187
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Karyotype asymmetry shapes diversity within the physaloids (Physalidinae, Physalideae, Solanaceae)

, ORCID Icon & ORCID Icon

References

  • Acosta, M. C., Bernardello, G., Guerra, M., & Moscone, E. A. (2005). Karyotype analysis in several South American species of Solanum and Lycianthes rantonnei (Solanaceae). TAXON, 54(3), 713–723. https://doi.org/10.2307/25065428
  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
  • Averett, J. E. (1973). Biosystematic study of Chamaesaracha (Solanaceae). Rhodora, 75(803), 325–365.
  • Badr, A., Khalifa, S. F., Aboel Atta, A. I., & Abou el Enain, M. M. (1997). Chromosomal criteria and taxonomic relationships in the Solanaceae. CYTOLOGIA, 62(2), 103–113. https://doi.org/10.1508/cytologia.62.103
  • Baltisberger, M., & Hörandl, E. (2016). Karyotype evolution supports the molecular phylogeny in the genus Ranunculus (Ranunculaceae). Perspectives in Plant Ecology, Evolution and Systematics, 16, 1–14.
  • Banks, P. (1984). A new diploid chromosome number for tomato (Lycopersicon esculentum)? Canadian Journal of Genetics and Cytology, 26(5), 636–639. https://doi.org/10.1139/g84-099
  • Barboza, G. E. (2000). Rehabilitación del género Quincula (Solanaceae: Solaneae). Kurtziana, 28(1), 69–79.
  • Barboza, G. E., Chiarini, F. E., & Stehmann, J. R. (2010). Real identity of Witheringia sellowiana (Solanaceae), typification, and chromosome number. Systematic Botany, 35(2), 420–424. https://doi.org/10.1600/036364410791638397
  • Barboza, G. E., Hunziker, A. T., Bernardello, G., Cocucci, A. A., Carrizo García, C., Fuentes, V., Dillon, M., Bittrich, V., Cosa, M. T., Subils, R., Romanutti, A., Arroyo, S., & Anton, A. (2016). Solanaceae. In K. Kubitzki (Ed.). The Families and Genera of Vascular Plants., 14, 295–357.
  • Bachman, S., Moat, J., Hill, A. W., De Torre, J., & Scott, B. (2011). Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys, 150, 117–126. https://doi.org/10.3897/zookeys.150.2109
  • Blöch, C., Weiss-Schneeweiss, H., Schneeweiss, G. M., Barfuss, M. H., Rebernig, C. A., Villaseñor, J. L., & Stuessy, T. F. (2009). Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Molecular Phylogenetics and Evolution, 53(1), 220–233. https://doi.org/10.1016/j.ympev.2009.02.021
  • Blomberg, S. P., Garland, T., Jr., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution; International Journal of Organic Evolution, 57(4), 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
  • Bohs, L. (2005). Major clades in Solanum based on ndhF sequence data. In V. Hollowell, R. Keating, W. Lewis & T. Croat (Eds.). A Festschrift for William D’Arcy. Monographs in Systematic Botany from the Missouri Botanical Garden. (vol. 104, pp. 24–49). Missouri Botanical Garden Press.
  • Brako, L., Zarucchi, J. (1993). Catalogue of the flowering plants and Gymnosperms of Peru. Catálogo de las Angiospermas y Gimnospermas del Perú. Monographs in systematic botany from the Missouri Botanical Garden, 45, 1–1286.
  • Brandham, P. E., & Doherty, M. J. (1998). Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Annals of Botany, 82, 67–73. https://doi.org/10.1006/anbo.1998.0742
  • Brown, J. H. (1984). On the relationship between distribution and abundance. The American Naturalist, 124(2), 255–279. https://doi.org/10.1086/284267
  • Chiarini, F. E., & Barboza, G. E. (2008). Karyological studies in Jaborosa (solanaceae). Botanical Journal of the Linnean Society, 156(3), 467–478. https://doi.org/10.1111/j.1095-8339.2007.00734.x
  • Chiarini, F. E., Moreno, N., Barboza, G. E., & Bernardello, G. (2010). Karyotype characterization of Andean Solanoideae (Solanaceae). Caryologia, 63(3), 278–291. https://doi.org/10.1080/00087114.2010.589738
  • Chiarini, F. E., Lipari, D., Barboza, G. E., & Knapp, S. (2017). Solanaceae. In: Marhold, K. & J. Kučera (Eds.). IAPT/IOPB chromosome data 25. Taxon., 66(5), 1246–1252.
