909
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Techniques for detecting cervical remodeling as a predictor for spontaneous preterm birth: current evidence and future research avenues in patients with multiple pregnancies

ORCID Icon & ORCID Icon
Article: 2262081 | Received 03 Jun 2023, Accepted 18 Sep 2023, Published online: 01 Oct 2023

References

  • Office for National Statistics (ONS). Birth characteristics in England and Wales - Office for National Statistics [Internet]. 2023 [cited 2023 Feb 6]. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthcharacteristicsinenglandandwales/2021
  • Chawanpaiboon S, Vogel JP, Moller A-B, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019;7(1):e37–e46. doi: 10.1016/S2214-109X(18)30451-0.
  • Murray SR, Stock SJ, Cowan S, et al. Spontaneous preterm birth prevention in multiple pregnancy. The Obstetrician & Gynaecologist. 2018;20:57–63. doi: 10.1111/tog.12460.
  • NICE. Preterm labour and birth | NICE Guidance 25 [Internet]. [cited 2019 Jul 8]. Available from: https://www.nice.org.uk/guidance/ng25/chapter/Recommendations
  • Romero R, Espinoza J, Kusanovic J, et al. The preterm parturition syndrome. BJOG. 2006;113(Suppl 3):17–42. doi: 10.1111/j.1471-0528.2006.01120.x.
  • Stock S, Norman J. Preterm and term labour in multiple pregnancies. Semin Fetal Neonatal Med. 2010;15(6):336–341. doi: 10.1016/j.siny.2010.06.006.
  • Myers KM, Feltovich H, Mazza E, et al. The mechanical role of the cervix in pregnancy. J Biomech. 2015;48(9):1511–1523. doi: 10.1016/j.jbiomech.2015.02.065.
  • Danforth DN. The morphology of the human cervix. Clin Obstet Gynecol. 1983;26(1):7–13. doi: 10.1097/00003081-198303000-00005.
  • Word RA, Li X-H, Hnat M, et al. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med. 2007;25(1):69–79. doi: 10.1055/s-2006-956777.
  • Lim AC, Hegeman MA, Huis In VM, et al. Cervical length measurement for the prediction of preterm birth in multiple pregnancies: a systematic review and bivariate meta-analysis. Ultrasound Obstet Gynecol. 2011;38(1):10–17. doi: 10.1002/uog.9013.
  • Kindinger L, Poon L, Cacciatore S, et al. The effect of gestational age and cervical length measurements in the prediction of spontaneous preterm birth in twin pregnancies: an individual patient level meta-analysis. BJOG. 2016;123(6):877–884. doi: 10.1111/1471-0528.13575.
  • Hessami K, Kasraeian M, Sepúlveda-Martínez Á, et al. The novel ultrasonographic marker of uterocervical angle for prediction of spontaneous preterm birth in singleton and twin pregnancies: a systematic review and Meta-Analysis. Fetal Diagn Ther. 2021;48(2):1–7. doi: 10.1159/000510648.
  • Benito Vielba M, De Bonrostro Torralba C, Álvarez Sarrado L, et al. Uterocervical angle at 20 weeks: a promising predictor of spontaneous preterm birth in twin pregnancies. Eur J Obstet Gynecol Reprod Biol. 2021;260:131–136. doi: 10.1016/j.ejogrb.2021.03.025.
  • Benito Vielba M, De Bonrostro Torralba C, Espiau Romera A, et al. Uterocervical angle as a predictor of spontaneous preterm birth in twin pregnancies. J Mater Fetal Neon Med. 2022;35(10):1878–1885. doi: 10.1080/14767058.2020.1771553.
  • Knight J, Tenbrink E, Onslow M, et al. Uterocervical angle measurement improves prediction of preterm birth in twin gestation. Am J Perinatol. 2018;35(7):648–654. doi: 10.1055/s-0037-1608877.
  • Lynch TA, Szlachetka K, Seligman NS. Second trimester uterocervical angle and spontaneous preterm birth in twins. J Mater Fetal Neon Med. 2020;33(18):3125–3131. doi: 10.1080/14767058.2019.1569615.
  • van der Merwe J, Couck I, Russo F, et al. The predictive value of the cervical consistency index to predict spontaneous preterm birth in asymptomatic twin pregnancies at the Second-Trimester ultrasound scan: a prospective cohort study. JCM. 2020;9(6):1784. doi: 10.3390/jcm9061784.
