142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Morphological and distributional patterns of native and invasive Trifolium (Papilionoideae, Leguminosae) species in southern South America

ORCID Icon, , &

References

  • Acuña, H., Inostroza, L., Vásquez, C., Ibáñez, J., & Tapia, G. (2019). A strategy for identifying phenotypic traits which favour cold acclimation and stress resistance in white clover. Research Collection, 306–309.
  • Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G., & Violle, C. (2011). When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology. Evolution and Systematics, 13, 217–225. https://doi.org/10.1016/j.ppees.2011.04.003
  • Annicchiarico, P., & Carelli, M. (2014). Origin of Ladino white clover as inferred from patterns of molecular and morphophysiological diversity. Crop Science, 54, 2696–2706. https://doi.org/10.2135/cropsci2014.04.0308
  • Barrett, S. C. H., & Richardson, B. J. (1986). Genetic attributes of invading species. In R. H. Groves & J. J. Burdon (Eds.), Ecology of biological invasions (pp. 21–33). Cambridge University Press.
  • Barton, N. H. (1999). Clines in polygenic traits. Genetical Research, 74, 223–236. https://doi.org/10.1017/S001667239900422X
  • Bellard, C., Jeschke, J. M., Leroy, B., & Mace, G. M. (2018). Insights from modeling studies on how climate change affects invasive alien species geography. Ecology and Evolution, 8, 5688–5700. https://doi.org/10.1002/ece3.4098.
  • Bradley, B. A., Blumenthal, D. M., Wilcove, D. S., & Ziska, L. H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310–318. https://doi.org/10.1016/j.tree.2009.12.003.
  • Bradley, B. A., Early, R., & Sorte, C. J. B. (2015). Space to invade? Comparative range infilling and potential range of invasive and native plants. Global Ecology and Biogeography, 24, 348–359. https://doi.org/10.1111/geb.12275
  • Brako, L., & Zarucchi, J. L. (1993). Catálogo de las Angiospermas y Gimnospermas del Perú (Vol. 45, pp. 856–860). Missouri Botanical Garden.
  • Burkart, A. (1952). Las leguminosas argentinas silvestres y cultivadas. ACME.
  • Burkart, A. (1987). Leguminosae. Flora de Entre Ríos. INTA, 6, 442–738.
  • Burns, J. H. (2004). A comparison of invasive and non‐invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions, 10, 387–397. https://doi.org/10.1111/j.1366-9516.2004.00105.x
  • Cabrera, A. L. (1976). Las regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Tomo II, fascículo 1. ACME.
  • Cabrera, A. L. (1994). Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería. ACME.
  • Caradus, J. R., Hay, M. J. M., Mackay, A. D., Thomas, V. J., Dunlop, J., Lambert, M. G., Hart, A. L., Bosch, J., & Wewala, S. (2006). Variation within white clover (Trifolium repens L.) for phenotypic plasticity of morphological and yield related characters, induced by phosphorus supply. New Phytologist, 123, 175–184. https://doi.org/10.1111/j.1469-8137.1993.tb04543.x
  • Carroll, A. B., Pallardy, S. G., & Galen, C. (2001). Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). American Journal of Botany, 88, 438–446. https://doi.org/10.2307/2657108
  • Catford, J. A., Bode, M., & Tilman, D. (2018). Introduced species that overcome life history tradeoffs can cause native extinctions. Nature Communications, 9, 2131. https://doi.org/10.1038/s41467-018-04491-3[PMC][29849023
  • Cavaleri, M. A., & Sack, L. (2010). Comparative water use of native and invasive plants at multiple scales: a global meta‐analysis. Ecology, 91, 2705–2715. https://doi.org/10.1890/09-0582.1
  • Chalcoff, V. R., Ezcurra, C., & Aizen, M. A. (2008). Uncoupled geographical variation between leaves and flowers in a South-Andean Proteaceae. Annals of Botany, 102, 79–91. https://doi.org/10.1093/aob/mcn057.
