193
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Deformability of cord blood vs. newborns’ red blood cells: implication for blood transfusion

, , , , , , , , & show all
Pages 3270-3275 | Received 23 Dec 2019, Accepted 30 Aug 2020, Published online: 04 Feb 2021

References

  • Matot I, Katz M, Pappo O, et al. Resuscitation with aged blood exacerbates liver injury in a hemorrhagic rat model. Crit Care Med. 2013;41(3):842–849.
  • Parthasarathi K, Lipowsky HH. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol. 1999;277(6):H2145–H2157.
  • Sakr Y, Chierego M, Piagnerelli M, et al. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med. 2007;35(7):1639–1644.
  • Warkentin TE, Barr RD, Ali MA, et al. Recurrent acute splenic sequestration crisis due to interacting genetic defects: hemoglobin SC disease and hereditary spherocytosis. Blood. 1990;75(1):266–270.
  • Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol. 1993;30(3):171–192.
  • Relevy H, Koshkaryev A, Manny N, et al. Blood banking-induced alteration of red blood cell flow properties. Transfusion. 2008;48(1):136–146.
  • Huang S, Amaladoss A, Liu M, et al. In vivo splenic clearance correlates with in vitro deformability of red blood cells from Plasmodium yoelii-infected mice. Infect Immun. 2014;82(6):2532–2541.
  • Barshtein G, Goldschmidt N, Pries AR, et al. deformability of transfused red blood cells is a potent effector of transfusion-induced hemoglobin increment: a study with β-thalassemia major patients. Am J Hematol. 2017;92(9):E559–E560.
  • Barshtein G, Pries AR, Goldschmidt N, et al. deformability of transfused red blood cells is a potent determinant of transfusion-induced change in recipient’s blood flow. Microcirculation. 2016;23(7):479–486.
  • Bancalari E, Jain D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology. 2019;115(4):384–391.
  • Barrington KJ. Management during the first 72 h of age of the periviable infant: an evidence-based review. Semin Perinatol. 2014;38(1):17–24.
  • Fabie NAV, Pappas KB, Feldman GL. The current state of newborn screening in the United States. Pediatr Clin North Am. 2019;66(2):369–386.
  • Tan AP, Svrckova P, Cowan F, et al. Intracranial hemorrhage in neonates: a review of etiologies, patterns and predicted clinical outcomes. Eur J Paediatr Neurol. 2018;22(4):690–717.
  • Zangari A, Noviello C, Nobile S, et al. Surgical management of necrotizing enterocolitis in an incredibly low birth weight infant and review of the literature. Clin Ter. 2017;168(5):e297–e299.
  • Bowker RM, Yan X, De Plaen IG. Intestinal microcirculation and necrotizing enterocolitis: the vascular endothelial growth factor system. Semin Fetal Neonatal Med. 2018;23(6):411–415.
  • Downard CD, Grant SN, Matheson PJ, et al. Altered intestinal microcirculation is the critical event in the development of necrotizing enterocolitis. J Pediatr Surg. 2011;46(6):1023–1028.
  • Ito Y, Doelle SM, Clark JA, et al. Intestinal microcirculatory dysfunction during the development of experimental necrotizing enterocolitis. Pediatr Res. 2007;61(2):180–184.
  • Maki AC, Matheson PJ, Shepherd JA, et al. Intestinal microcirculatory flow alterations in necrotizing enterocolitis are improved by direct peritoneal resuscitation. Am Surg. 2012;78(7):803–807.
  • Nair J, Lakshminrusimha S. Role of NO and other vascular mediators in the etiopathogenesis of necrotizing enterocolitis. Front Biosci. 2019;11:9–28.
  • Watkins DJ, Besner GE. The role of the intestinal microcirculation in necrotizing enterocolitis. Semin Pediatr Surg. 2013;22(2):83–87.
  • Zhang HY, Wang F, Feng JX. Intestinal microcirculatory dysfunction and neonatal necrotizing enterocolitis. Chin Med J. 2013;126(9):1771–1778.
  • Ruef P, Linderkamp O. Deformability and geometry of neonatal erythrocytes with irregular shapes. Pediatr Res. 1999;45(1):114–119.
  • Linderkamp O, Betke K. Rheological properties of blood and their possible role in the circulation and development of intracranial hemorrhage in preterm infants. Klin Padiatr. 1985;197(4):319–321.
  • Rabinowitz MP, Grunwald JE, Karp KA, et al. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age. Arch Ophthalmol. 2007;125(11):1495–1500.