  • Parra-Saavedra M, Gómez L, Barrero A, et al. Prediction of preterm birth using the cervical consistency index. Ultrasound Obstet Gynecol. 2011;38(1):44–51. doi: 10.1002/uog.9010.
  • Baños N, Murillo-Bravo C, Julià C, et al. Mid-trimester sonographic cervical consistency index to predict spontaneous preterm birth in a low-risk population: CCI to predict spontaneous preterm birth in a low-risk population. Ultrasound Obstet Gynecol. 2018;51(5):629–636. doi: 10.1002/uog.17482.
  • Baños N, Julià C, Lorente N, et al. Mid-Trimester cervical consistency index and cervical length to predict spontaneous preterm birth in a High-Risk population. AJP Rep. 2018;8(1):e43–e50. doi: 10.1055/s-0038-1636993.
  • Parra-Saavedra MA, Goncé A, Masoller N, et al. OP08.03: tranvaginal ultrasonographic measurement of cervical consistency index (CCI) throughout gestation in twin pregnancy: short oral presentation (OP) abstracts. Ultrasound Obstet Gynecol. 2012;40(S1):79–79. doi: 10.1002/uog.11464.
  • Rosen H, Stratulat V, Aviram A, et al. Mid‐trimester cervical consistency index measurement and prediction of preterm birth before 34 and 37 weeks in twin pregnancy. Ultrasound Obstet Gynecol. 2020;56(4):626–628. doi: 10.1002/uog.21927.
  • Sekiya T, Ishihara K, Yoshimatsu K, et al. Detection rate of the cervical gland area during pregnancy by transvaginal sonography in the assessment of cervical maturation: Cervical gland area and cervical maturation. Ultrasound Obstet Gynecol. 1998;12(5):328–333. doi: 10.1046/j.1469-0705.1998.12050328.x.
  • Yamaguchi M, Fukami T, Asakura H, et al. Predicting onset of labor from echogenicity of the cervical gland area on vaginal ultrasonography at term. J Perinat Med. 2015;43(5):577–584. doi: 10.1515/jpm-2014-0080.
  • Fukami T, Ishihara K, Sekiya T, et al. Is transvaginal ultrasonography at mid-trimester useful for predicting early spontaneous preterm birth? J Nippon Med Sch. 2003;70(2):135–140. doi: 10.1272/jnms.70.135.
  • Marsoosi V, Pirjani R, Jafarabadi MA, et al. Cervical gland area as an ultrasound marker for prediction of preterm delivery: a cohort study. IJRM. 2017;15(11):729–734. doi: 10.29252/ijrm.15.11.729.
  • Grgic O, Matijevic R, Vasilj O. Qualitative glandular cervical score as a potential new sonomorphological parameter in screening for preterm delivery. Ultrasound Med Biol. 2006;32(3):333–338. doi: 10.1016/j.ultrasmedbio.2005.12.010.
  • Pires CR, Moron AF, Mattar R, et al. Cervical gland area as an ultrasonographic marker for preterm delivery. Int J Gynaecol Obstet. 2006;93(3):214–219. doi: 10.1016/j.ijgo.2005.12.010.
  • Afzali N, Mohajeri M, Malek A, et al. Cervical gland area: a new sonographic marker in predicting preterm delivery. Arch Gynecol Obstet. 2012;285(1):255–258. doi: 10.1007/s00404-011-1986-7.
  • Yoshimatsu K, Sekiya T, Ishihara K, et al. Detection of the cervical gland area in threatened preterm labor using transvaginal sonography in the assessment of cervical maturation and the outcome of pregnancy. Gynecol Obstet Invest. 2002;53(3):149–156. doi: 10.1159/000058366.
  • Asakura H, Fukami T, Kurashina R, et al. Significance of cervical gland area in predicting preterm birth for patients with threatened preterm delivery: Comparison with cervical length and fetal fibronectin. Gynecol Obstet Invest. 2009;68(1):1–8. doi: 10.1159/000209394.
  • Kahyaoglu S, Kahyaoglu I, Kaymak O, et al. Can transvaginal ultrasonographic evaluation of the endocervical glandular area predict preterm labor among patients who received tocolytic therapy for threatened labor: a cross-sectional study. J Mater Fetal Neon Med. 2013;26(9):920–925. doi: 10.3109/14767058.2013.766703.
  • Baños N, Perez-Moreno A, Julià C, et al. Quantitative analysis of cervical texture by ultrasound in mid-pregnancy and association with spontaneous preterm birth: cervical texture associated with spontaneous preterm birth. Ultrasound Obstet Gynecol. 2018;51(5):637–643. doi: 10.1002/uog.17525.
