470
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A review of ex vivo placental perfusion models: an underutilized but promising method to study maternal-fetal interactions

, ORCID Icon, ORCID Icon &
Pages 8823-8835 | Received 22 Jun 2021, Accepted 09 Nov 2021, Published online: 24 Nov 2021

References

  • Perazzolo S, Hirschmugl B, Wadsack C, et al. The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res. 2017;58(2):443–454.
  • Mess A, Carter AM. Evolution of the placenta during the early radiation of placental mammals. Comp Biochem Physiol A Mol Integr Physiol. 2007;148(4):769–779.
  • Conings S, Amant F, Annaert P, et al. Integration and validation of the ex vivo human placenta perfusion model. J Pharmacol Toxicol Methods. 2017;88(Pt 1):25–31.
  • Mathiesen L, Mose T, Morck TJ, et al. Quality assessment of a placental perfusion protocol. Reprod Toxicol. 2010;30(1):138–146.
  • Kovo M, Haroutiunian S, Feldman N, et al. Determination of metformin transfer across the human placenta using a dually perfused ex vivo placental cotyledon model. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):29–33.
  • Schneider H. IFPA senior award lecture: Energy metabolism of human placental tissue studied by ex vivo perfusion of an isolated cotyledon. Placenta. 2015;36 Suppl 1(Suppl 1):S29–S34.
  • Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61(12):1296–1302.
  • Burton GJ, Jauniaux E. What is the placenta? Am J Obstet Gynecol. 2015;213:S6 e1–S6-e8.
  • Grigsby PL. Animal models to study placental development and function throughout normal and dysfunctional human pregnancy. Semin Reprod Med. 2016;34(1):11–16.
  • Kohler PO, Bridson WE. Isolation of hormone-producing clonal lines of human choriocarcinoma. J Clin Endocrinol Metab. 1971;32(5):683–687.
  • Li H, van Ravenzwaay B, Rietjens IM, et al. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Arch Toxicol. 2013;87(9):1661–1669.
  • Pattillo RA, Gey GO. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 1968;28(7):1231–1236.
  • Pattillo RA, Gey GO, Delfs E, et al. The hormone-synthesizing trophoblastic cell in vitro: a model for cancer research and placental hormone synthesis. Ann N Y Acad Sci. 1971;172(10):288–298.
  • Evseenko DA, Paxton JW, Keelan JA. ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am J Physiol Regul Integr Comp Physiol. 2006;290(5):R1357–R1365.
  • Poulsen MS, Rytting E, Mose T, et al. Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol in Vitro. 2009;23(7):1380–1386.
  • Panigel M, Pascaud M, Brun JL. [Radioangiographic study of circulation in the villi and intervillous space of isolated human placental cotyledon kept viable by perfusion]. J Physiol (Paris). 1967;59:277.
  • Schneider H, Panigel M, Dancis J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am J Obstet Gynecol. 1972;114(6):822–828.
  • Gilstrap LC, Bawdon RE, Roberts SW, et al. The transfer of the nucleoside analog ganciclovir across the perfused human placenta. Am J Obstet Gynecol. 1994;170(4):967–972; discussion 972-3.
  • Giroux M, Campistron G, Faure F, et al. Effects of pH on antipyrine transfer across the human placenta ex vivo. Dev Pharmacol Ther. 1990;14(3):153–160.
  • Magee KP, Wimberley D, Crane C, et al. Ex vivo human placental transfer of rifampin and rifabutin. Infect Dis Obstet Gynecol. 1996;4(6):319–322.
  • Omarini D, Pistotti V, Bonati M. Placental perfusion an overview of the literature. J Pharmacol Toxicol Methods. 1992;28(2):61–66.
  • Tolboom H, Makhro A, Rosser BA, et al. Recovery of donor hearts after circulatory death with normothermic extracorporeal machine perfusion. Eur J Cardiothorac Surg. 2015;47(1):173–179; discussion 179.
  • Saemann L, Korkmaz-Icöz S, Hoorn F, et al. Reconditioning of circulatory death hearts by ex-vivo machine perfusion with a novel HTK-N preservation solution. J Heart Lung Transplant. 2021;40(10):1135–1144. S1053-2498(21)02411-6.
  • Uzelac I, Kaboudian A, Iravanian S, et al. Quantifying arrhythmic long QT effects of hydroxychloroquine and azithromycin with whole-heart optical mapping and simulations. Heart Rhythm O2. 2021;2(4):394–404.
  • Wang A, Ali A, Keshavjee S, et al. Ex vivo lung perfusion for donor lung assessment and repair: a review of translational interspecies models. Am J Physiol Lung Cell Mol Physiol. 2020;319(6):L932–L940.