  • Chevin, L. M., Lande, R., & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biology, 8, e1000357. https://doi.org/10.1371/journal.pbio.1000357.
  • Chou, S., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., & Marengo, J. (2014). Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, 3, 512–527. https://doi.org/10.4236/ajcc.2014.35043
  • Collins, R. P., Abberton, M. T., Michaelson-Yeates, T. P. T., & Rhodes, I. (1997). Response to divergent selection for stolon characters in white clover (Trifolium repens). The Journal of Agricultural Science, 129, 279–285. https://doi.org/10.1017/S0021859697004796
  • Crescente, M. F., & Gratani, L. (2013). Differences in morphological, physiological and growth traits between two endemic subspecies of Brassica rupestris Raf.: implications for their conservation. American Journal of Plant Sciences, 4, 42–50. https://doi.org/10.4236/ajps.2013.46A007
  • Crisci, J. V., Cigliano, M. M., Morrone, J. J., & Roig-Junent, S. (1991). Historical biogeography of southern South America. Systematic Biology, 40, 152–171. https://doi.org/10.1093/sysbio/40.2.152
  • Čuda, J., Skálová, H., Janovský, Z., & Pyšek, P. (2014). Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: a field study. Biological Invasions, 16, 177–190. https://doi.org/10.1007/s10530-0130512-1
  • Davidson, A. M., Jennions, M., & Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14, 419–431. https://doi.org/10.1111/j.1461-0248.2011.01596.x
  • de Villemereuil, P., Mouterde, M., Gaggiotti, O. E., & Till‐Bottraud, I. (2018). Patterns of phenotypic plasticity and local adaptation in the wide elevation range of the alpine plant Arabis alpina. Journal of Ecology, 106, 1952–1971. https://doi.org/10.1111/1365-2745.12955
  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2018). InfoStat versión 2012. Grupo InfoStat FCA, Universidad Nacional de Córdoba.
  • Dickson, T. L., Hopwood, J. L., & Wilsey, B. J. (2012). Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species. Biological Invasions, 14, 2617–2624. https://doi.org/10.1007/s10530-012-0257-2
  • Dieleman, W. I. J., Vicca, S., Dijkstra, F. A., Hagedorn, F., Hovenden, M. J., Larsen, K. S., Morgan, J. A., Volder, A., Beier, C., Dukes, J. S., King, J., Leuzinger, S., Linder, S., Luo, Y., Oren, R., De Angelis, P., Tingey, D., Hoosbeek, M. R., & Janssens, I. A. (2012). Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Global Change Biology, 18, 2681–2693. https://doi.org/10.1111/j.1365-2486.2012.02745.x.
  • Diniz‐Filho, J. A. F., Bini, L. M., Rangel, F. T., Loyola, R. D., Hof, C., Nogués‐Bravo, D., & Araújo, M. B. (2009). Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 32, 897–906. https://doi.org/10.1111/j.1600-0587.2009.06196.x
  • Dukes, J. S. (2007). Tomorrow’s plant communities: different, but how? The New Phytologist, 176, 235–237. https://doi.org/10.1111/j.1469-8137.2007.02224.x.
  • Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14, 135–139. https://doi.org/10.1016/S0169-5347(98)01554-7
  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  • Etterson, J. R. (2004). Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the Great Plains. Evolution; International Journal of Organic Evolution, 58, 1446–581458. https://doi.org/10.1111/j.0014-3820.2004.tb01726.x.
