369
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Preeclampsia and the challenge of early prediction: reality or utopia? State of art and critical review of literature

, , , , , , & show all
Pages 677-686 | Received 06 Mar 2017, Accepted 27 Jun 2018, Published online: 10 Sep 2018

References

  • Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33:130–137.
  • Steegers EA, von Dadelszen P, Duvekot JJ, et al. Pre-eclampsia. Lancet. 2010;376:631–644.
  • Irgens HU, Reisater L, Irgens LM, et al. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323:1213–1217.
  • Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–2006.
  • Ray JG, Vermeulen MJ, Schull MJ, et al. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet. 2005;366:1797–1803.
  • Bellamy L, Casas JP, Hingorani AD, et al. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335:974.
  • Wu CS, Nohr EA, Bech BH, et al. Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol. 2009;201:269.e1–269.e10.
  • Cerdeira AS, Karumanchi SA. Biomarkers in preeclampsia. In: Edelstein CL, editor. Biomarkers of kidney disease. 1st ed. Amsterdam; Boston: Academic Press/Elsevier; 2011. p. 385–426.
  • Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123:2856–2869.
  • Tjwa M, Luttun A, Autiero M, et al. VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res. 2003;314:5–14.
  • Tsiakkas A, Duvdevani N, Wright A, et al. Serum placental growth factor in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2015;45:591–598.
  • Poon LC, Kametas NA, Maiz N, et al. First-trimester prediction of hypertensive disorders in pregnancy. Hypertension. 2009;53:812–818.
  • Kar M. Role of biomarkers in early detection of preeclampsia. J Clin Diagn Res. 2014;8:BE01–BE04.
  • Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350:672–683.
  • Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111:649–658.
  • Zhou Y, McMaster M, Woo K, et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol. 2002;160:1405–1423.
  • Rana S, Karumanchi SA, Lindheimer MD. Angiogenic factors in diagnosis, management, and research in preeclampsia. Hypertension. 2014;63:198–202.
  • Myatt L, Clifton RG, Roberts JM, et al. Can changes in angiogenic biomarkers between the first and second trimesters of pregnancy predict development of pre-eclampsia in a low-risk nulliparous patient population? BJOG. 2013;120:1183–1191.
  • Akolekar R, Syngelaki A, Poon L, et al. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther. 2013;33:8–15.
  • Park HJ, Kim SH, Jung YW, et al. Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy. BMC Pregnancy Childbirth. 2014;14:35.
  • Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc Res. 2008;75:1–8.
  • Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355:992–1005.
  • Sachan R, Patel ML, Dhiman S, et al. Diagnostic and prognostic significance of serum soluble endoglin levels in preeclampsia and eclampsia. Adv Biomed Res. 2016;295:119.
  • Lawrence JB, Oxvig C, Overgaard MT, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci U S A. 1999;96:3149–3153.
  • Deveci K, Sogut E, Evliyaoglu O, et al. Pregnancy-associated plasma protein-A and C-reactive protein levels in pre-eclamptic and normotensive pregnant women at third trimester. J Obstet Gynaecol Res. 2009;35:94–98.
  • Bersinger NA, Ødegård RA. Second- and third-trimester serum levels of placental proteins in preeclampsia and small-for-gestational age pregnancies. Acta Obstet Gynecol Scand. 2004;83:37–45.
  • Bersinger NA, Smárason AK, Muttukrishna S, et al. Women with preeclampsia have increased serum levels of pregnancy-associated plasma protein A (PAPP-A), inhibin A, activin A and soluble E-selectin. Hypertens Pregnancy. 2003;22:45–55.
  • Smith GC, Stenhouse EJ, Crossley JA, et al. Early pregnancy levels of pregnancy-associated plasma protein A and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J Clin Endocrinol Metab. 2002;87:1762–1767.
  • Muttukrishna S, North RA, Morris J, et al. Serum inhibin A and activin A are elevated prior to the onset of pre-eclampsia. Hum Reprod. 2000;15:1640–1645.