  • Schutter R, Lantinga VA, Hamelink TL, et al. Magnetic resonance imaging assessment of renal flow distribution patterns during ex vivo normothermic machine perfusion in porcine and human kidneys. Transpl Int. 2021;34(9):1643–1655.
  • Asai A, Hatayama N, Kamiya K, et al. Roles of glomerular endothelial hyaluronan in the development of proteinuria. Physiol Rep. 2021;9(17):e15019.
  • Cindrova-Davies T, Yung HW, Johns J, et al. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol. 2007;171(4):1168–1179.
  • Schneider H. Tolerance of human placental tissue to severe hypoxia and its relevance for dual ex vivo perfusion. Placenta. 2009;30 Suppl A(Suppl A):S71–S6.
  • Karttunen V, Sahlman H, Repo JK, et al. Criteria and challenges of the human placental perfusion – Data from a large series of perfusions. Toxicol in Vitro. 2015;29(7):1482–1491.
  • Mose T, Mathiesen L, Karttunen V, et al. Meta-analysis of data from human ex vivo placental perfusion studies on genotoxic and immunotoxic agents within the integrated European project NewGeneris. Placenta. 2012;33(5):433–439.
  • Miller NR, Dolinsky BM, Napolitano PG. Micronized progesterone reduces vasoconstriction in the placenta. J Matern Fetal Neonatal Med. 2015;28(13):1581–1584.
  • Schneider H, Huch A. Dual in vitro perfusion of an isolated lobe of human placenta: method and instrumentation. Contrib Gynecol Obstet. 1985;13:40–47.
  • Brownbill P, Sebire N, McGillick EV, et al. Ex vivo dual perfusion of the human placenta: Disease simulation, therapeutic pharmacokinetics and analysis of off-Target effects. Methods Mol Biol. 2018;1710:173–189.
  • Polliotti BM, Holmes R, Cornish JD, et al. Long-term dual perfusion of isolated human placental lobules with improved oxygenation for infectious diseases research. Placenta. 1996;17(1):57–68.
  • Heikkila A, Myllynen P, Keski-Nisula L, et al. Gene transfer to human placenta ex vivo: a novel application of dual perfusion of human placental cotyledon. Am J Obstet Gynecol. 2002;186(5):1046–1051.
  • Woo CS, Partanen H, Myllynen P, et al. Fate of the teratogenic and carcinogenic ochratoxin a in human perfused placenta. Toxicol Lett. 2012;208(1):92–99.
  • Myllynen PK, Pienimaki PK, Vahakangas KH. Transplacental passage of lamotrigine in a human placental perfusion system in vitro and in maternal and cord blood in vivo. Eur J Clin Pharmacol. 2003;58(10):677–682.
  • Hutson JR, Garcia-Bournissen F, Davis A, et al. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther. 2011;90(1):67–76.
  • Myllynen P, Pienimäki P, Vähäkangas K. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs. Toxicol Appl Pharmacol. 2005;207(2 Suppl):489–494.
  • Pacifici GM, Nottoli R. Placental transfer of drugs administered to the mother. Clin Pharmacokinet. 1995;28(3):235–269.
  • Conings S, Tseke F, Van den Broeck A, et al. Transplacental transport of paracetamol and its phase II metabolites using the ex vivo placenta perfusion model. Toxicol Appl Pharmacol. 2019;370:14–23.
  • Hoeldtke NJ, Napolitano PG, Moore KH Jr., et al. Fetoplacental vascular tone during fetal circuit acidosis and acidosis with hypoxia in the ex vivo perfused human placental cotyledon. Am J Obstet Gynecol. 1997;177(5):1088–1092.
  • Porter C, Armstrong-Fisher S, Kopotsha T, et al. Certolizumab pegol does not bind the neonatal Fc receptor (FcRn): consequences for FcRn-mediated in vitro transcytosis and ex vivo human placental transfer. J Reprod Immunol. 2016;116:7–12.
  • Hnat M, Bawdon RE. Transfer of meropenem in the ex vivo human placenta perfusion model. Infect Dis Obstet Gynecol. 2005;13(4):223–227.
  • Nanovskaya T, Patrikeeva S, Zhan Y, et al. Transplacental transfer of vancomycin and telavancin. Am J Obstet Gynecol. 2012;207:331 e1–331 e6.
  • Keelan JA, Pugazhenthi K. Trans-placental passage and anti-inflammatory effects of solithromycin in the human placenta. Placenta. 2014;35(12):1043–1048.
  • Faure Bardon V, Peytavin G, Lê MP, et al. Placental transfer of letermovir & maribavir in the ex vivo human cotyledon perfusion model. New perspectives for in utero treatment of congenital cytomegalovirus infection. PLoS One. 2020;15(4):e0232140.