  • Fazlioğlu, F., Wan, J. S., & Bonser, S. P. (2018). Phenotypic plasticity and specialization along an altitudinal gradient in Trifolium repens. Turkish Journal of Botany, 42, 440–447. https://doi.org/10.3906/bot-1711-21
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086
  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49. https://doi.org/10.1017/S0376892997000088
  • Frankow-Lindberg, B. E. (1999). Effects of adaptation to winter stress on biomass production, growth and morphology of three contrasting white clover cultivars. Physiologia Plantarum, 106, 196–202. https://doi.org/10.1034/j.1399-3054.1999.106208.x
  • Frankow-Lindberg, B. E. (2001). Adaptation to winter stress in nine white clover populations: changes in non-structural carbohydrates during exposure to simulated winter conditions and ‘spring’ regrowth potential. Annals of Botany, 88, 745–751. https://doi.org/10.1006/anbo.2001.1432
  • Funk, J. L. (2008). Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology, 96, 1162–1173. https://doi.org/10.1111/j.1365-2745.2008.01435.x
  • Ganderast, S. F. (2001). Antecedentes sobre la producción de praderas en Aysén. Instituto de Investigación Agropecuarias (INIA). Centro regional de investigación Tamal Aike. Boletín INIA, 69, 5–51.
  • Gratani, L., Catoni, R., Pirone, G., Frattaroli, A. R., & Varone, L. (2012). Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. Photosynthetica, 50, 15–23. https://doi.org/10.1007/s11099-012-0006-x
  • Gratani, L., & Crescente, M. F. (1997). Phenology and leaf adaptive strategies of Mediterranean maquis plants. Ecologia Mediterranea, 23, 11–19. https://www.persee.fr/doc/ecmed_0153-8756_1997_num_23_3_1833
  • Guo, W., Li, B., Zhang, X., & Wang, R. (2007). Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. Journal of Arid Environments, 69, 385–399. https://doi.org/10.1016/j.jaridenv.2006.10.003
  • Hamilton, M. A., Murray, B. R., Cadotte, M. W., Hose, G. C., Baker, A. C., Harris, C. J., & Licari, D. (2005). Life‐history correlates of plant invasiveness at regional and continental scales. Ecology Letters, 8, 1066–1074. https://doi.org/10.1111/j.1461-0248.2005.00809.x
  • Helsen, K., Acharya, K. P., Brunet, J., Cousins, S. A. O., Decocq, G., Hermy, M., Kolb, A., Lemke, I. A., Lenoir, J., Plue, J., Verheyen, K., De Frenne, P., & Graae, B. J. (2017). Biotic and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous plant species along a latitudinal gradient. BMC Ecology, 17, 38. https://doi.org/10.1186/s12898-017-0151-y[PMC][29233135
  • Henn, J. J., Buzzard, V., Enquist, B. J., Halbritter, A. H., Klanderud, K., Maitner, B. S., Michaletz, S. T., Pötsch, C., Seltzer, L., Telford, R. J., Yang, Y., Zhang, L., & Vandvik, V. (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 9, 1548. https://doi.org/10.3389/fpls.2018.01548
  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785. https://doi.org/10.1111/j.0906-4377590.2006.04700.x
  • Hiatt, D., & Flory, S. L. (2020). Populations of a widespread invader and co-occurring native species vary in phenotypic plasticity. The New Phytologist, 225, 584–594. https://doi.org/10.1111/nph.16225
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276
  • Huber, H., de Brouwer, J., de Caluwe, H., Wijschedé, J. & Anten, N. P. R. (2008). Shade induced changes in biomechanical petiole properties in the stoloniferous herb Trifolium repens. Evolutionary Ecology, 22, 399–416. https://doi.org/10.1007/s10682-007-9204-6
  • Inostroza, L., Bhakta, M., Acuña, H., Vásquez, C., Ibáñez, J., Tapia, G., Mei, W., Kirst, M., Resende, M., Jr., & Munoz, P. (2018). Understanding the complexity of cold tolerance in white clover using temperature gradient locations and a GWAS approach. The Plant Genome, 11, 170096. https://doi.org/10.3835/plantgenome2017.11.0096
  • Izaguirre, P. (1995). Especies indígenas y subespontáneas del género Trifolium L. en el Uruguay. INIA. Serie Técnica, 58, 1–29.
