170
Views
1
CrossRef citations to date
0
Altmetric
Reports

The effects of Antimicrobial Peptides and Hyaluronic Acid compound mask on wound healing after ablative fractional Carbon Dioxide laser resurfacing

, , , , , & show all
Pages 217-224 | Received 24 Jan 2018, Accepted 07 Aug 2018, Published online: 10 Sep 2018

References

  • Zhou BR, Xu Y, Guo SL, Xu Y, Wang Y, Zhu F, Permatasari F, Wu D, Yin Z-Q, Luo D. The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed Res Int. 2013;2013:519126. doi:10.1155/2013/519126.
  • Ong MW, Bashir SJ. Fractional laser resurfacing for acne scars: a review. Br J Dermatol. Jun 2012;166(6):1160–69. doi:10.1111/j.1365-2133.2012.10870.x.
  • Oh BH, Hwang YJ, Lee YW, Choe YB, Ahn KJ. Skin characteristics after fractional photothermolysis. Ann Dermatol. Nov 2011;23(4):448–54. doi:10.5021/ad.2011.23.4.448.
  • Chapas AM, Brightman L, Sukal S, Hale E, Daniel D, Bernstein LJ, Geronemus RG. Successful treatment of acneiform scarring with CO2 ablative fractional resurfacing. Lasers Surg Med. Aug 2008;40(6):381–86. doi:10.1002/lsm.20659.
  • Metelitsa AI, Alster TS. Fractionated laser skin resurfacing treatment complications: a review. Dermatol Surg. Mar 2010;36(3):299–306. doi:10.1111/j.1524-4725.2009.01434.x.
  • Saedi N, Jalian HR, Petelin A, Zachary C. Fractionation: past, present, future. Semin Cutan Med Surg. Jun 2012;31(2):105–09. doi:10.1016/j.sder.2012.02.003.
  • Hunzeker CM, Weiss ET, Geronemus RG. Fractionated CO2 laser resurfacing: our experience with more than 2000 treatments. Aesthet Surg J. Jul-Aug 2009;29(4):317–22. doi:10.1016/j.asj.2009.05.004.
  • Tierney EP, Eisen RF, Hanke CW. Fractionated CO2 laser skin rejuvenation. Dermatol Ther. Jan-Feb 2011;24(1):41–53. doi:10.1111/j.1529-8019.2010.01377.x.
  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17(10):12276–86. doi:10.3390/molecules171012276.
  • Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect Medicin Chem. 2014;6:73–80. doi:10.4137/PMC.S13215.
  • Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. Sep 2011;29(9):464–72. doi:10.1016/j.tibtech.2011.05.001.
  • Malmsten M. Antimicrobial peptides. Ups J Med Sci. May 2014;119(2):199–204. doi:10.3109/03009734.2014.899278.
  • Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353. doi:10.3389/fmicb.2013.00077.
  • Yamasaki K, Gallo RL. Antimicrobial peptides in human skin disease. Eur J Dermatol. Jan-Feb 2008;18(1):11–21. doi:10.1684/ejd.2008.0304.
  • Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014;7(5):545–94. doi:10.3390/ph7050545.
  • Mendez-Samperio P. Recent advances in the field of antimicrobial peptides in inflammatory diseases. Adv Biomed Res. 2013;2:50. doi:10.4103/2277-9175.114192.
  • Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Intern Med. 2003;254:197–215.
  • Upton M, Cotter P, Tagg J. Antimicrobial peptides as therapeutic agents. Int J Microbiol. 2012;2012:326503. doi:10.1155/2012/326503.
  • Kin NW, Chen Y, Stefanov EK, Gallo RL, Kearney JF. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function. Eur J Immunol. Oct 2011;41(10):3006–16. doi:10.1002/eji.201141606.
  • Theerawatanasirikul S, Sailasuta A, Thanawongnuwech R, Suriyaphol G. Alterations of keratins, involucrin and filaggrin gene expression in canine atopic dermatitis. Res Vet Sci. Dec 2012;93(3):1287–92. doi:10.1016/j.rvsc.2012.06.005.
  • Kirk JF, Ritter G, Finger I, Sankar D, Reddy JD, Talton JD, Nataraj C, Narisawa S, Millán JL, Cobb RR. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing. Biomatter. 2013;3(4). doi:10.4161/biom.25633.
  • Prosdocimi M, Bevilacqua C. Exogenous hyaluronic acid and wound healing: an updated vision. Panminerva Med. Jun 2012;54(2):129–35.
  • Su Z, Ma H, Wu Z, Zeng H, Li Z, Wang Y, Liu G, Xu B, Lin Y, Zhang P, et al. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater Sci Eng C Mater Biol Appl. Nov 1 2014;44:440–48. doi:10.1016/j.msec.2014.07.039.
  • Voigt J, Driver VR. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen. May-Jun 2012;20(3):317–31. doi:10.1111/j.1524-475X.2012.00777.x.
  • Choi JH, Jun JH, Kim JH, Sung HJ, Lee JH. Synergistic effect of Interleukin-6 and Hyaluronic Acid on cell migration and ERK activation in human keratinocytes. J Korean Med Sci. Nov 2014;29(Suppl 3):S210–216. doi:10.3346/jkms.2014.29.S3.S210.
  • Reitinger S, Lepperdinger G. Hyaluronan, a ready choice to fuel regeneration: a mini-review. Gerontology. 2013;59(1):71–76. doi:10.1159/000342200.
  • Price RD, Berry MG, Navsaria HA. Hyaluronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthet Surg. 2007;60(10):1110–19. doi:10.1016/j.bjps.2007.03.005.
  • Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunology. Apr 2010;135(1):1–11. doi:10.1016/j.clim.2009.12.004.
  • Braff MH, Gallo RL. Antimicrobial peptides: an essential component of the skin defensive barrier. Curr Top Microbiol Immunol. 2006;306:91–110.
  • Jacobsen F, Mohammadi-Tabrisi A, Hirsch T, Mittler D, Mygind PH, Sonksen CP, Raventos D, Kristensen HH, Gatermann S, Lehnhardt M, et al. Antimicrobial activity of the recombinant designer host defence peptide P-novispirin G10 in infected full-thickness wounds of porcine skin. J Antimicrob Chemother. Mar 2007;59(3):493–98. doi:10.1093/jac/dkl513.
  • Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. Mar 2007;127(3):594–604. doi:10.1038/sj.jid.5700599.
  • Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A, Gallo RL. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. Oct 2006;20(12):2068–80. doi:10.1096/fj.06-6075com.
  • Morizane S, Yamasaki K, Kabigting FD, Gallo RL. Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J Invest Dermatol. May 2010;130(5):1297–306. doi:10.1038/jid.2009.435.
  • Marzani B, Pinto D, Minervini F, Calasso M, Di Cagno R, Giuliani G, Gobbetti M, De Angelis M. The antimicrobial peptide pheromone Plantaricin A increases antioxidant defenses of human keratinocytes and modulates the expression of filaggrin, involucrin, beta-defensin 2 and tumor necrosis factor-alpha genes. Exp Dermatol. Sep 2012;21(9):665–71. doi:10.1111/j.1600-0625.2012.01538.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.