  • Chiarini, F. E., Sazatornil, F., & Bernardello, G. (2018). Data reassessment in a phylogenetic context gives insight into chromosome evolution in the giant genus Solanum (Solanaceae). Systematic and Biodiversity, 16(4), 1–20.
  • Deanna, R., Barboza, G. E., & Scaldaferro, M. A. (2014). First karyological report in Larnax and Deprea (Solanaceae). Australian Journal of Botany, 62(3), 251–261. https://doi.org/10.1071/BT14041
  • Deanna, R., Smith, S. D., Särkinen, T., & Chiarini, F. E. (2018). Patterns of chromosomal evolution in the florally diverse Andean clade Iochrominae (Solanaceae). Perspectives in Plant Ecology, Evolution and Systematics, 35, 31–43. https://doi.org/10.1016/j.ppees.2018.09.004
  • Deanna, R., Larter, M. D., Barboza, G. E., & Smith, S. D. (2019). Repeated evolution of a morphological novelty: a phylogenetic analysis of the inflated fruiting calyx in the Physalideae tribe (Solanaceae). American Journal of Botany, 106(2), 270–279. https://doi.org/10.1002/ajb2.1242
  • Deanna, R., Wilf, P., & Gandolfo, M. A. (2020). New physaloid fruit-fossil species from early Eocene South America. American Journal of Botany, 107(12).
  • Doganlar, S., Frary, A., Daunay, M. C., Lester, R. N., & Tanksley, S. D. (2002). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics, 161(4), 1697–1711.
  • Ellis, R. H., Hong, T. D., & Roberts, E. H. (1985). Compendium of specific germination, information and test recommendations. Handbook for Genebanks 3. International Board for Plant Genetic Resources.
  • FitzJohn, R. G. (2012). Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution, 3(6), 1084–1092. https://doi.org/10.1111/j.2041-210X.2012.00234.x
  • Futuyma, D. J. (2005). Evolution. (3rd ed.). Sinauer Associates, Inc. Publishers.
  • GBIF.org. (2020). 30 Aug GBIF Occurrence Data.
  • Glick, L., & Mayrose, I. (2014). ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution, 31(7), 1914–1922. https://doi.org/10.1093/molbev/msu122
  • Goldblatt, P., Johnson, D. E. (1979). onwards). Index to plant chromosome numbers. St. Louis: Missouri Botanical Garden. http://www.tropicos.org/Project/IPCN (Accessed 17 August 2019).
  • Guerra, M. (2012). Cytotaxonomy: The end of childhood. Plant Biosystems, 146(3), 703–710.
  • Hegarty, M. J., & Hiscock, S. J. (2008). Genomic clues to the evolutionary success of review polyploid plants. Current Biology : Cb, 18(10), R435–444. https://doi.org/10.1016/j.cub.2008.03.043
  • Hijmans, R. J., Gavrilenko, T., Stephenson, S., Bamberg, J., Salas, A., & Spooner, D. M. (2007). Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Global Ecology and Biogeography, 16(4), 485–495. https://doi.org/10.1111/j.1466-8238.2007.00308.x
  • Huelsenbeck, J. P., Nielsen, R., & Bollback, J. P. (2003). Stochastic mapping of morphological characters. Systematic Biology, 52(2), 131–158. https://doi.org/10.1080/10635150390192780
  • IUCN. (2017). Guidelines for Using the IUCN Red List Categories and Criteria. http://www.iucnredlist.org/documents/RedListGuidelines.pdf.