  • Burgos-Artizzu XP, Baños N, Coronado-Gutiérrez D, et al. Mid-trimester prediction of spontaneous preterm birth with automated cervical quantitative ultrasound texture analysis and cervical length: a prospective study. Sci Rep. 2021;11(1):7469. doi: 10.1038/s41598-021-86906-8.
  • Volpe N, Schera GBL, Dall’Asta A, et al. Cervical sliding sign: new sonographic marker to predict impending preterm delivery in women with uterine contractions. Ultrasound Obstet Gynecol. 2019;54(4):557–558. doi: 10.1002/uog.20395.
  • Uyan Hendem D, Oluklu D, Menekse Beser D, et al. Role of cervical sliding sign in predicting preterm delivery in pregnancies complicated with preterm premature rupture of membranes. Int J Gynaecol Obstet. 2023;160(3):886–891. doi: 10.1002/ijgo.14384.
  • Debring B, Möllers M, Köster HA, et al. Cervical strain elastography: pattern analysis and cervical sliding sign in preterm and control pregnancies. J Perinat Med. 2023;51(3):328–336. doi: 10.1515/jpm-2022-0166.
  • Chan YL, Lam WW, Lau TK, et al. Cervical assessment by magnetic resonance imaging–its relationship to gestational age and interval to delivery. Br J Radiol. 1998;71(842):155–159. doi: 10.1259/bjr.71.842.9579179.
  • House M, O'Callaghan M, Bahrami S, et al. Magnetic resonance imaging of the cervix during pregnancy: effect of gestational age and prior vaginal birth. Am J Obstet Gynecol. 2005;193(4):1554–1560. doi: 10.1016/j.ajog.2005.03.042.
  • Pates JA, Yost NP, Oliver Q, et al. Magnetic resonance signal characteristics of the cervix as pregnancy advances. Reprod Sci. 2007;14(5):440–444. doi: 10.1177/1933719107306225.
  • de Tejada BM, Faltin DL, Kinkel K, et al. Magnetic resonance imaging of the cervix in women at high risk for preterm delivery. J Mater Fetal Neon Med. 2011;24(11):1392–1397. doi: 10.3109/14767058.2011.552654.
  • Wang B, Zhang Y, Chen S, et al. Diagnostic accuracy of cervical elastography in predicting preterm delivery: a systematic review and meta-analysis. Medicine (Baltimore). 2019;98(29):e16449. doi: 10.1097/MD.0000000000016449.
  • Park HS, Kwon H, Kwak DW, et al. Addition of cervical elastography may increase preterm delivery prediction performance in pregnant women with short cervix: a prospective study. J Korean Med Sci. 2019;34(9):e68. doi: 10.3346/jkms.2019.34.e68.
  • Jung YJ, Kwon H, Shin J, et al. The feasibility of cervical elastography in predicting preterm delivery in singleton pregnancy with short cervix following progesterone treatment. IJERPH. 2021;18(4):2026. doi: 10.3390/ijerph18042026.
  • Chen C, Chen C, Sun F. Assessment of the cervix in pregnant women with a history of cervical insufficiency during the first trimester using elastography. Acta Obstet Gynecol Scand. 2020;99(11):1497–1503. doi: 10.1111/aogs.13942.
  • Dymanowska-Dyjak I, Stupak A, Kondracka A, et al. Elastography and metalloproteinases in patients at high risk of preterm labor. JCM. 2021;10(17):3886. doi: 10.3390/jcm10173886.
  • Suthasmalee S, Moungmaithong S. Cervical shear wave elastography as a predictor of preterm delivery during 18–24 weeks of pregnancy. J Obstet Gynaecol Res. 2019;45(11):2158–2168. doi: 10.1111/jog.14094.
  • Ono T, Katsura D, Yamada K, et al. Use of ultrasound shear-wave elastography to evaluate change in cervical stiffness during pregnancy: SWE of cervix during pregnancy. J Obstet Gynaecol Res. 2017;43(9):1405–1410. doi: 10.1111/jog.13379.
  • Diawtipsukon S, Bumrungphuet S, Dulyaphat W, et al. The comparative study of cervical shear wave elastography between twin and singleton pregnancy. Int J Womens Health. 2020;12:649–656. doi: 10.2147/IJWH.S251522.
  • Sun J, Li N, Jian W, et al. Clinical application of cervical shear wave elastography in predicting the risk of preterm delivery in DCDA twin pregnancy. BMC Pregnancy Childbirth. 2022;22(1):202. doi: 10.1186/s12884-022-04526-0.
