1,821
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Neonatal hypoxic–ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury

, , , &
Pages 3685-3692 | Received 05 Feb 2018, Accepted 20 Apr 2018, Published online: 02 May 2018

References

  • Mattiesen WR, Tauber SC, Gerber J, et al. Increased neurogenesis after hypoxic–ischemic encephalopathy in humans is age related. Acta Neuropathol. 2009;117(5):525–534.
  • Gulczyńska E, Gadzinowski J. Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. Ginekol Pol. 2012;83(3):214–218.
  • Tagin MA, Woolcott CG, Vincer MJ, et al. Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch Pediatr Adolesc Med. 2012;166(6):558–566.
  • Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the Clinician. JAMA Pediatr. 2015;169(4):397–403.
  • Distefano G, Praticò AD. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy. Ital J Pediatr. 2010;36:63.
  • Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol. 2011;2011:609813.
  • Dixon BJ, Reis C, Ho WM, et al. Neuroprotective strategies after neonatal hypoxic ischemic encephalopathy. Int J Mol Sci. 2015;16(9):22368–22401.
  • Leonardo CC, Pennypacker KR. Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic–ischemic injury. J Neuroinflamm. 2009;6:13.
  • Juul SE, Ferriero DM. Pharmacologic neuroprotective strategies in neonatal brain injury. Clin Perinatol. 2014;41(1):119–131.
  • Balduini W, Carloni S, Perrone S, et al. The use of melatonin in hypoxic-ischemic brain damage: an experimental study. J Matern Fetal Neonatal Med. 2012;25:119–124.
  • Alonso-Alconada D, Alvarez A, Lacalle J, et al. Histological study of the protective effect of melatonin on neural cells after neonatal hypoxia–ischemia. Histol Histopathol. 2012;27(6):771–783.
  • Aly H, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol. 2015;35(3):186–191.
  • Lv HY, Wu SJ, Wang QL, et al. Effect of erythropoietin combined with hypothermia on serum Tau protein levels and neurodevelopmental outcome in neonates with hypoxic–ischemic encephalopathy. Neural Regen Res. 2017;12(10):1655–1663.
  • Wang YJ, Pan KL, Zhao XL, et al. Therapeutic effects of erythropoietin on hypoxic–ischemic encephalopathy in neonates. Zhongguo Dang Dai Er Ke Za Zhi. 2011;13(11):855–858.
  • Zhu C, Kang W, Xu F, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic–ischemic encephalopathy. Pediatrics. 2009;124(2):e218–e226.
  • Wu YW, Mathur AM, Chang T, et al. High-dose erythropoietin and hypothermia for hypoxic–ischemic encephalopathy: a phase II trial. Pediatrics. 2016;137(6):e20160191. DOI:10.1542/peds.2016-0191.
  • Li J, Dong Y, Chen H, et al. Protective effects of hydrogen-rich saline in a rat model of permanent focal cerebral ischemia via reducing oxidative stress and inflammatory cytokines. Brain Res. 2012;1486:103–111.
  • Ge P, Zhao J, Li S, et al. Inhalation of hydrogen gas attenuates cognitive impairment in transient cerebral ischemia via inhibition of oxidative stress. Neurol Res. 2012;34(2):187–194.
  • Filipovic R, Zecevic N. Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol. 2008;211(1):41–51.
  • Ofek-Shlomai N, Berger I. Inflammatory injury to the neonatal brain – what can we do? Front Pediatr. 2014;2:30.
  • Shinwell ES, Karplus M, Reich D, et al. Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Arch Dis Child Fetal Neonatal Ed. 2000;83(3):F177–F181.
  • Rong X, Zhou W, Xiao-Wen C, et al. Ganglioside GM1 reduces white matter damage in neonatal rats. Acta Neurobiol Exp (Wars). 2013;73(3):379–386.
  • Zhang YP, Huang QL, Zhao CM, et al. GM1 improves neurofascin155 association with lipid rafts and prevents rat brain myelin injury after hypoxia–ischemia. Braz J Med Biol Res. 2011;44(6):553–561.
  • Chen JH. Clinical observation on curative effect of monosialoganglioside in treatment of neonatal hypoxic-ischemic encephapathy. Qiqihar Yixueyuan Xuebao. 2014;35(22):3300–3302.
  • Hu W, Gong SP, Lan Y, et al. Short term protective effect and long term influence of neural growth factor in neonatal rats following hypoxic ischemic brain damage. Zhongguo Ertong Baojian Zazhi. 2007;15(1):54–56.
  • Guo L. Clinical effect of rat nerve growth factor in treatment of hypoxic–ischemic encephalopathy. Jilin Yixue Zazhi. 2015;36(7):1306–1130.