  • Junttila, O., Svenning, M. M., & Solheim, B. (1990). Effects of temperature and photoperiod on frost resistance of white clover (Trifolium repens) ecotypes. Physiologia Plantarum, 79, 435–438. https://doi.org/10.1111/j.1399-3054.1990.tb02099.x
  • Kapsomenakis, J., Nastos, P., Douvis, C., Eleftheratos, K., & Zerefos, C. (2011). Estimation of precipitation change over Greece during the 21st century, using RCM simulations. In N. Lambrakis, G. Stournaras, & K. Katsanou (Eds.), Advances in the research of aquatic environment. Environmental earth sciences (pp. 57–65). Springer. https://doi.org/10.1007/978-3-642-19902-8_6
  • Lambrecht, S., & Dawson, T. (2007). Correlated variation of floral and leaf traits along a moisture availability gradient. Oecologia, 151, 574–583. http://dx.doi.org/10.1007/s00442-006-0617-7
  • Lande, R. (2009). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology, 22, 1435–1446. https://doi.org/10.1111/j.1420-9101.2009.01754.x
  • Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
  • Leicht-Young, S. A., Silander, J. A., & Latimer, A. M. (2007). Comparative performance of invasive and native Celastrus species across environmental gradients. Oecologia, 154, 273–282. https://doi.org/10.1007/s00442-007-0839-3
  • Lenoir, J., & Svenning, J.-C. (2015), Climate-related range shifts – A global multidimensional synthesis and new research directions. Ecography, 38, 15–28. https://doi.org/10.1111/ecog.00967
  • Lewis, G., Schrire, B., Mackinder, B., & Lock, M. (2005). Legumes of the world. Royal Botanic Gardens.
  • Liu, Y., Oduor, A. M. O., Zhang, Z., Manea, A., Tooth, I. M., Leishman, M. R., Xu, X., & van Kleunen, M. (2017). Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biology, 23, 3363–3370. https://doi.org/10.1111/gcb.13579
  • Liu, B., Zhang, X., Bussmann, R. W., Hart, R., Li, P., Bai, Y., & Long, C. (2016). Garcinia in Southern China: Ethnobotany, management, and niche modeling. Economic Botany, 70, 416–430. https://doi.org/10.1007/s12231-016-9360-0
  • Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
  • Lüttge, U. (2006). Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. The New Phytologist, 171, 7–25. https://doi.org/10.1111/j.1469-8137.2006.01755.x
  • MacDougall, A. S., Gilbert, B., & Levine, J. M. (2009). Plant invasions and the niche. Journal of Ecology, 97, 609–615. https://doi.org/10.1111/j.1365-2745.2009.01514.x
  • Matesanz, S., Gianoli, E., & Valladares, F. (2010). Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 1206, 35–55. https://doi.org/10.1111/j.1749-6632.2010.05704.x.
  • Merow, C., Treanor Bois, S., Allen, J. M., Xie, Y., & Silander, J. A. (2017). Climate change both facilitates and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences of the United States of America, 114, E3276–E3284. https://doi.org/10.1073/pnas.1609633114
  • Moreira de Melo, T., Louzada, J., & Pedrollo, O. (2015). Trends in extreme indices and seasonal analysis of precipitation and temperature in the northwest region of Rio Grande do Sul, Brazil. American Journal of Climate Change, 4, 187–202. https://doi.org/10.4236/ajcc.2015.43015
  • Morris, W. F., Ehrlén, J., Dahlgren, J. P., Loomis, A. K., & Louthan, A. M. (2020). Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness. Proceedings of the National Academy of Sciences of the United States of America, 117, 1107–1112. https://doi.org/10.1073/pnas.1918363117
  • Muth, N. Z., & Pigliucci, M. (2006). Traits of invasives reconsidered: phenotypic comparisons of introduced invasive and introduced noninvasive plant species within two closely related species. American Journal of Botany, 93, 188–196. https://doi.org/10.3732/ajb.93.2.188