  • Jones, K. (1974). Chromosome evolution by Robertsonian translocation in Gibasis (Commelinaceae). Chromosoma, 45(4), 353–368. https://doi.org/10.1007/BF00283382
  • Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England)), 26(11), 1463–1464. https://doi.org/10.1093/bioinformatics/btq166
  • Levan, A., Fredga, L., & Sandberg, A. (2009). Nomenclature for centromeric position on chromosomes. Hereditas, 52(2), 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  • Levin, D. A. (2003). The ecological transition in speciation. New Phytologist, 161(1), 91–96. https://doi.org/10.1046/j.1469-8137.2003.00921.x
  • Levin, D. A., & Funderburg, S. W. (1979). Genome size in angiosperms: temperate versus tropical species. The American Naturalist, 114(6), 784–795. https://doi.org/10.1086/283528
  • Li, H. Q., Gui, P., Xiong, S. Z., & Averett, J. E. (2013). The generic position of two species of tribe Physaleae (Solanaceae) inferred from three DNA sequences: a case study on Physaliastrum and Archiphysalis. Biochemical Systematics and Ecology, 50, 82–89. https://doi.org/10.1016/j.bse.2013.03.038
  • Madlung, A. (2013). Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 110(2), 99–104. https://doi.org/10.1038/hdy.2012.79
  • Mandáková, T., & Lysak, M. A. (2008). Chromosomal phylogeny and karyotype evolution in x= 7 crucifer species (Brassicaceae). The Plant Cell, 20(10), 2559–2570. https://doi.org/10.1105/tpc.108.062166
  • Maxime, V. (2008). The physiology of triploid fish: Current knowledge and comparisons with diploid fish. Fish and Fisheries, 9(1), 67–78. https://doi.org/10.1111/j.1467-2979.2007.00269.x
  • Mayrose, I., Barker, M. S., & Otto, S. P. (2010). Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology, 59(2), 132–144. https://doi.org/10.1093/sysbio/syp083
  • Menzel, M. Y. (1950). Cytotaxonomic observations on some genera of the Solanae: Margaranthus, Saracha, and Quincula. American Journal of Botany, 37(1), 25–30. https://doi.org/10.1002/j.1537-2197.1950.tb08157.x
  • Menzel, M. Y. (1951). The cytotaxonomy and genetics of Physalis. Proceedings of the American Philosophical Society, 95(2), 132–183.
  • Moscone, E. A. (1992). Estudios de cromosomas meióticos en Solanaceae de Argentina. Darwiniana, 31, 261–297.
  • Moscone, E. A., Baranyi, M., Ebert, I., Greilhuber, J., Ehrendorfer, F., & Hunziker, A. T. (2003). Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Annals of Botany, 92(1), 21–29. https://doi.org/10.1093/aob/mcg105
  • Moscone, E. A., Scaldaferro, M. A., Grabiele, M., Cecchini, N. M., Sánchez García, Y., Jarret, R., & Ehrendorfer, F. (2006 The evolution of chili peppers (Capsicum-Solanaceae): a cytogenetic perspective [Paper presentation]. VI International Solanaceae Conference: Genomics Meets Biodiversity. Acta Horticulturae, In 745, 137–170.
  • Nielsen, R. (2001). Mutations as missing data: inferences on the ages and distributions of non-synonymous and synonymous mutations. Genetics, 159(1), 401–411.
  • Olmstead, R. G., & Bohs, L. (2006 A summary of molecular systematic research in Solanaceae: 1982-2006 < SE-END> [Paper presentation].</SE-END>VI International Solanaceae Conference: Genomics Meets Biodiversity. Acta Horticulturae, In 745, 255–268.
