2,736
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Hierarchies of evolutionary radiation in the world’s most species rich vertebrate group, the Neotropical Pristimantis leaf litter frogs

, , , &
Pages 807-819 | Received 02 Mar 2018, Accepted 03 Jul 2018, Published online: 28 Sep 2018

References

  • Antonelli, A., Quijada-Mascareñas, A., Crawford, A. J., Bates, J. M., Velazco, P. M., & Wüster, W. (2010). Molecular studies and phylogeography of amazonian tetrapods and their relation to geological and climatic models. In C. Hoorn & F. Wesselingh (Eds.), Amazonia: Landscape and species evolution (pp. 386–404). Oxford: Wiley-Blackwell Publishing Ltd.
  • Barej, M. F., Penner, J., Schmitz, A., & Rödel, M.-O. (2015). Multiple genetic lineages challenge the monospecific status of the West African endemic frog family Odontobatrachidae. BioMed Central Evolutionary Biology, 15, 67. doi:10.1186/s12862-015-0346-9
  • Barraclough, T. G., & Humphreys, A. M. (2015). The evolutionary reality of species and higher taxa in plants: A survey of post-modern opinion and evidence. New Phytologist, 207, 291–296. doi:10.1111/nph.13232
  • Barrio-Amorós, C. L., Mesa, J., Brewer-Carías, C., & McDiarmid, R. W. (2010). A new Pristimantis (Anura, Terrarana, Strabomantidae) from Churi-tepui in the Chimanta massif, Venezuelan Guayana. Zootaxa, 2483, 35–44. doi:10.5281/zenodo.195474
  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552. doi:10.1093/oxfordjournals.molbev.a026334
  • Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A., & Vilà, C. (2014). Neotropical diversification seen through glassfrogs. Journal of Biogeography, 41, 66–80. doi:10.1111/jbi.12208
  • Ceccarelli, F. S., Ojanguren-Affilastro, A. A., Ramírez, M. J., Ochoa, J. A., Mattoni, C. I., & Prendini, L. (2016). Andean uplift drives diversification of the bothriurid scorpion genus Brachistosternus. Journal of Biogeography, 43, 1942–1954. doi:10.1111/jbi.12760
  • Couvreur, T. L., Forest, F., & Baker, W. J. (2011). Origin and global diversification patterns of tropical rain forests: Inferences from a complete genus-level phylogeny of palms. BioMed Central Biology, 9, 44. doi:10.1186/1741-7007-9-44
  • Cracraft, J. (1985). Historical biogeography and patterns of differentiation within the South American Avifauna: Areas of endemism. Ornithological Monographs, 36, 49–84. doi:10.2307/40168278
  • Crawford, A. J. (2003). Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences. Molecular Ecology, 12, 2525–2540. doi:10.1046/j.1365-294X.2003.01910.x
  • Cusimano, N. & Renner, S. S. (2010). Slowdowns in diversification rates from real phylogenies may not be real. Systematic Biology, 59, 458–464. doi:10.1093/sysbio/syq032
  • Derryberry, E. P., Claramunt, S., Derryberry, G., Chesser, R. T., Cracraft, J., Aleixo, A., … Brumfield, R. T. (2011). Lineage diversification and morphological evolution in a large-scale continental radiation: The Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution, 65, 2973–2986. doi:10.1111/j.1558-5646.2011.01374.x
  • De-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography, 43, 44–58. doi:10.1111/jbi.12611
  • Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. doi:10.1093/molbev/mss075
  • Duellman, W. E. (1999). Patterns of distribution of amphibians: A global perspective. Baltimore: Johns Hopkins University Press.
  • Duellman, W. E. & Lehr, E. (2009). Terrestrial-breeding frogs (Strabomantidae) in Peru. Münster: Nature und Tier Verlag.
