352
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Epigenetic alteration of Rho guanine nucleotide exchange Factor 11 (ARHGEF11) in cord blood samples in macrosomia exposed to intrauterine hyperglycemia

, , , , , , & show all
Pages 422-431 | Received 10 Jan 2019, Accepted 17 Apr 2019, Published online: 30 Apr 2019

References

  • Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep. 2015;15(2):569.
  • Franks PW, Looker HC, Kobes S, et al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima Indian offspring. Diabetes. 2006;55(2):460–465.
  • Manderson JG, Mullan B, Patterson CC, et al. Cardiovascular and metabolic abnormalities in the offspring of diabetic pregnancy. Diabetologia. 2002;45(7):991–996.
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–635.
  • Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–336.
  • Houssa B, de Widt J, Kranenburg O, et al. Diacylglycerol kinase theta binds to and is negatively regulated by active RhoA. J Biol Chem. 1999;274(11):6820–6822.
  • Haeusler LC, Blumenstein L, Stege P, et al. Comparative functional analysis of the Rac GTPases. FEBS Lett. 2003;555(3):556–560.
  • Raimondi F, Felline A, Fanelli F. Catching functional modes and structural communication in Dbl family Rho guanine nucleotide exchange factors. J Chem Inf Model. 2015;55(9):1878–1893.
  • Mikelis CM, Palmby TR, Simaan M, et al. PDZ-RhoGEF and LARG are essential for embryonic development and provide a link between thrombin and LPA receptors and Rho activation. J Biol Chem. 2013;288(17):12232–12243.
  • Kowluru A, Veluthakal R. Rho guanosine diphosphate-dissociation inhibitor plays a negative modulatory role in glucose-stimulated insulin secretion. Diabetes. 2005;54(12):3523–3529.
  • Nevins AK, Thurmond DC. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem. 2005;280(3):1944–1952.
  • Aagaard-Tillery KM, Grove K, Bishop J, et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41(2):91–102.
  • Kelstrup L, Hjort L, Houshmand-Oeregaard A, et al. Gene expression and DNA methylation of PPARGC1A in muscle and adipose tissue from adult offspring of women with diabetes in pregnancy. Diabetes. 2016;65(10):2900–2910.
  • Wang D, Yan L, Hu Q, et al. IMA: an R package for high-throughput analysis of Illumina’s 450K Infinium methylation data. Bioinformatics. 2012;28(5):729–730.
  • Ehrich M, Nelson MR, Stanssens P, et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA. 2005;102(44):15785–15790.
  • Yu ZB, Han SP, Zhu GZ, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev. 2011;12(7):525–542.
  • Opati P, Zheng R, Wang J, et al. Comparison of neonatal outcomes in macrosomic infants of diabetic and non-diabetic mothers. J Neonat Perinat Med. 2015;8:9–13.
  • Cordero L, Paetow P, Landon MB, et al. Neonatal outcomes of macrosomic infants of diabetic and non-diabetic mothers. J Neonat Perinat Med. 2015;8(2):105–112.
  • Lloreda-García JM, Sevilla-Denia S, Rodríguez-Sánchez A, et al. Perinatal outcome of macrosomic infants born to diabetic versus non-diabetic mothers. Endocrinol Nutr. 2016;63(8):409–413.
  • Fleisch AF, Wright RO, Baccarelli AA. Environmental epigenetics: a role in endocrine disease? J Mol Endocrinol. 2012;49(2):R61–R67.
  • Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes (Lond). 2008;32(Suppl 7):S62–S71.
  • Hoyo C, Fortner K, Murtha AP, et al. Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight. Cancer Causes Control. 2012;23(4):635–645.
  • Turan N, Ghalwash MF, Katari S, et al. DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med Genomics. 2012;5:10.
  • Engel SM, Joubert BR, Wu MC, et al. Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian Mother and Child Cohort. Am J Epidemiol. 2014;179(7):834–842.
  • Chang YJ, Pownall S, Jensen TE, et al. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. eLife. 2015;4.
  • Marchlewicz EH, Dolinoy DC, Tang L, et al. Lipid metabolism is associated with developmental epigenetic programming. Sci Rep. 2016;6:34857.
  • Chang YJ, Pownall S, Jensen TE, et al. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. eLife. 2015;4:e06011.
  • Jin QS, Kim SH, Piao SJ, et al. R1467H Variants of Rho guanine nucleotide exchange Factor 11 (ARHGEF11) are associated with type 2 diabetes mellitus in Koreans. Korean Diabetes J. 2010;34:368–373.
  • Liu J, Chen X, Guo Q, et al. Association of ARHGEF11 R1467H polymorphism with risk for type 2 diabetes mellitus and insulin resistance in Chinese population. Mol Biol Rep. 2011;38(4):2499–2505.
  • Böttcher Y, Schleinitz D, Tönjes A, et al. R1467H variant in the rho guanine nucleotide exchange factor 11 (ARHGEF11) is associated with impaired glucose tolerance and type 2 diabetes in German Caucasians. J Hum Genet. 2008;53:365–367.
  • Ma L, Hanson RL, Que LN, et al. Variants in ARHGEF11, a candidate gene for the linkage to type 2 diabetes on chromosome 1q, are nominally associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes. 2007;56(5):1454–1459.
  • Yan J, Su R, Ao D, et al. Genetic variants and clinical relevance associated with gestational diabetes mellitus in Chinese women: a case–control study. J Matern Fetal Neonatal Med. 2018;31(16):2115–2121.
  • Ponsonby AL, Symeonides C, Vuillermin P, et al. Epigenetic regulation of neurodevelopmental genes in response to in utero exposure to phthalate plastic chemicals: how can we delineate causal effects? Neurotoxicology. 2016;55:92–101.
  • Lo CL, Zhou FC. Environmental alterations of epigenetics prior to the birth. Int Rev Neurobiol. 2014;115:1–49.
  • Cardenas A, Houseman EA, Baccarelli AA, et al. In utero arsenic exposure and epigenome-wide associations in placenta, umbilical artery, and human umbilical vein endothelial cells. Epigenetics. 2015;10(11):1054–1063.
  • Hong X, Sherwood B, Ladd-Acosta C, et al. Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples. Epigenetics. 2018;13(2):163–172.
  • Kadakia R, Zheng Y, Zhang Z, et al. Maternal pre-pregnancy BMI downregulates neonatal cord blood LEP methylation. Pediatr Obes. 2017;12(Suppl 1):57–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.