  • Olmstead, R. G., Bohs, L., Migid, H. A., Santiago Valentin, E., Garcia, V. F., & Collier, S. M. (2008). A molecular phylogeny of the Solanaceae. TAXON, 57(4), 1159–1181. https://doi.org/10.1002/tax.574010
  • Otto, S. P., & Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437. https://doi.org/10.1146/annurev.genet.34.1.401
  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884. https://doi.org/10.1038/44766
  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290. https://doi.org/10.1093/bioinformatics/btg412
  • Paszko, B. (2006). A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution, 258(1-2), 39–48. https://doi.org/10.1007/s00606-005-0389-2
  • Peruzzi, L., & Eroğlu, H. E. (2013). Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics, 7(1), 1–9. https://doi.org/10.3897/CompCytogen.v7i1.4431
  • Poggio, L. (1996). Algunos aportes a la citogenética y especiación vegetal < SE-END> [Paper presentation].</SE-END>Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales, Buenos Aires, Argentina. 48, 79–92.
  • Poggio, L., Realini, M. F., Fourastié, M. F., García, A. M., & González, G. E. (2014). Genome downsizing and karyotype constancy in diploid and polyploid congeners: a model of genome size variation. AoB Plants, 6, plu029. https://doi.org/10.1093/aobpla/plu029
  • Pound, G. E., Cox, S. J., & Doncaster, C. P. (2004). The accumulation of deleterious mutations within the frozen niche variation hypothesis. Journal of Evolutionary Biology, 17(3), 651–662. https://doi.org/10.1111/j.1420-9101.2003.00690.x
  • Pretz, C., & Deanna, R. (2020). Typifications and nomenclatural notes in Physalis (Solanaceae) from the United States. TAXON, 69(1), 170–192. early view. https://doi.org/10.1002/tax.12159
  • R Core Team. (2017). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016). Retrieved from: https://www.R-project.org (Accessed August 01, 2019).
  • Ranney, T. G. (2006). Polyploidy: From evolution to new plant development. Combined Proceedings International Plant Propagators’ Society, 56, 137–142.
  • Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
  • Rice, A., Glick, L., Abadi, S., Einhorn, M., Kopelman, N. M., Salman-Minkov, A., Mayzel, J., Chay, O., & Mayrose, I. (2015). The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytologist, 206(1), 19–26. https://doi.org/10.1111/nph.13191
  • Rodríguez, N. C., & Bueno, M. L. (2006). Estudio de la diversidad citogenética de Physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, 11(2), 75–85.
  • Romero Zarco, C. (1986). A new method for estimating karyotype asymmetry. TAXON, 35(3), 526–530. https://doi.org/10.2307/1221906
  • Särkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology, 13(1), 214 https://doi.org/10.1186/1471-2148-13-214
  • Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta, 243(2), 281–296. https://doi.org/10.1007/s00425-015-2450-x
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Schönswetter, P., Lachmayer, M., Lettner, C., Prehsler, D., Rechnitzer, S., Reich, D. S., Sonnleitner, M., Wagner, I., Hülber, K., Schneeweiss, G. M., Trávnícek, P., & Suda, J. (2007). Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. Journal of Plant Research, 120(6), 721–725. https://doi.org/10.1007/s10265-007-0108-x
  • Sheehan, D., & Hrapchak, B. (1980). Theory and practice of Histotechnology. (2nd ed.). The CV Mosby Company.
  • Smith, S. D., & Baum, D. A. (2006). Phylogenetics of the florally diverse Andean clade Iochrominae (Solanaceae). American Journal of Botany, 93(8), 1140–1153. https://doi.org/10.3732/ajb.93.8.1140
  • Soltis, D. E., Soltis, P. S., Pires, J. C., Kovarik, A., Tate, J. A., & Mavrodiev, E. (2004). Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biological Journal of the Linnean Society, 82(4), 485–501. https://doi.org/10.1111/j.1095-8312.2004.00335.x
  • Sousa Peña, M. (2001). Systematics and reproductive biology of the genus Whiteringia L’ Hér. (Solanaceae). Unpublished D Phil. Thesis, University of Connecticut, Storrs, CT.
  • Stace, C. A. (2000). Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. TAXON, 49(3), 451–477. https://doi.org/10.2307/1224344
  • Stebbins, G. L. (1971). Chromosomal Evolution in Higher Plants. E. Arnold.