  • Liu Y, Yang D, Jiang Y, et al. Quantification of cervical stiffness changes in single and twin pregnancies using the E-Cervix technique. Am J Obstet Gynecol MFM. 2023;5(2):100804. doi: 10.1016/j.ajogmf.2022.100804.
  • O'Connell MP, Avis NJ, Brown BH, et al. Electrical impedance measurements: an objective measure of prelabor cervical change. J Mater Fetal Neon Med. 2003;14(6):389–391. doi: 10.1080/14767050412331312230.
  • Anumba DOC, Stern V, Healey JT, et al. Value of cervical electrical impedance spectroscopy to predict spontaneous preterm delivery in asymptomatic women: the ECCLIPPx prospective cohort study. Ultrasound Obstet Gynecol. 2021;58(2):293–302. doi: 10.1002/uog.22180.
  • Stern V, Anumba D. Potential incorporation of novel cervical impedance spectroscopy assessment into existing clinical algorithms for predicting preterm birth. Eur J Obstet Gynecol Reprod Biol. 2021;256:523–524. doi: 10.1016/j.ejogrb.2020.11.019.
  • McFarlin BL, Bigelow TA, Laybed Y, et al. Ultrasonic attenuation estimation of the pregnant cervix: a preliminary report. Ultrasound Obstet Gynecol. 2010;36(2):218–225. doi: 10.1002/uog.7643.
  • McFarlin BL, Kumar V, Bigelow TA, et al. Beyond cervical length: a pilot study of ultrasonic attenuation for early detection of preterm birth risk. Ultrasound Med Biol. 2015;41(11):3023–3029. doi: 10.1016/j.ultrasmedbio.2015.06.014.
  • Guerrero QW, Feltovich H, Rosado-Mendez IM, et al. Quantitative ultrasound biomarkers based on backscattered acoustic power: potential for quantifying remodeling of the human cervix during pregnancy. Ultrasound Med Biol. 2019;45(2):429–439. doi: 10.1016/j.ultrasmedbio.2018.08.019.
  • Maul H, Olson G, Fittkow CT, et al. Cervical light-induced fluorescence in humans decreases throughout gestation and before delivery: preliminary observations. Am J Obstet Gynecol. 2003;188(2):537–541. doi: 10.1067/mob.2003.94.
  • Schlembach D, Maul H, Fittkow C, et al. Cross-linked collagen in the cervix of pregnant women with cervical insufficiency. Am J Obstet Gynecol. 2003;189(6):S70. doi: 10.1016/j.ajog.2003.10.034.
  • Zheng Z, Di X, Wang L, et al. Evaluation of cervical maturity by cervical collagen measurement using light-induced fluorescence (LIF) during pregnancy. J Int Med Res. 2020;48(11):300060520964006. doi: 10.1177/0300060520964006.
  • Baños A, Wolf M, Grawe C, et al. Frequency domain near-infrared spectroscopy of the uterine cervix during cervical ripening. Lasers Surg Med. 2007;39(8):641–646. doi: 10.1002/lsm.20542.
  • Hornung R, Spichtig S, Baños A, et al. Frequency-domain near-infrared spectroscopy of the uterine cervix during regular pregnancies. Lasers Med Sci. 2011;26(2):205–212. doi: 10.1007/s10103-010-0832-7.
  • Qu Y, Hu P, Shi J, et al. In vivo characterization of connective tissue remodeling using infrared photoacoustic spectra. J Biomed Opt. 2018;23:121621.
  • O'Brien CM, Vargis E, Rudin A, et al. In vivo raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy. Am J Obstet Gynecol. 2018;218(5):528.e1–528.e18. doi: 10.1016/j.ajog.2018.01.030.
  • Masson LE, O'Brien CM, Gautam R, et al. In vivo raman spectroscopy monitors cervical change during labor. Am J Obstet Gynecol. 2022;227(2):275.e1–275.e14. doi: 10.1016/j.ajog.2022.02.019.
  • Chue-Sang J, Holness N, Gonzalez M, et al. Use of mueller matrix colposcopy in the characterization of cervical collagen anisotropy. J Biomed Opt. 2018;23(12):1–9. doi: 10.1117/1.JBO.23.12.121605.
  • Rehbinder J, Vizet J, Park J, et al. Depolarization imaging for fast and non-invasive monitoring of cervical microstructure remodeling in vivo during pregnancy. Sci Rep. 2022;12(1):12321. doi: 10.1038/s41598-022-15852-w.