  • Huang H, Wang J, Li Q, et al. Transplacental transfer of oseltamivir phosphate and its metabolite oseltamivir carboxylate using the ex vivo human placenta perfusion model in chinese hans population. J Matern Fetal Neonatal Med. 2017;30(11):1288–1292.
  • Vinot C, Gavard L, Treluyer JM, et al. Placental transfer of maraviroc in an ex vivo human cotyledon perfusion model and influence of ABC transporter expression. Antimicrob Agents Chemother. 2013;57(3):1415–1420.
  • Neumanova Z, Cerveny L, Greenwood SL, et al. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir. Reprod Toxicol. 2015;57:176–182.
  • Bawdon RE. The ex vivo human placental transfer of the anti-HIV nucleoside inhibitor abacavir and the protease inhibitor amprenavir. Infect Dis Obstet Gynecol. 1998;6(6):244–246.
  • Bawdon RE, Kaul S, Sobhi S. The ex vivo transfer of the anti-HIV nucleoside compound d4T in the human placenta. Gynecol Obstet Invest. 1994;38(1):1–4.
  • Karbanova S, Cerveny L, Ceckova M, et al. Role of nucleoside transporters in transplacental pharmacokinetics of nucleoside reverse transcriptase inhibitors zidovudine and emtricitabine. Placenta. 2017;60:86–92.
  • Smith JA, Gaikwad A, Mosley S, et al. Utilization of an ex vivo human placental perfusion model to predict potential fetal exposure to carboplatin during pregnancy. Am J Obstet Gynecol. 2014;210:275 e1–275 e9.
  • Berveiller P, Mir O, Degrelle SA, et al. Chemotherapy in pregnancy: exploratory study of the effects of paclitaxel on the expression of placental drug transporters. Invest New Drugs. 2019;37(5):1075–1085.
  • Rubinchik-Stern M, Shmuel M, Bar J, et al. Adverse placental effects of valproic acid: Studies in perfused human placentas. Epilepsia. 2018;59(5):993–1003.
  • Pehrson C, Mathiesen L, Heno KK, et al. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue: a novel model of placental malaria. Malar J. 2016;15(1):292.
  • Bawdon RE, Gravell M, Roberts S, et al. Ex vivo human placental transfer of human immunodeficiency virus-1 p24 antigen. Am J Obstet Gynecol. 1995;172(2 Pt 1):530–532.
  • Shippey SH, 3rd, Zahn CM, Cisar MM, et al. Use of the placental perfusion model to evaluate transplacental passage of Trypanosoma cruzi. Am J Obstet Gynecol. 2005;192(2):586–591.
  • Kovo M, Mevorach-Zussman N, Khatib N, et al. The effects of magnesium sulfate on the inflammatory response of placentas perfused with lipopolysaccharide: using the ex vivo Dual-Perfused human Single-Cotyledon model. Reprod Sci. 2018;25(8):1224–1230.
  • Firan M, Bawdon R, Radu C, et al. The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin in humans. Int Immunol. 2001;13(8):993–1002.
  • Roy S, Nanovskaya T, Patrikeeva S, et al. M281, an anti-FcRn antibody, inhibits IgG transfer in a human ex vivo placental perfusion model. Am J Obstet Gynecol. 2019;220:498 e1–498 e9.
  • Jain A, Schneider H, Aliyev E, et al. Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response. Lab Invest. 2014;94(8):873–880.
  • Soydemir F, Kuruvilla S, Brown M, et al. Adapting in vitro dual perfusion of the human placenta to soluble oxygen tensions associated with normal and pre-eclamptic pregnancy. Lab Invest. 2011;91(2):181–189.
  • Bisseling TM, Maria Roes E, Raijmakers MT, et al. N-acetylcysteine restores nitric oxide-mediated effects in the fetoplacental circulation of preeclamptic patients. Am J Obstet Gynecol. 2004;191(1):328–333.
  • May K, Rosenlof L, Olsson MG, et al. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by α1-microglobulin. Placenta. 2011;32(4):323–332.
  • Tannetta DS, Hunt K, Jones CI, et al. Syncytiotrophoblast extracellular vesicles from Pre-Eclampsia placentas differentially affect platelet function. PLoS One. 2015;10(11):e0142538.
  • Gohner C, Weber M, Tannetta DS, et al. A new enzyme-linked sorbent assay (ELSA) to quantify syncytiotrophoblast extracellular vesicles in biological fluids. Am J Reprod Immunol. 2015;73(6):582–588.
  • Cronqvist T, Salje K, Familari M, et al. Syncytiotrophoblast vesicles show altered micro-RNA and haemoglobin content after ex-vivo perfusion of placentas with haemoglobin to mimic preeclampsia. PLoS One. 2014;9(2):e90020.