  • Elmer, K. R., Bonett, R. M., Wake, D. B., & Lougheed, S. C. (2013). Early Miocene origin and cryptic diversification of South American salamanders. BioMed Central Evolutionary Biology, 13, 59. doi:10.1186/1471-2148-13-59
  • Elmer, K. R., & Cannatella, D. C. (2008). Three new species of leaflitter frogs from the upper Amazon forests: Cryptic diversity within Pristimantis "ockendeni" (Anura: Strabomantidae) in Ecuador. Zootaxa, 1784, 11–38. doi:10.5281/zenodo.182422
  • Elmer, K. R., Dávila, J. A., & Lougheed, S. C. (2007a). Applying new inter-individual approaches to assess fine-scale population genetic diversity in a neotropical frog, Eleutherodactylus ockendeni. Heredity, 99, 506–515. doi:10.1038/sj.hdy.6801025
  • Elmer, K. R., Dávila, J. A., & Lougheed, S. C. (2007b). Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni. BioMed Central Evolutionary Biology, 7, 247. doi:10.1186/1471-2148-7-247
  • Etienne, R. S., & Haegeman, B. (2012). A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. The American Naturalist, 180(4), E75–E89. doi:10.1086/667574
  • Ezard, T., Fujisawa, T., & Barraclough, T. G. (2009). Splits: SPecies’ LImits by Threshold Statistics package, version 1.0-19. Retrieved from https://rdrr.io/rforge/splits/
  • Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., & Barraclough, T. G. (2007). Independently evolving species in asexual bdelloid rotifers. Public Library of Science Biology, 5, e87. doi:10.1371/journal.pbio.0050087
  • Fouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M., & Gemmell, N. J. (2007). Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. Public Library of Science ONE, 2, e1109. doi:10.1371/journal.pone.0001109
  • Frost, D. R. (2018). Amphibian Species of the World: An online reference. Retrieved from http://research.amnh.org/vz/herpetology/amphibia/ (accessed 11 September 2018).
  • Fujisawa, T., & Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology, 62, 707–724. doi:10.1093/sysbio/syt033
  • Funk, W. C., Caminer, M., & Ron, S. R. (2012). High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings. Biological Sciences, 279, 1806–14. doi:10.1098/rspb.2011.1653
  • García-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. Public Library of Science ONE, 7, e46077. doi:10.1371/journal.pone.0046077
  • Gentry, A. H. (1992). Tropical forest biodiversity: Distributional patterns and their conservational significance. Oikos, 63, 19. doi:10.2307/3545512
  • Goebel, A. M., Donnelly, J. M., & Atz, M .E. (1999). PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Molecular Phylogenetics and Evolution, 11, 163–199. doi:10.1006/mpev.1998.0538
  • Gonzalez-Voyer, A., Padial, J. M., Castroviejo-Fisher, S., De La Riva, I., & Vilà, C. (2011). Correlates of species richness in the largest Neotropical amphibian radiation. Journal of Evolutionary Biology, 24, 931–942. doi:10.1111/j.1420-9101.2011.02243.x
  • Hedges, S.B., Duellman, W.E., & Heinicke, M.P. (2008) New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 1737, 1–182. Retrived from http://www.hedgeslab.org/pubs/196.pdf (accessed 11 September 2018).
  • Heinicke, M. P., Duellman, W. E., & Hedges, S. B. (2007). Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proceedings of the National Academy of Sciences of the United States of America, 104, 10092–7. doi:10.1073/pnas.0611051104
  • Heinicke, M. P., Barrio-Amorós, C. L., & Hedges, S. B. (2015). Molecular and morphological data support recognition of a new genus of New World direct-developing frog (Anura: Terrarana) from an under-sampled region of South America. Zootaxa, 3986, 151–72. doi:10.11646/zootaxa.3986.2.1
  • Hernandez, P., & Young, B. (2007). Synthesis. In B. Young (Ed.), Endemic species distributions on the east slope of the Andes in Peru and Bolivia. Arlington: NatureServe.
  • Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., … Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931. doi:10.1126/science.1194585
  • Humphreys, A. M., & Barraclough, T. G. (2014). The evolutionary reality of higher taxa in mammals. Proceedings of the Royal Society B: Biological Sciences, 281, 20132750. doi:10.1098/rspb.2013.2750
  • Humphreys, A. M., Rydin, C., Jønsson, K. A., Alsop, D., Callender-Crowe, L. M., & Barraclough, T. G. (2016). Detecting evolutionarily significant units above the species level using the generalised mixed Yule coalescent method. Methods in Ecology and Evolution, 7, 1366–1375. doi:10.1111/2041-210X.12603
  • Hutter, C. R., & Guayasamin, J. M. (2015). Cryptic diversity concealed in the Andean cloud forests: Two new species of rainfrogs (Pristimantis) uncovered by molecular and bioacoustic data. Neotropical Biodiversity, 1, 36–59. doi:10.1080/23766808.2015.1100376
  • Hutter, C. R., Guayasamin, J. M., & Wiens, J. J. (2013). Explaining Andean megadiversity: The evolutionary and ecological causes of glassfrog elevational richness patterns. Ecology Letters, 16, 1135–1144. doi:10.1111/ele.12148