  • Nahum, S., Inbar, M., Ne’eman, G., & Ben-Shlomo, R. (2008). Phenotypic plasticity and gene diversity in Pistacia lentiscus L. along environmental gradients in Israel. Tree Genetics & Genomes, 4, 777–785. https://doi.org/10.1007/s11295-008-0150-4
  • Nattero, J., Sérsic, A. N., & Cocucci, A. A. (2011). Geographic variation of floral traits in Nicotiana glauca: Relationships with biotic and abiotic factors. Acta Oecologica, 37, 503–511. https://doi.org/10.1016/j.actao.2011.07.001
  • Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008
  • Nonaka, E., Svanbäck, R., Thibert-Plante, X., Englund, G., & Brännström, A. (2015). Mechanisms by which phenotypic plasticity affects adaptive divergence and ecological speciation. The American Naturalist, 186, E126–E143. https://doi.org/10.1086/683231
  • Nori, J., Urbina-Cardona, J. N., Loyola, R. D., Lescano, J. N., & Leynaud, G. C. (2011). Climate change and American bullfrog invasion: What could we expect in South America?. PloS One, 6, e25718. https://doi.org/10.1371/journal.pone.0025718
  • Olsen, K. M., Sutherland, B. L., & Small, L. L. (2007). Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Molecular Ecology, 16, 4180–4193. https://doi.org/10.1111/j.1365-294X.2007.03506.x
  • Oyarzabal, M., Clavijo, J., Oakley, L., Biganzoli, F., Tognetti, P., Barberis, I., Maturo, H. M., Aragón, R., Campanello, P. I., Prado, D., Oesterheld, M., & León, R. J. C. (2018). Unidades de vegetación de la Argentina. Ecología Austral, 28, 40–63. https://doi.org/10.25260/EA.18.28.1.0.399
  • Paiaro, V., Oliva, G. E., Cocucci, A. A., & Sérsic, A. N. (2012). Geographic patterns and environmental drivers of flower and leaf variation in an endemic legume of Southern Patagonia. Plant Ecology & Diversity, 5, 13–25. https://doi.org/10.1080/17550874.2012.713403
  • Pan, Y., Tang, S., Wei, C., & Li, X. (2017). Growth and photosynthetic responses of invasive Bidens frondosa to light and water availability: A comparison with invasive and native congeners. Weed Biology and Management, 17, 36–44. https://doi.org/10.1111/wbm.12114
  • Pélabon, C., Armbruster, W. S., & Hansen, T. F. (2011). Experimental evidence for Berg hypothesis: vegetative traits are more sensitive than pollination traits to environmental variation. Functional Ecology, 25, 247–257. https://doi.org/10.1111/j.1365-2435.2010.01770.x
  • Pérez-Barrales, R., Pino, R., Albaladejo, R. G., & Arroyo, J. (2009). Geographic variation of flower traits in Narcissus papyraceus (Amaryllidaceae): do pollinators matter? Journal of Biogeography, 36, 1411–1422. https://doi.org/10.1111/j.1365-2699.2008.01964.x
  • Peterson, A. T. (2007). Why not WhyWhere: The need for more complex models of simpler environmental spaces. Ecological Modelling, 203, 527–530. https://doi.org/10.1016/j.ecolmodel.2006.12.023
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  • Pichancourt, J. B., & van Klinken, R. D. (2012). Phenotypic plasticity influences the size, shape and dynamics of the geographic distribution of an invasive plant. PloS One, 7, e32323. https://doi.org/10.1371/journal.pone.0032323
  • Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. The Journal of Experimental Biology, 209, 2362–2367. https://doi.org/10.1242/jeb.02070
  • Pohlman, C. L., Nicotra, A. B., & Murray, B. R. (2005). Geographic range size, seedling ecophysiology and phenotypic plasticity in Australian Acacia species. Journal of Biogeography, 32, 341–351. https://doi.org/10.1111/j.1365-2699.2004.01181.x