  • Stebbins, G. L. (1985). Polyploidy, hybridization, and the invasion of new habitats. Annals of the Missouri Botanical Garden, 72(4), 824–832. https://doi.org/10.2307/2399224
  • Stiefkens, L., & Bernardello, G. (2000). Karyotypes and DNA content in diploid and polyploid Lycium (Solanaceae). Boletín de la Sociedad Argentina de Botánica, 35, 237–244.
  • Szinay, D., Wijnker, E., van den Berg, R., Visser, R. G., de Jong, H., & Bai, Y. (2012). Chromosome evolution in Solanum traced by cross-species BAC-FISH . The New Phytologist, 195(3), 688–698. https://doi.org/10.1111/j.1469-8137.2012.04195.x
  • Thorpe, P. H., González Barrera, S., & Rothstein, R. (2007). More is not always better: the genetic constraints of polyploidy. Trends in Genetics, 23(6), 263–266. https://doi.org/10.1016/j.tig.2007.03.016
  • Toledo, J. M., & Barboza, G. E. (2013). Physalis L. In F. O. Zuloaga, M. Belgrano & A. M. Anton (Eds.). Flora Argentina: Solanaceae. (vol. 13, pp. 141–148). IBODA-IMBIV, CONICET.
  • Udall, J. A., & Wendel, J. F. (2006). Polyploidy and crop improvement. Crop Science, 46(Supplement 1), S-3–3. https://doi.org/10.2135/cropsci2006.07.0489tpg
  • Venkateswarlu, J., & Raja Rao, K. G. (1977). Morphology of the pachytene chromosomes of Physalis philadelphica Lam. Caryologia, 30(4), 435–440. https://doi.org/10.1080/00087114.1977.10796718
  • Venkateswarlu, J., & Raja Rao, K. G. (1979a). Morphology of the pachytene chromosomes of Physalis pubescens L. CYTOLOGIA, 44(1), 161–166. https://doi.org/10.1508/cytologia.44.161
  • Venkateswarlu, J., & Raja Rao, K. G. (1979b). Morphology of the pachytene chromosomes of Physalis angulata L. CYTOLOGIA, 44(3), 557–560. https://doi.org/10.1508/cytologia.44.557
  • Weiss Schneeweiss, H., & Schneeweiss, G. M. (2013). Karyotype diversity and evolutionary trends in angiosperms. In I. J. Leitch (Ed.). Plant Genome Diversity., 2, 209–230.
  • Winchester, A. M. (1981). Genética. (3rd ed.). México: Compañía Editorial Continental.
  • Whitson, M., & Manos, P. S. (2005). Untangling Physalis (Solanaceae) from the Physaloids: A Two-Gene Phylogeny of the Physalinae. Systematic Botany, 30(1), 216–230. https://doi.org/10.1600/0363644053661841
  • Whittemore, A. T., & Olsen, R. T. (2011). Ulmus americana (Ulmaceae) is a polyploid complex. American Journal of Botany, 98(4), 754–760. https://doi.org/10.3732/ajb.1000372
  • Wu, F., & Tanksley, S. D. (2010). Chromosomal evolution in the plant family Solanaceae. BMC Genomics, 11(1), 182 https://doi.org/10.1186/1471-2164-11-182
  • Yamazaki, T. (1993). Solanaceae. In K. Iwatsuki, T. Yamazaki, D. E. Boufford, H. Ohba (Eds.). Flora of Japan. (pp. 183–194). Kodansha Ltd.
  • Yu, Y., Harris, A. J., Blair, C., & He, X. (2015). RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008
  • Zamora Tavares, M. P., Martínez, M., Magallón, S., Guzmán Dávalos, L., & Vargas Ponce, O. (2016). Physalis and physaloids: A recent and complex evolutionary history. Molecular Phylogenetics and Evolution, 100, 41–50.
  • Zhang, Z. Y., Lu, A. M., & D’Arcy, W. G. (1994). Solanaceae. In Z.Y. Wu & P.H. Raven (Eds.). Flora of China. (vol. 17, pp. 300–332). Missouri Botanical Garden Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.