  • Hutter, C. R., Lambert, S. M., & Wiens, J. J. (2017). Rapid diversification and time explain amphibian richness at different scales in the tropical andes, earth’s most biodiverse hotspot. The American Naturalist, 190, 828–843. doi:10.1086/694319
  • Jörger, K. M., Norenburg, J. L., Wilson, N. G., & Schrödl, M. (2012). Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BioMed Central Evolutionary Biology, 12, 245. doi:10.1186/1471-2148-12-245
  • Kaiser, H., Barrio-Amorós, C. L., Rivas, G. A., Steinlein, C., Schmid, M., & Schmid, M. (2015). Five new species of Pristimantis (Anura: Strabomantidae) from the coastal cloud forest of the Península de Paria, Venezuela. Journal of Threatened Taxa, 7, 7047–7088. doi:10.11609/JoTT.o4197.7047-88
  • Kattan, G. H., & Franco, P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: Area and mass effects. Global Ecology and Biogeography, 13, 451–458. doi:10.1111/j.1466-822X.2004.00117.x
  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Thierer, T. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatic, 28, 1647–1649. doi:10.1093/bioinformatics/bts199
  • Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. doi:10.1093/molbev/mss020
  • Lötters, S., Schmitz, A., Reichle, S., Rödder, D., & Quennet, V. (2009). Another case of cryptic diversity in poison frogs (Dendrobatidae: Ameerega) description of a new species from Bolivia. Zootaxa, 2028, 20–30. doi:10.5281/zenodo.186228
  • Lougheed, S. C., Gascon, C., Jones, D. A., Bogart, J. P., & Boag, P. T. (1999). Ridges and rivers: A test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis). Proceedings of the Royal Society B. Biological Sciences, 266, 1829–1835. doi:10.1098/rspb.1999.0853
  • Low, V. L., Takaoka, H., Pramual, P., Adler, P. H., Ya’cob, Z., Huang, Y.-T., … Sofian-Azirun, M. (2016). Delineating taxonomic boundaries in the largest species complex of black flies (Simuliidae) in the Oriental Region. Scientific Reports, 6, 20346. doi:10.1038/srep20346
  • Loyola, R. D., Kubota, U., da Fonseca, G. A. B., & Lewinsohn, T. M. (2009). Key Neotropical ecoregions for conservation of terrestrial vertebrates. Biodiversity and Conservation, 18, 2017–2031. doi:10.1007/s10531-008-9570-6
  • Lynch, J. D., & Duellman, W. E. (1997). Frogs of the genus Eleutherodactylus (Leptodactylidae) in western Ecuador : systematics, ecology, and biogeography. Kansas: Natural History Museum, University of Kansas.
  • Massana, R., Castresana, J., Balagué, V., Guillou, L., Romari, K., Groisillier, A., … Pedrós-Alió, C. (2004). Phylogenetic and ecological analysis of novel marine stramenopiles. Applied and Environmental Microbiology, 70, 3528–34. doi:10.1128/AEM.70.6.3528-3534.2004
  • Mendoza, Á. M., Ospina, O. E., Cárdenas-Henao, H., & García-R, J. C. (2015). A likelihood inference of historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of direct-developing frogs (Craugastoridae: Pristimantis) across the Neotropics. Molecular Phylogenetics and Evolution, 85, 50–58. doi:10.1016/j.ympev.2015.02.001
  • Meyer, A. L. S., & Wiens, J. J. (2018). Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. Evolution, 72, 39–53. doi:10.1111/evo.13378
  • Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., … Vogler, A. P. (2009). Accelerated species inventory on madagascar using coalescent-based models of species delineation. Systematic Biology, 58, 298–311. doi:10.1093/sysbio/syp027
  • Muñoz-Ortiz, A., Velásquez-Álvarez, Á. A., Guarnizo, C. E., & Crawford, A. J. (2015). Of peaks and valleys: Testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid-elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42, 193–205. doi:10.1111/jbi.12409
  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. doi:10.1038/35002501
  • Noonan, B. P., & Wray, K. P. (2006). Neotropical diversification: The effects of a complex history on diversity within the poison frog genus Dendrobates. Journal of Biogeography, 33, 1007–1020. doi:10.1111/j.1365-2699.2006.01483.x
  • Ortega-Andrade, H. M., Rojas-Soto, O. R., Valencia, J. H., Espinosa de los Monteros, A., Morrone, J. J., Ron, S. R., & Cannatella, D. C. (2015). Insights from integrative systematics reveal cryptic diversity in Pristimantis frogs (Anura: Craugastoridae) from the Upper Amazon Basin. Public Library of Science ONE, 10, e0143392. doi:10.1371/journal.pone.0143392
  • Padial, J. M., Grant, T., & Frost, D. R. (2014). Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects os alignment and optimality criteria. Zootaxa, 3825, 1–132. doi:10.11646/zootaxa.3825.1.1
  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analysis of Phylogenetics and Evolution in R. Bioinformatics, 20, 289–290. doi:10.1093/bioinformatics/btg412
  • Pinto-Sánchez, N. R., Ibáñez, R., Madriñán, S., Sanjur, O. I., Bermingham, E., & Crawford, A. J. (2012). The Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Molecular Phylogenetics and Evolution, 62, 954–972. doi:10.1016/j-ympev.2011.11.022
  • Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6, 7–11. Retrived from https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf (accessed 11 September 2018).
  • Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., … Hedin, M. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609. doi:10.1080/10635150600852011
  • Postaire, B., Magalon, H., Bourmaud, C. A. F., & Bruggemann, J. H. (2016). Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Molecular Phylogenetics and Evolution, 105, 36–49. doi:10.1016/j-ympev.2016.08.013
  • Prohl, H., Ron, S. R., & Ryan, M. J. (2010). Ecological and genetic divergence between two lineages of Middle American tungara frogs Physalaemus (=Engystomops) pustulosus. BioMed Central Evolutionary Biology, 10, 146. doi:10.1186/1471-2148-10-146
  • Pybus, O.G., & Harvey, P.H. (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society B: Biological Sciences, 267, 2267–2272. doi:10.1098/rspb.2000.1278
  • Rabosky, D. L. (2006). LASER: A maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics Online, 2, 273–6. doi:10.1177/117693430600200024
  • Rabosky, D. L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. Public Library of Science ONE, 9, e89543. doi:10.1371/journal.pone.0089543
  • Rabosky, D. L., Grundler, M., Anderson, C., Title, P., Shi, J. J., Brown, J. W., … Larson, J. G. (2014). BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution, 5, 701–707. doi:10.1111/2041-210X.12199
  • Rabosky, D. L., & Lovette, I. J. (2008a). Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences, 275, 2363–2371. doi:10.1098/rspb.2008.0630
  • Rabosky, D. L., & Lovette, I. J. (2008b). Explosive evolutionary radiations: Decreasing speciation or increasing extinction through time? Evolution, 62, 1866–1875. doi:10.1111/j.1558-5646.2008.00409.x
  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/ (accessed 11 September 2018).
  • Sanín, M. J., Kissling, W. D., Bacon, C. D., Borchsenius, F., Galeano, G., Svenning, J.-C., … Pintaud, J.-C. (2016). The Neogene rise of the tropical Andes facilitated diversification of wax palms (Ceroxylon: Arecaceae) through geographical colonization and climatic niche separation. Botanical Journal of the Linnean Society, 182, 303–317. doi:10.1111/boj.12419
  • Santos, J. C., Coloma, L. A., Summers, K., Caldwell, J. P., Ree, R., & Cannatella, D. C. (2009). Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages. Public Library of Science Biology, 7, e1000056. doi:10.1371/journal.pbio.1000056
  • Schweizer, M., Hertwig, S. T., & Seehausen, O. (2014). Diversity versus disparity and the role of ecological opportunity in a continental bird radiation. Journal of Biogeography, 41, 1301–1312. doi:10.1111/jbi.12293
  • Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., … Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515, 406–409. doi:10.1038/nature13687
  • Smith, S. A., De Oca, A. N. M., Reeder, T. W., & Wiens, J. J. (2007). A phylogenetic perspective on elevational species richness patterns in middle American treefrogs: Why so few species in lowland tropical rainforests? Evolution, 61, 1188–1207. doi:10.1111/j.1558-5646.2007.00085.x
  • Vaz-Silva, W., & Maciel, N. M. (2011). A new cryptic species of Ameerega (Anura: Dendrobatidae) from Brazilian Cerrado. Zootaxa, 2826, 57–68. doi:10.5281/zenodo.205958
  • Wang, I. J., Crawford, A. J., & Bermingham, E. (2008). Phylogeography of the Pygmy Rain Frog (Pristimantis ridens) across the lowland wet forests of isthmian Central America. Molecular Phylogenetics and Evolution, 47, 992–1004. doi:10.1016/j.ympev.2008.02.021
  • Wesselingh, F. P., & Salo, J. A. (2006). A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, 133, 439–458.
  • Wilson, E. O. (1988). The current state of biological diversity. In E. O. Wilson (Ed.), Biodiversity (pp. 3–18). Washington, DC: National Academies Press.
  • Zeisset, I., & Beebee, T. J. C. (2008). Amphibian phylogeography: A model for understanding historical aspects of species distributions. Heredity, 101, 109–119. doi:10.1038/hdy.2008.30