  • QGIS Development Team. (2021). QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  • Real, D., Dalla Rizza, M., Reyno, R., & Quesenberry, K. H. (2007). Breeding system of the aerial flowers in an amphicarpic clover species: Trifolium polymorphum. Crop Science, 47, 1401–1406. https://doi.org/10.2135/cropsci2006.11.0744
  • Reddy, A. R., Rasineni, G. K., & Raghavendra, A. S. (2010). The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science, 99, 46–57. http://www.jstor.org/stable/24108349
  • Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J., & Pigliucci, M. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9, 981–993. https://doi.org/10.1111/j.1461-0248.2006.00950.x
  • Richardson, D. M., & Pysek, P. (2006). Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography: Earth and Environment, 30, 409–431. https://doi.org/10.1191/0309133306pp490pr
  • Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. Science (New York, N.Y.), 317, 910–914. https://doi.org/10.1126/science.1137729
  • Robbiati, F. O., Amarilla, L. D., Anton, A. M., & Fortunato, R. H. (2017). Phenotypic variation in arid and semi-arid zones of southern South America: the case of Senna series Aphyllae (Fabaceae, Caesalpinioideae). Botanical Journal of the Linnean Society, 183, 454–473. https://doi.org/10.1093/botlinnean/bow012
  • Rodet, G., Vaissière, B. E., Brévault, T., & Torre Grossa, J.-P. (1998). Status of self-pollen in bee pollination efficiency of white clover (Trifolium repens L.). Oecologia, 114, 93–99. https://doi.org/10.1007/s004420050424
  • Sattarian, A., Akbarian, M., Zarafsha, M., Bruschi, P., & Fayyaz, P. (2011). Phenotypic variation and leaf fluctuating asymmetry in natural populations of Parrotia persica (Hamamelidaceae), an endemic species from the hyrycanian forest (Iran). Acta Botánica Mexicana, 97, 65–81.
  • Schoener, T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49, 704–726. https://doi.org/10.2307/1935534
  • Scrivanti, L. R., Mestre, L., & Anton, A. M. (2014). Phenotypical variation and taxonomic correlates of five closely related Andean species of Poa (Poaceae) along geographic and climatic gradients. Phytotaxa, 183, 121–144.
  • Sorte, C. J. B., Ibáñez, I., Blumenthal, D. M., Molinari, N. A., Miller, L. P., Grosholz, E. D., Diez, J. M., D'Antonio, C. M., Olden, J. D., Jones, S. J., & Dukes, J. S. (2013). Poised to prosper? A cross-system comparison of climate change effects on native and nonnative species performance. Ecology Letters, 16, 261–270. https://doi.org/10.1111/ele.12017
  • Souto, C. P., Premoli, A. C., & Reich, P. B. (2009). Leaf trait variation in Embothrium coccineum (Proteaceae) is shaped by complex Patagonica physiographic gradients. Revista Chilena de Historia Natural, 82, 209–222. https://doi.org/10.4067/S0716-078X2009000200004
  • Speroni, G., Izaguirre, P., & Bernardello, G. (2010). Sobre las causas ontogenéticas de la productividad diferencial de semillas de la especie anficárpica Trifolium polymorphum (Leguminosae). Boletín de la Sociedad Argentina de Botánica, 45, 57–72.
  • Speroni, G., Izaguirre, P., Bernardello, G., & Franco, J. (2009). Intrafloral phenology of Trifolium polymorphum Poir. (Leguminosae) aerial flowers and reproductive implications. Acta Botanica Brasilica, 23, 881–888. https://doi.org/10.1590/S010233062009000300029
  • Strauss, S. Y., & Whittall, J. B. (2006). Non-pollinator agents of selection on floral traits (Vol. 1, pp. 120–138). Oxford University Press.
