429
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Prenatal diagnosis of chromosomal aberrations in fetuses with conotruncal heart defects by genome-wide high-resolution SNP array

, , ORCID Icon, , , & show all
Pages 1211-1217 | Received 13 May 2018, Accepted 26 Aug 2018, Published online: 20 Sep 2018

References

  • Reller MD, Strickland MJ, Riehle-Colarusso T, et al. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr. 2008;153(6):807–813
  • Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at livebirth. The Baltimore–Washington Infant Study. Am J Epidemiol. 1985;121(1):31–36.
  • Ferencz C. The etiology of congenital cardiovascular malformations: observations on genetic risks with implications for further birth defects research. J Med. 1985;16(5–6):497–508.
  • An Y, Duan W, Huang G, et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population. BMC Med Genomics. 2016;9:2.
  • Campos CM, Zanardo EA, Dutra RL, et al. Investigation of copy number variation in children with conotruncal heart defects. Arq Bras cardiol. 2015;104(1):24–31.
  • Du L, Xie HN, Huang LH, et al. Prenatal diagnosis of submicroscopic chromosomal aberrations in fetuses with ventricular septal defects by chromosomal microarray-based analysis. Prenat Diagn. 2016;36(13):1178–1184.
  • Liao C, Li R, Fu F, et al. Prenatal diagnosis of congenital heart defect by genome-wide high-resolution SNP array. Prenat Diagn. 2014;34(9):858–863.
  • Peng R, Xie HN, Zheng J, et al. Fetal right aortic arch: associated anomalies, genetic anomalies with chromosomal microarray analysis, and postnatal outcome. Prenat Diagn. 2017;37(4):329–335.
  • Clark EB. Pathogenetic mechanisms of congenital cardiovascular malformations revisited. Semin Perinatol. 1996;20(6):465–472.
  • Drose JA. Fetal echocardiography. 2nd ed. Philadelphia: Elesevier Saunders; 2009.
  • Gong X, Wu X, Ma X, et al. Microdeletion and microduplication analysis of Chinese conotruncal defects patients with targeted array comparative genomic hybridization. PLoS One. 2013;8(10):e76314.
  • Osoegawa K, Iovannisci DM, Lin B, et al. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects. Am J Med Genet A. 2014;164A(2):397–406.
  • Lammer EJ, Chak JS, Iovannisci DM, et al. Chromosomal abnormalities among children born with conotruncal cardiac defects. Birth Defects Res A Clin Mol Teratol. 2009;85(1):30–35.
  • Warburton D, Ronemus M, Kline J, et al. The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet. 2014;133(1):11–27
  • Bellucco FT, Belangero SI, Farah LM, et al. Investigating 22q11.2 deletion and other chromosomal aberrations in fetuses with heart defects detected by prenatal echocardiography. Pediatr Cardiol. 2010;31(8):1146–1150.
  • Michaelovsky E, Frisch A, Carmel M, et al. Genotype-phenotype correlation in 22q11.2 deletion syndrome. BMC Med Genet. 2012;13:122.
  • Rauch R, Hofbeck M, Zweier C, et al. Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet. 2010;47(5):321–331
  • Shaikh TH, Kurahashi H, Saitta SC, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000;9(4):489–501.
  • Rauch A, Zink S, Zweier C, et al. Systematic assessment of atypical deletions reveals genotype-phenotype correlation in 22q11.2. J Med Genet. 2005;42(11):871–876.
  • Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41(8):931–935
  • Ta-Shma A, El-El-lahham N, Edvardson S, et al. Conotruncal malformations and absent thymus due to a deleterious NKX2-6 mutation. J Med Genet. 2014;51(4):268–270
  • Shaheen R, Al Hashem A, Alghamdi MH, et al. Positional mapping of PRKD1, NRP1 and PRDM1 as novel candidate disease genes in truncus arteriosus. J Med Genet. 2015;52(5):322–329.
  • Sifrim A, Hitz MP, Wilsdon A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48(9):1060–1065.
  • Pu Y, Chen P, Zhou B, et al. Association between polymorphisms in AXIN1 gene and atrial septal defect. Biomarkers. 2014;19(8):674–678
  • Wooten EC, Iyer LK, Montefusco MC, et al. Application of gene network analysis techniques identifies AXIN1/PDIA2 and endoglin haplotypes associated with bicuspid aortic valve. PLoS One. 2010;5(1):e8830.
  • Bensemlali M, Bajolle F, Ladouceur M, et al. Associated genetic syndromes and extracardiac malformations strongly influence outcomes of fetuses with congenital heart diseases. Arch Cardiovasc Dis. 2016;109(5):330–336
  • Tennstedt C, Chaoui R, Körner H, et al. Spectrum of congenital heart defects and extracardiac malformations associated with chromosomal abnormalities: results of a seven year necropsy study. Heart. 1999;82(1):34–39.
  • Ferencz C, Rubin JD, McCarter RJ, et al. Cardiac and noncardiac malformations: observations in a population-based study. Teratology. 1987;35(3):367–378

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.