  • Sibai BM, Koch MA, Freire S, et al. Serum inhibin A and angiogenic factor levels in pregnancies with previous preeclampsia and/or chronic hypertension: are they useful markers for prediction of subsequent preeclampsia? Am J Obstet Gynecol. 2008;199:268.e1–268.e9.
  • Kang JH, Farina A, Park JH, et al. Down syndrome biochemical markers and screening for preeclampsia at first and second trimester: correlation with the week of onset and the severity. Prenat Diagn. 2008;28:704–709.
  • Ree PH, Hahn WB, Chang SW, et al. Early detection of preeclampsia using inhibin A and other second-trimester serum markers. Fetal Diagn Ther. 2011;29:280–286.
  • Ong CYT, Lioo AW, Munim S, et al. First-trimester maternal serum activin A in pre-eclampsia and fetal growth restriction. J. Matern Fetal Neonatal Med. 2004;15:176–180.
  • Salomon LJ, Benattar C, Audibert F, et al. Severe preeclampsia is associated with high inhibin A levels and normal leptin levels at 7 to 13 weeks into pregnancy. Am J Obstet Gynecol. 2003;189:1517–1522.
  • Than NG, Romero R, Goodman M, et al. A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci U S A. 2009;106:9731–9736.
  • Than NG, Romero R, Kim CJ, et al. Galectins: guardians of eutherian pregnancy at the maternal-fetal interface. Trends Endocrinol Metab. 2012;23:23–31.
  • Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension. 2008;51:970–975.
  • Huppertz B, Sammar M, Chefetz I, et al. Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagn Ther. 2008;24:230–236.
  • Gonen R, Shahar R, Grimpel YI, et al. Placental protein 13 as an early marker for pre-eclampsia: a prospective longitudinal study. BJOG. 2008;115:1465–1472.
  • Akolekar R, Syngelaki A, Beta J, et al. Maternal serum placental protein 13 at 11–13 weeks of gestation in pre-eclampsia. Prenat Diagn. 2009;29:1103–1108.
  • Cuckle HS. Screening for pre-eclampsia – lessons from aneuploidy screening. Placenta. 2011;32:S42–S48.
  • Nicolaides KH, Bindra R, Turan OM, et al. A novel approach to first-trimester screening for early preeclampsia combining. Ultrasound Obstet Gynecol. 2006;27(1):13–17.
  • Chafetz I, Kuhnreich I, Sammar M, et al. First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol. 2007;197:35.e1–35.e7.
  • Meiri H, Sammar M, Herzog A, et al. Prediction of preeclampsia by placental protein 13 and background risk factors and its prevention by aspirin. J Perinat Med. 2014;42:591–601.
  • Shi Z, Xu W, Loechel F, et al. Adam 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem. 2000;275:18574–18580.
  • Loechel F, Fox JW, Murphy G, et al. Adam 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun. 2000;278:511–515.
  • Spencer K, Cowans NJ, Stamatopoulou AA. ADAM12s in maternal serum as a potential marker of pre-eclampsia. Prenat Diagn. 2008;28:212–216.
  • Poon LC, Chelemen T, Granvillano O, et al. First-trimester maternal serum a disintegrin and metalloprotease 12 (ADAM12) and adverse pregnancy outcome. Obstet Gynecol. 2008;112:1082–1090.
  • Laigaard J, Sørensen T, Placing S, et al. Reduction of the disintegrin and metalloprotease ADAM12 in preeclampsia. Obstet Gynecol. 2005;106:144–149.
  • Goetzinger KR, Zhong Y, Cahill AG, et al. Efficiency of first-trimester uterine artery Doppler, a-disintegrin and metalloprotease 12, Pregnancy-associated plasma protein A, and maternal characteristics in the prediction of preeclampsia. J Ultrasound Med. 2013;32:1593–1600.
  • Grubb AO. Cystatin C-properties and use as diagnostic marker. Adv Clin Chem. 2000;35:63–99.
  • Kristensen K, Larsson I, Hansson SR. Increased cystatin C expression in the pre-eclamptic placenta. Mol Hum Reprod. 2007;13:189–195.