  • Sturite, I., Henriksen, T. M., & Breland, T. A. (2007). Longevity of white clover (Trifolium repens) leaves, stolons and roots, and consequences for nitrogen dynamics under northern temperate climatic conditions. Annals of Botany, 100, 33–40. https://doi.org/10.1093/aob/mcm078
  • Sultan, S. E. (2001). Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology, 82, 328–343. https://doi.org/10.1890/0012-9658(2001)082[0328:PPFFCI]2.0.CO;2
  • Sutherland, S. (2004). What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia, 141, 24–39. https://doi.org/10.1007/s00442-004-1628-x
  • Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., Sykes, M. T., & Zimmermann, N. E. (2008a). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152. https://doi.org/10.1016/j.ppees.2007.09.004
  • Thuiller, W., Richardson, D. M., & Midgley, G. F. (2008b). Will climate change promote alien plant invasions? In W. Nentwig (Eds.), Biological invasions. Ecological studies (analysis and synthesis) (pp. 193). Springer. https://doi.org/10.1007/9783-540-36920-2_12
  • Torres, R. R., Benassi, R. B., Martins, F. B., & Lapola, D. M. (2022). Projected impacts of 1.5 and 2 °C global warming on temperature and precipitation patterns in South America. International Journal of Climatology, 42, 1597–1611. https://doi.org/10.1002/joc.7322
  • Van der Putten W. H., Macel M., & Visser Marcel E. (2010). Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society, 365, 2025–2034. https://doi.org/10.1098/rstb.2010.0037
  • Van Kleunen, M., Weber, E., & Fischer, M. (2010). A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecology Letters, 13, 235–245. https://doi.org/10.1111/j.1461-0248.2009.01418.x
  • Vincent, M. A., & Butterworth, K. M. (2017). Trifolium hatschbachii (Fabaceae, Papilionoideae), a new species from Argentina, Brazil, and Paraguay. Phytologia, 99, 111–115.
  • Violle, C., Garnier, E., Lecoeur, J., Roumet, C., Podeur, C., Blanchard, A., & Navas, M. L. (2009). Competition, traits and resource depletion in plant communities. Oecologia, 160, 747–755. https://doi.org/10.1007/s00442-009-1333-x
  • Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews. Genetics, 8, 921–931. https://doi.org/10.1038/nrg2267
  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution; International Journal of Organic Evolution, 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
  • Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x
  • Weijschedé, J., Berentsen, R., de Kroon, H., & Huber, H. (2008). Variation in petiole and internode length affects plant performance in Trifolium repens under opposing selection regimes. Evolutionary Ecology, 22, 383–397. https://doi.org/10.1007/s10682-007-9224-2
  • Weijschedé, J., Martínková, J., de Kroon, H., & Huber, H. (2006). Shade avoidance in Trifolium repens: costs and benefits of plasticity in petiole length and leaf size. The New Phytologist, 172, 655–666. https://doi.org/10.1111/j.1469-8137.2006.01885.x.
  • Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Warton, D. I., & Westoby, M. (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411–421. https://doi.org/10.1111/j.1466-822x.2005.00172.x
  • Zermoglio, P. F., Chapman, A. D., Wieczorek, J. R., Luna, M. C., & Bloom, D. A. (2020). Georeferencing quick reference guide. GBIF Secretariat. https://doi.org/10.35035/e09p-h128
  • Zhmud, E. V., & Dorogina, O. V. (2015). Ecological plasticity of Astragalus mongholicus plants (Fabaceae) in the mountains of southern Siberia. Contemporary Problems of Ecology, 8, 351–357. https://doi.org/10.1134/S1995425515030166
  • Zohary, M., & Heller, D. (1984). The genus Trifolium. Israel Academy of Sciences and Humanities.
  • Zomer, R. J., Trabucco, A., Bossio, D. A., van Straaten, O., & Verchot, L. V. (2008). Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 126, 67–80. https://doi.org/10.1016/j.agee.2008.01.014
  • Zuloaga, F., Belgrano, M., & Zanotti, C. (2019). Actualización del Catálogo de las Plantas Vasculares del Cono Sur. Darwiniana, Nueva Serie, 7, 208–278. https://doi.org/10.14522/darwiniana.2019.72.861

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.