  • Linderkamp O, Strohhacker I, Versmold HT, et al. Peripheral circulation in the newborn: interaction of peripheral blood flow, blood pressure, blood volume, and blood viscosity. Eur J Pediatr. 1978;129(2):73–81.
  • Bohler T, Leo A, Stadler A, et al. Mechanical fragility of erythrocyte membrane in neonates and adults. Pediatr Res. 1992;32(1):92–96.
  • Linderkamp O, Friederichs E, Meiselman HJ. Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes. Pediatr Res. 1993;34(5):688–693.
  • Linderkamp O, Kiau U, Ruef P. Cellular and membrane deformability of red blood cells in preterm infants with and without growth retardation. Clin Hemorheol Microcirc. 1997;17(4):279–283.
  • Linderkamp O, Nash GB, Wu PY, et al. Deformability and intrinsic material properties of neonatal red blood cells. Blood. 1986;67(5):1244–1250.
  • Linderkamp O, Ozanne P, Wu PY, et al. Red blood cell aggregation in preterm and term neonates and adults. Pediatr Res. 1984;18(12):1356–1360.
  • Nelle M, Hoecker C, Linderkamp O. Effects of red cell transfusion on pulmonary blood flow and right ventricular systolic time intervals in neonates. Eur J Pediatr. 1997;156(7):553–556.
  • Janjindamai W, Prapruettrong A, Thatrimontrichai A, et al. Risk of necrotizing enterocolitis following packed red blood cell transfusion in very low birth weight infants. Indian J Pediatr. 2019;86(4):347–353.
  • Maheshwari A, Patel RM, Christensen RD. Anemia, red blood cell transfusions, and necrotizing enterocolitis. Semin Pediatr Surg. 2018;27(1):47–51.
  • Bianchi M, Papacci P, Valentini CG, et al. Umbilical cord blood as a source for red-blood-cell transfusion in neonatology: a systematic review. Vox Sang. 2018;113(8):713–725.
  • Patel RM, Meyer EK, Widness JA. Research opportunities to improve neonatal red blood cell transfusion. Transfus Med Rev. 2016;30(4):165–173.
  • Arbell D, Orkin B, Bar-Oz B, et al. Premature red blood cells have decreased aggregation and enhanced aggregability. J Physiol Sci. 2008;58(3):161–165.
  • Barshtein G, Arbell D, Yedgar S. Hemodynamic functionality of transfused red blood cells in the microcirculation of blood recipients. Front Physiol. 2018;9:41.
  • Chakrabarty P, Rudra S. Autologus or allogenic uses of umbilical cord blood whole or RBC transfusion – a review. Mymensingh Med J. 2013;22(1):210–217.
  • Kotowski M, Litwinska Z, Klos P, et al. Autologous cord blood transfusion in preterm infants – could its humoral effect be the kez to control prematurity-related complications? A preliminary study. J Physiol Pharmacol. 2017;68(6):921–927.
  • Strauss RG, Widness JA. Is there a role for autologous/placental red blood cell transfusions in the anemia of prematurity? Transfus Med Rev. 2010;24(2):125–129.
  • Hassall O, Maitland K, Fegan G, et al. The quality of stored umbilical cord and adult-donated whole blood in Mombasa, Kenya. Transfusion. 2009;50(3):611–616.
  • Hassall OW, Thitiri J, Fegan G, et al. Safety and efficacy of allogeneic umbilical cord red blood cell transfusion for children with severe anaemia in a Kenyan hospital: an open-label single-arm trial. Lancet Haematol. 2015;2(3):e101–e107.
  • Crabtree CS, Pakvasa M, Radmacher PG, et al. Retrospective case-control study of necrotizing enterocolitis and packed red blood cell transfusions in very low birth weight infants. J Neonatal Perinatal Med. 2018;11(4):365–370.
  • World Health Organization. 2014. Guideline: delayed umbilical cord clamping for improved maternal and infant health and nutrition outcomes. Geneva: World Health Organization.
  • Islamzada E, Matthews K, Guo Q, et al. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves. Blood. 2019;134:3694.
  • Islamzada E, Matthews K, Guo Q, et al. deformability based sorting of stored red blood cells reveals donor-dependent aging curves. Lab Chip. 2020;20(2):226–235.
  • Barshtein G, Manny N, Yedgar S. Circulatory risk in the transfusion of red blood cells with impaired flow properties induced by storage. Transfus Med Rev. 2011;25(1):24–35.
  • Kaul DK, Koshkaryev A, Artmann G, et al. Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance. Am J Physiol Heart Circ Physiol. 2008;295(4):H1788–H1793.
  • Wendelbo O, Hervig T, Haugen O, et al. Microcirculation and red cell transfusion in patients with sepsis. Transfus Apher Sci. 2017;56(6):900–905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.