  • Thilaganathan B, Ralph E, Papageorghiou AT, et al. Raised maternal serum cystatin C: an early pregnancy marker for preeclampsia. Reprod Sci. 2009;16:788–793.
  • Souza DG, Soares AC, Pinho V, et al. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol. 2002;160:1755–1765.
  • Cetin I, Cozzi V, Pasqualini F, et al. Elevated maternal levels of the long pentraxin 3 (PTX3) in preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol. 2006;194:1347–1353.
  • André P. P-selectin in haemostasis. Br J Haematol. 2004;126:298–306.
  • Polgar J, Matuskova J, Wagner DD. The p-selectin, tissue factor, coagulation triad. J Thromb Haemost. 2005;3:1590–1596.
  • Dunlop LC, Skinner MP, Bendall LJ, et al. Characterization of GMP-140 (p-selectin) as a circulating plasma protein. J Exp Med. 1992;175:1147–1150.
  • Holthe MR, Staff AC, Berge LN, et al. Different levels of platelet activation in preeclamptic, normotensive pregnant, and nonpregnant women. Am J Obstet Gynecol. 2004;190:1128–1134.
  • Konijnenberg A, Stokkers EW, van der Post JA, et al. Extensive platelet activation in preeclampsia compared with normal pregnancy: enhanced expression of cell adhesion molecules. Am J Obstet Gynecol. 1997;176:461–469.
  • Yoneyama Y, Suzuki S, Sawa R, et al. Plasma adenosine levels and P-selectin expression on platelets in preeclampsia. Obstet Gynecol. 2001;97:366–370.
  • Bretelle F, Sabatier F, Desprez D, et al. Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction. Thromb Haemost. 2003;89:486–492.
  • Lok CA, Nieuwland R, Sturk A, et al. Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets. 2007;18:68–72.
  • Aksoy H, Kumtepe Y, Akçay F, et al. Correlation of P-selectin and lipoprotein(a), and other lipid parameters in preeclampsia. Clin Exp Med. 2002;2:39–43.
  • Heyl W, Handt S, Reister F, et al. Elevated soluble adhesion molecules in women with pre-eclampsia. Do cytokines like tumour necrosis factor-α and interleukin-1β cause endothelial activation. Eur J Obstet Gynecol Reprod Biol. 1999;86:35–41.
  • Halim A, Kanayama N, el Maradny E, et al. Plasma P selectin (GMP-140) and glycocalicin are elevated in preeclampsia and eclampsia: their significances. Am J Obstet Gynecol. 1996;174:272–277.
  • Chaiworapongsa T, Romero R, Yoshimatsu J, et al. Soluble adhesion molecule profile in normal pregnancy and pre-eclampsia. J. Matern Fetal Neonatal Med. 2002;12:19–27.
  • Nasrollahi S, Hoseini Panah SM, Tavilani H, et al. Antioxidant status and serum levels of selectins in pre-eclampsia. J Obstet Gynaecol. 2015;35:16–18.
  • Zhang Y, Yang H, Long Y, et al. Plasma level of placenta-derived macrophage-stimulating protein-chain in preeclampsia before 20 weeks of pregnancy. PLoS One. 2016;11:e0161626.
  • Olsson MG, Centlow M, Rutardóttir S, et al. Increased levels of cell-free hemoglobin, oxidation markers, and the antioxidative heme scavenger α (1)-microglobulin in preeclampsia. Free Radic Biol Med. 2010;48:284–291.
  • Hansson SR, Gram M, Akerström B. Fetal hemoglobin in preeclampsia: a new causative factor, a tool for prediction/diagnosis and a potential target for therapy. Curr Opin Obstet Gynecol. 2013;25:448–455.
  • Centlow M, Carninci P, Nemeth K, et al. Placental expression profiling in preeclampsia: local overproduction of hemoglobin may drive pathological changes. Fertil Steril. 2008;90:1834–1843.
  • Anderson UD, Gram M, Jalmby M, et al. The human endogenous protection system against cell-free hemoglobin is overwhelmed during preeclampsia – new biomarkers and potential targets for therapy. Pregnancy Hypertens. 2015;5:86.