  • Hagmann CF, Brotschi B, Bernet V, et al. Hypothermia for perinatal asphyxial encephalopathy. Swiss Med Wkly. 2011;141:w13145.
  • Higgins RD, Raju T, Edwards AD, et al. Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr. 2011;159(5): 851–858.e1.
  • Chalak LF, Sánchez PJ, Adams-Huet B, et al. Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr. 2014;164(3): 468–474.e1.
  • Wu YW, Gonzalez FF. Erythropoietin: a novel therapy for hypoxic–ischaemic encephalopathy? Dev Med Child Neurol. 2015;57(Suppl 3):34–39.
  • Azzopardi DV, Strohm B, Edwards AD, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361(14):1349–1358.
  • Eicher DJ, Wagner CL, Katikaneni LP, et al. Moderate hypothermia in neonatal encephalopathy: efficacy outcomes. Pediatr Neurol. 2005;32(1):11–17.
  • Shankaran S, Laptook AR, Pappas A, et al. Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. JAMA. 2014;312(24):2629–2639.
  • Qu SQ, Luan Z, Yin GC, et al. Transplantation of human fetal neural stem cells into cerebral ventricle of the neonatal rat following hypoxic–ischemic injury: survival, migration and differentiation. Zhonghua Er Ke Za Zhi. 2005;43(8):576–579.
  • Daadi MM, Davis AS, Arac A, et al. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic–ischemic brain injury. Stroke. 2010;41(3):516–523.
  • Shinoyama M, Ideguchi M, Kida H, et al. Cortical region-specific engraftment of embryonic stem cell-derived neural progenitor cell restores axonal sprouting to a subcortical target and achieves motor functional recovery in a mouse model of neonatal hypoxic-ischemic brain injury. Front Cell Neurosci. 2013;7:128.
  • Ji G, Liu M, Zhao XF, et al. NF-kB signaling is involved in the effects of intranasally engrafted human neural stem cells on neurofunctional improvements in neonatal rat hypoxic–ischemic encephalopathy. CNS Neurosci Ther. 2015;21(12):926–935.
  • Luan Z, Yin GC, Hu XH, et al. Treatment of an infant with severe neonatal hypoxic–ischemic encephalopathy sequelae with transplantation of human neural stem cell into cerebral ventricle. Zhonghua Er Ke Za Zhi. 2005;43(8):580–583; discussion 580.
  • Luan Z, Liu WP, Qu SQ, et al. Treatment of newborns with severe injured brain with transplantation of human neural precursor cell. Zhonghua Er Ke Za Zhi. 2011;49(6):445–449.
  • Pimentel-coelho PM, Magalhães ES, Lopes LM, et al. Human cord blood transplantation in a neonatal rat model of hypoxic–ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev. 2010;19(3):351–358.
  • Huang HZ, Wen XH, Liu H, et al. Human umbilical cord blood mononuclear cell transplantation promotes long-term neurobehavioral functional development of newborn SD rats with hypoxic ischemic brain injury. Zhonghua Er Ke Za Zhi. 2013;51(6):460–466.
  • Greggio S, de Paula S, Azevedo PN, et al. Intra-arterial transplantation of human umbilical cord blood mononuclear cells in neonatal hypoxic–ischemic rats. Life Sci. 2014;96(1–2):33–39.
  • de paula S, Greggio S, Marinowic DR, et al. The dose–response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia–ischemia. Neuroscience. 2012;210:431–441.
  • Yasuhara T, Hara K, Maki M, et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic–ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med. 2010;14(4):914–921.
  • Li XE, Yuan Q, Tang CZ, et al. Effect of acupuncture intervention on 14-3-3 expression in cerebral cortex of hypoxic–ischemic brain damage rats. Zhen Ci Yan Jiu. 2014;39(6):466–471.
  • Zhang Y, Lan R, Wang J, et al. Acupuncture reduced apoptosis and up-regulated BDNF and GDNF expression in hippocampus following hypoxia–ischemia in neonatal rats. J Ethnopharmacol. 2015;172:124–132.
  • Shi BP, Li H, Bo HD, et al. Observation of the therapeutic effect of acupuncture on hand functions in children with encephalopathy. Zhongguo Zhenjiu. 2004;24(1):15–16.
  • Wei SX, Chen X. The curative effect of early intervention of traditional Chinese medicine on treating the prognosis of neonatal brain injury. Zhongguo Shiyong Shenjing Jibing Zazhi. 2015;18(4):28–29.
  • Wong V, Cheuk DK, Chu V. Acupuncture for hypoxic ischemic encephalopathy in neonates. Cochrane Database Syst Rev. 2013;1(1):CD007968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.