  • Hitzerd E, Broekhuizen M, Mirabito Colafella KM, et al. Placental effects and transfer of sildenafil in healthy and preeclamptic conditions. EBioMedicine. 2019;45:447–455.
  • Russo FM, Conings S, Allegaert K, et al. Sildenafil crosses the placenta at therapeutic levels in a dually perfused human cotyledon model. Am J Obstet Gynecol. 2018;219:619 e1–619 e10.
  • Jones S, Bischof H, Lang I, et al. Dysregulated flow-mediated vasodilatation in the human placenta in fetal growth restriction. J Physiol. 2015;593(14):3077–3092.
  • Kovac CM, Howard BC, Pierce BT, et al. Fetoplacental vascular tone is modified by magnesium sulfate in the preeclamptic ex vivo human placental cotyledon. Am J Obstet Gynecol. 2003;189(3):839–842.
  • Reed LC, Estrada SM, Walton RB, et al. Evaluating maternal hyperglycemic exposure and fetal placental arterial dysfunction in a dual cotyledon, dual perfusion model. Placenta. 2018;69:109–116.
  • Walton RB, Reed LC, Estrada SM, et al. Evaluation of sildenafil and tadalafil for reversing constriction of fetal arteries in a human placenta perfusion model. Hypertension. 2018;72(1):167–176.
  • Al-Sowayan B, Keogh RJ, Abumaree M, et al. An ex vivo human placental vessel perfusion method to study mesenchymal stem/stromal cell migration. Stem Cell Investig. 2019;6:2.
  • Grafmuller S, Manser P, Krug HF, et al. Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model. J Vis Exp. 2013.DOI:10.3791/50401
  • Poulsen MS, Mose T, Maroun LL, et al. Kinetics of silica nanoparticles in the human placenta. Nanotoxicology. 2015;9 Suppl 1(Suppl 1):79–86.
  • Haggarty P, Abramovich DR, Page K. The effect of maternal smoking and ethanol on fatty acid transport by the human placenta. Br J Nutr. 2002;87(3):247–252.
  • Malek A, Obrist C, Wenzinger S, et al. The impact of cocaine and heroin on the placental transfer of methadone. Reprod Biol Endocrinol. 2009;7(1):61.
  • Phipps EA, Thadhani R, Benzing T, et al. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–289.
  • Samangaya RA, Mires G, Shennan A, et al. A randomised, double-blinded, placebo-controlled study of the phosphodiesterase type 5 inhibitor sildenafil for the treatment of preeclampsia. Hypertens Pregnancy. 2009;28(4):369–382.
  • von Dadelszen P, Dwinnell S, Magee LA, et al. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. Bjog. 2011;118(5):624–628.
  • Stanley JL, Andersson IJ, Poudel R, et al. Sildenafil citrate rescues fetal growth in the catechol-O-methyl transferase knockout mouse model. Hypertension. 2012;59(5):1021–1028.
  • Wareing M, Myers JE, O’Hara M, et al. Sildenafil citrate (viagra) enhances vasodilatation in fetal growth restriction. J Clin Endocrinol Metab. 2005;90(5):2550–2555.
  • Herraiz S, Pellicer B, Serra V, et al. Sildenafil citrate improves perinatal outcome in fetuses from pre-eclamptic rats. BJOG. 2012;119(11):1394–1402.
  • Groom KM, Ganzevoort W, Alfirevic Z, et al. Clinicians should stop prescribing sildenafil for fetal growth restriction (FGR): comment from the STRIDER consortium. Ultrasound Obstet Gynecol. 2018;52(3):295–296.
  • Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–328.
  • Kandzija N, Zhang W, Motta-Mejia C, et al. Placental extracellular vesicles express active dipeptidyl peptidase IV; levels are increased in gestational diabetes mellitus. J Extracell Vesicles. 2019;8(1):1617000.
  • Sammar M, Dragovic R, Meiri H, et al. Reduced placental protein 13 (PP13) in placental derived syncytiotrophoblast extracellular vesicles in preeclampsia - a novel tool to study the impaired cargo transmission of the placenta to the maternal organs. Placenta. 2018;66:17–25.
  • Motta-Mejia C, Kandzija N, Zhang W, et al. Placental vesicles carry active endothelial nitric oxide synthase and their activity is reduced in preeclampsia. Hypertension. 2017;70(2):372–381.
  • Blanco-Castañeda R, Galaviz-Hernández C, Souto PCS, et al. The role of xenobiotic-metabolizing enzymes in the placenta: a growing research field. Expert Rev Clin Pharmacol. 2020;13(3):247–263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.