  • Anderson UD, Gram M, Thilaganathan B, et al. Free fetal hemoglobin and hemoglobin-scavenging proteins are predictive first and second trimester biochemical markers for preeclampsia. Pregnancy Hypertens 2015;5:53.
  • Anderson UD, Olsson MG, Rutardóttir S, et al. Fetal hemoglobin and α1-microglobulin as first- and early second-trimester predictive biomarkers for preeclampsia. Am J Obstet Gynecol. 2011;204:520.e1–520.e5.
  • Fong FM, Sahemey MK, Hamedi G, et al. Maternal genotype and severe preeclampsia: a HuGE review. Am J Epidemiol. 2014;180:335–345.
  • Buurma AJ, Turner RJ, Driessen JH, et al. Genetic variants in pre-eclampsia: a meta-analysis. Hum Reprod Update. 2013;19:289–303.
  • Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet. 1963;282:113–116.
  • Scharfe-Nugent A, Corr SC, Carpenter SB, et al. TLR9 provokes inflammation in response to fetal DNA: mechanism for fetal loss in preterm birth and preeclampsia. J Immunol. 2012;188:5706–5712.
  • Cotter AM, Martin CM, O'Leary JJ, et al. Increased fetal DNA in the maternal circulation in early pregnancy is associated with an increased risk of preeclampsia. Am J Obstet Gynecol. 2004;191:515–520.
  • Miranda ML, Macher HC, Muñoz HR, et al. Role of circulating cell-free DNA levels in patients with severe preeclampsia and HELLP syndrome. Am J Hypertens. 2013;26:1377–1380.
  • Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, et al. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol. 2006;169:400–404.
  • Lo YM, Leung TN, Tein MS, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem. 1999;45:184–188.
  • Grill S, Rusterholz C, Zanetti-Dällenbach R, et al. Potential markers of preeclampsia – a review. Reprod Biol Endocrinol. 2009;7:70.
  • Martin A, Krishna I, Badell M, et al. Can the quantity of cell-free fetal DNA predict preeclampsia: a systematic review. Prenat Diagn. 2014;34:685–691.
  • Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005;65:3497–3508.
  • Chiu RW, Chim SS, Wong IH, et al. Hypermethylation of RASSF1A in human and rhesus placentas. Am J Pathol. 2007;170:941–950.
  • Papantoniou N, Bagiokos V, Agiannitopoulos K, et al. RASSF1A in maternal plasma as a molecular marker of preeclampsia. Prenat Diagn. 2013;33:682–687.
  • Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132:4653–4662.
  • Enquobahrie DA, Abetew DF, Sorensen TK, et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204:178.e12–178.e21.
  • Mayor-Lynn K, Toloubeydokhti T, Cruz AC, et al. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci. 2011;18:46–56.
  • Wang W, Feng L, Zhang H, et al. Pre-eclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, −20a, and −20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab 2012;97:E1051–E1059.
  • Choi SY, Yun J, Lee OJ, et al. MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray. Placenta. 2013;34:799–804.
  • Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196:261.e1–261.e6.
  • Zhu XM, Han T, Sargent IL, et al. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 2009;200:661.e1–661.e7.
  • Murphy MS, Casselman RC, Tayade C, et al. Differential expression of plasma microRNA in preeclamptic patients at delivery and 1 year postpartum. Am J Obstet Gynecol. 2015;213:367.e1–367.e9.
  • Hromadnikova I. Extracellular nucleic acids in maternal circulation as potential biomarkers for placental insufficiency. DNA Cell Biol. 2012;31:1221–1232.
  • Hromadnikova I, Kotlabova K, Doucha J, et al. Absolute and relative quantification of placenta-specific microRNAs in maternal circulation with placental insufficiency-related complications. J Mol Diagn. 2012;14:160–167.
  • Pan M, Ge Q, Li H, et al. Sequencing the miRNAs in maternal plasma from women before and after parturition. J Nanosci Nanotech. 2012;12:4035–4043.
  • Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54:482–490.
  • Sheikh AM, Small HY, Currie G, et al. Systematic review of micro-RNA expression in pre-eclampsia identifies a number of common pathways associated with the disease. PLoS One. 2016;11:e0160808.
  • Wu Y, Xiong X, Fraser WD, et al. Association of uric acid with progression to preeclampsia and development of adverse conditions in gestational hypertensive pregnancies. Am J Hypertens. 2012;25:711–717.
  • Roberts JM, Bodnar LM, Lain KY, et al. Uric acid is as important as proteinuria in identifying fetal risk in women with gestational hypertension. Hypertension. 2005;46:1263–1269.
  • Hawkins TL, Roberts JM, Mangos GJ, et al. Plasma uric acid remains a marker of poor outcome in hypertensive pregnancy: a retrospective cohort study. BJOG. 2012;119:484–492.
  • Bellomo G, Venanzi S, Saronio P, et al. Prognostic significance of serum uric acid in women with gestational hypertension. Hypertension. 2011;58:704–708.
  • Ruotsalainen V, Ljungberg P, Wartiovaara J, et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A. 1999;96:7962–7967.
  • Wang Y, Zhao S, Loyd S, et al. Increased urinary excretion of nephrin, podocalyxin, and βig-h3 in women with preeclampsia. Am J Physiol Renal Physiol. 2012;302:F1084–F1089.
  • Yang GY, Lee KA, Park MH, et al. Urinary nephrin: a new predictive marker for pregnancies with preeclampsia and small-for-gestational age infants. Obstet Gynecol Sci. 2013;56:22–28.
  • Son GH, Kwon JY, Lee S, et al. Comparison of serum and urinary nephrin levels between normal pregnancies and severe preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2013;166:139–144.
  • Jim B, Mehta S, Qipo A, et al. A comparison of podocyturia, albuminuria and nephrinuria in predicting the development of preeclampsia: a prospective study. PLoS One. 2014;9:e101445.
  • Zhai T, Furuta I, Akaishi R, et al. Feasibility of nephrinuria as a screening tool for the risk of pre-eclampsia: prospective observational study. BMJ Open. 2016;6:e011229.
  • Scazzocchio E, Figueras F, Crispi F, et al. Performance of a first-trimester screening of preeclampsia in a routine care low-risk setting. Am J Obstet Gynecol. 2013;208:203.e1–203.e10.
  • Onwudiwe N, Yu CKH, Poon LCY, et al. Prediction of pre-eclampsia by a combination of maternal history, uterine artery Doppler and mean arterial pressure. Ultrasound Obstet Gynecol. 2008;32:877–883.
  • Phupong V, Dejthevaporn T. Predicting risks of preeclampsia and small for gestational age infant by uterine artery Doppler. Hypertens Pregnancy. 2008;27:387–395.
  • Murakoshi T, Sekizuka N, Takakuwa K, et al. Uterine and spiral artery flow velocity waveforms in pregnancy-induced hypertension and/or intrauterine growth retardation. Ultrasound Obstet Gynecol. 1996;7:122–128.
  • Brandão AHF, Evangelista AA, Martins RMF, et al. Prediction of early and late preeclampsia by flow-mediated dilation of the brachial artery. Radiol Bras. 2014;47:206–209.
  • Plasencia W, González-Dávila E, González Lorenzo A, et al. First trimester placental volume and vascular indices in pregnancies complicated by preeclampsia. Prenat Diagn. 2015;35:1247–1254.
  • Hui L. Non-invasive prenatal testing for fetal aneuploidy: charting the course from clinical validity to clinical utility. Ultrasound Obstet Gynecol. 2013;41:2–6.
  • Sifakis S, Koukou Z, Spandidos DA. Cell-free fetal DNA and pregnancy-related complications (review). Mol Med Rep. 2015;11:2367–2372.
  • Giguère Y, Charland M, Bujold E, et al. Combining biochemical and ultrasonographic markers in predicting preeclampsia: a systematic review. Clin Chem. 2010;56:361–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.