S., Sanders, R., & Gonjo, T. (2021). How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Sports Biomechanics, 1–20. https://doi.org/10.1080/14763141.2021.1959946
  • Takagi, H., Shimizu, Y., & Kodan, N. (1999). A hydrodynamic study of active drag in swimming. JSME International Journal, 42(2), 171–177. https://doi.org/10.1299/jsmeb.42.171
  • Takagi, H., Shimizu, Y., Kurashima, A., & Sanders, R. (2001). Effect of thumb abduction and adduction on hydrodynamic characteristics of a model of the human hand. In XIX international symposium on biomechanics in sports (pp. 122–126). ISBS, University of San Francisco.
  • Thrall, W. R. (1960). A performance analysis of the propulsion force of the flutter kick [ Ph.D. thesis], University of Iowa.
  • Toussaint, H. M., Meulemans, A., de Groot, G., Hollander, A. P., Schreurs, A. W., & Vervoorn, K. (1987). Respiratory valve for oxygen uptake measurements during swimming. European Journal of Applied Physiology, 56(3), 363–366. https://doi.org/10.1007/BF00690906
  • Ungerechts, B. (1985). Considerations of the butterfly kick based on hydrodynamical experiments. In S. M. Perren & E. Schneider (Eds.), Biomechanics: Current interdisciplinary research (pp. 705–710). Martinus Nijhoff Publishers. https://doi.org/10.1007/978-94-011-7432-9_107
  • van Houwelingen, J., Schreven, S., Smeets, J. B. J., Clercx, H. J. H., & Beek, P. J. (2017). Effective propulsion in swimming: Grasping the hydrodynamics of hand and arm movements. Journal of Applied Biomechanics, 33(1), 87–100. https://doi.org/10.1123/jab.2016-0064
  • Vennell, R., Pease, D., & Wilson, B. (2006). Wave drag on human swimmers. Journal of Biomechanics, 39(4), 664–671. https://doi.org/10.1016/j.jbiomech.2005.01.023
  • Vilas-Boas, J. P. (1996). Speed fluctuations and energy cost with different breaststroke techniques. In J. Troup, A. P. Hollander, & E. D. Strass (Eds.), Biomechanics and medicine in swimming VII (pp. 167–171). E&FN SPON. Chapman & Hall.
  • Vilas-Boas, J. P., Barbosa, T. M., & Fernandes, R. J. (2011). Intra-cycle velocity variations, swimming economy, performance and training in swimming. In L. Seifert, D. Chollet, & I. Mujika (Eds.), World book of swimming: From science to performance, chapter 5 (pp. 119–134). Nova Science Publishers Inc.
  • Vilas-Boas, J. P., Costa, L., Fernandes, R., Ribeiro, J., Figueiredo, P., Marinho, D., Silva, A., Rouboa, A., & Machado, L. (2010). Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke. Journal of Applied Biomechanics, 26(3), 324–331. https://doi.org/10.1123/jab.26.3.324
  • Vilas-Boas, J. P., Fernandes, R., Barbosa, T., & Keskinen, K. L. (2007). Swimming bioenergetics: Integrating biomechanical and physiological data into a coherent biophysical model for performance and training. In R. A. Colomina, J. A. Sanchez, F. N. Valdivielso, E. M. Ortiz, & G. L. Contreras (Eds.), Swimming science I (pp. 7–18). University of Granada.
  • Vilas-Boas, J. P., Ramos, R. J., Fernandes, R., Silva, A. J., Rouboa, A. I., Machado, L., Barbosa, T. M., & Marinho, D. (2015). Hydrodynamic analysis of different finger positions in swimming: A computational fluid dynamics approach. Journal of Applied Biomechanics, 31(1), 48–55. https://doi.org/10.1123/jab.2013-0296
  • Vilas-Boas, J. P., & Santos, P. (1994). Comparison of swimming economy in three breaststroke techniques. In M. Miyashita, T. Mutoh, & A. B. Richardson (Eds.), Medicine and science in aquatic sports (Vol. 39, pp. 48–54). Karger. https://doi.org/10.1159/000423705
  • Vogel, S. (1994). Life in moving fluids: The physical biology of flow (2nd ed.). Princeton University Press.
  • von Loebbecke, A., & Mittal, R. (2012). Comparative analysis of thrust production for distinct arm-pull styles in competitive swimming. Journal of Biomechanical Engineering, 13(7). https://doi.org/10.1115/1.4007028
  • von Loebbecke, A., Mittal, R., Mark, R., & Hahn, J. (2009). A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming. Sports Biomechanics, 8(1), 60–77. https://doi.org/10.1080/14763140802629982
  • Vorontsov, A. (2011). Strength and power training in swimming. In L. Seifert, D. Chollet, & I. Mujika (Eds.), World book of swimming: From science to performance, chapter 16 (pp. 313–343). Nova Science Publisher.
  • Webb, A., Banks, J., Phillips, C., Hudson, D., Taunton, D., & Turnock, S. (2011). Prediction of passive and active drag in swimming. Procedia Engineering, 13, 133–140. https://doi.org/10.1016/j.proeng.2011.05.063
  • Zacca, R., Mezêncio, B., Castro, F., Nakamura, F., Pyne, D., Vilas-Boas, J. P., & Fernandes, R. J. (2022). Case study: Comparison of swimsuits and wetsuits through biomechanics and energetics in elite female open water swimmers. International Journal of Sports Physiology and Performance, 17(1), 130–136. https://doi.org/10.1123/ijspp.2021-0044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.