194
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular, morphometric, and spatial data analyses provide new insights into the evolutionary history of the Peromyscus boylii species complex (Rodentia: Cricetidae) in the mountains of Mexico

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. (2018). Geomorph: Software for geometric morphometric analyses. R package version 3.0.6. https://cran.r-project.org/package=geomorph
  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). SpThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. https://doi.org/10.1111/ecog.01132
  • Álvarez-Castañeda, S. T. (2005). Peromyscus winkelmanni. Mammalian Species, 765, 1–3. https://doi.org/10.2307/3504547
  • Álvarez-Castañeda, S. T., Álvarez, T., & González-Ruiz, N. (2015). Keys for identifying Mexican mammals. Centro de Investigaciones Biológicas del Noroeste, and S. C. Asociación Mexicana de Mastozoología A. C.
  • Álvarez-Castañeda, S. T., & Méndez, L. (2005). Peromyscus madrensis. Mammalian Species, 774, 1–3. https://doi.org/10.1644/774
  • Amman, B. R., Hanson, J. D., Longhofer, L. K., Hoofer, S. R., & Bradley, R. D. (2006). Intron 2 of the alcohol dehydrogenase gene (ADH1-I2): A nuclear DNA marker for mammalian systematics. Occasional Papers Museum of Texas Tech University, 256, 1–16.
  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
  • Armstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists), 34, 502–508. https://doi.org/10.1111/opo.12131
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. Public Library of Science Computational Biology, 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  • Bradley, R. D., Carroll, D. S., Haynie, M. L., Muñíz-Martínez, R., Hamilton, M. J., & Kilpatrick, C. W. (2004). A new species of Peromyscus from western Mexico. Journal of Mammalogy, 85, 1184–1193. https://doi.org/10.1644/BEL-113.1
  • Bradley, R. D., Durish, N. D., Rogers, D. S., Miller, J. R., Engstrom, M. D., & Kilpatrick, C. W. (2007). Toward a molecular phylogeny for Peromyscus: Evidence from mitochondrial cytochrome-b sequences. Journal of Mammalogy, 88, 1146–1159. https://doi.org/10.1644/06-mamm-a-342r.1
  • Bradley, R. D., Ordóñez-Garza, N., Sotero-Caio, C. G., Huynh, H. M., Kilpatrick, C. W., Iñiguez-Dávalos, L. I., & Schmidly, D. J. (2014). Morphometric, karyotypic, and molecular evidence for a new species of Peromyscus (Cricetidae: Neotominae) from Nayarit, Mexico. Journal of Mammalogy, 95, 176–186. https://doi.org/10.1644/13-MAMM-A-217
  • Bradley, R. D., Schmidly, D. J., Amman, B. R., Platt, R. N., Neumann, K. M., Huynh, H. M., Muñiz-Martínez, R., López-González, C., & Ordóñez-Garza, N. (2015). Molecular and morphologic data reveal multiple species in Peromyscus pectoralis. Journal of Mammalogy, 96, 446–459. https://doi.org/10.1093/jmammal/gyv049
  • Bradley, R. D., Ordóñez-Garza, N., Ceballos, G., Rogers, D. S., & Schmidly, D. J. (2016). A new species in the Peromyscus boylii species group (Cricetidae: Neotominae) from Michoacán, México. Journal of Mammalogy, 98, gyw160–165. https://doi.org/10.1093/jmammal/gyw160
  • Bradley, R. D., Ordóñez-Garza, N., Thompson, C. W., Wright, E. A., Ceballos, G., Kilpatrick, C. W., & Schmidly, D. J. (2022). Two new species of Peromyscus (Cricetidae: Neotominae) from the Transverse Volcanic Belt of Mexico. Journal of Mammalogy, 103, 255–274. https://doi.org/10.1093/jmammal/gyab128
  • Breno, M., Leirs, H., & Van Dongen, S. (2011). Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae). Journal of Mammalogy, 92, 1395–1406. https://doi.org/10.1644/10-MAMM-A-331.1
  • Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
  • Brugger, K. A., Ruleman, C. A., Caffee, M. W., & Mason, C. C. (2019). Climate during last glacial maximum in the northern Sawatch range, Colorado, USA. Quaternary, 2, 36. https://doi.org/10.3390/quat2040036
  • Bryson, R. W., García-Vázquez, U. O., & Riddle, B. R. (2011). Phylogeography of Middle American gophersnakes: Mixed responses to biogeographical barriers across the Mexican Transition Zone. Journal of Biogeography, 38, 1570–1584. https://doi.org/10.1111/j.1365-2699.2011.02508.x
  • Bryson, R. W., Murphy, R. W., Graham, M. R., Lathrop, A., & Lazcano, D. (2011). Ephemeral Pleistocene woodlands connect the dots for highland rattlesnakes of the Crotalus intermedius group. Journal of Biogeography, 38, 2299–2310. https://doi.org/10.1111/j.1365-2699.2011.02565.x
  • Cao, j., Wang, B., & Liu, J. (2019). Attribution of the last glacial maximum climate formation. Climate Dynamics, 53, 1661–1679. https://doi.org/10.1007/s00382-019-04711-6
  • Cardini, A., O’Higgins, P., & Rohlf, F. J. (2019). Seeing distinct groups where there are none: Spurious patterns from Between-Group PCA. Evolutionary Biology, 46, 303–316. https://doi.org/10.1007/s11692-019-09487-5
  • Carleton, M. D., Wilson, D. E., Gardner, A. L., & Bogan, M. A. (1982). Distribution and systematics of Peromyscus (Mammalia: Rodentia) of Nayarit. Smithsonian Contributions to Zoology, 352, 1–46. https://doi.org/10.5479/si.00810282.352
  • Carleton, M. D. (1989). Systematics and evolution. In G. L. Kirkland, Jr., & J. N. Layne (Eds.), Advances in the study of Peromyscus (Rodentia) (pp. 7–141). Texas Tech University Press.
  • Castañeda-Rico, S., León-Paniagua, L., Vázquez-Domínguez, E., & Navarro-Sigüenza, A. G. (2014). Evolutionary diversification and speciation in rodents of the Mexican lowlands: The Peromyscus melanophrys species group. Molecular Phylogenetics and Evolution, 70, 454–463. https://doi.org/10.1016/j.ympev.2013.10.004
  • Cervantes, R. F. A. (2000). Report of the Comisión Nacional para el Conocimiento y uso de la Biodiversidad. Sistemática y biogeografía del género Reithrodontomys (Rodentia: Muridae; SNIB-CONABIO No. L313). Mexico City: Mexico.
  • Da Silva, D., Aires, A. E., Zurano, J. P., Olalla-Tárraga, M. A., & Martinez, P. A. (2020). Changing only slowly: The role of phylogenetic niche conservatism in Caviidae (Rodentia) speciation. Journal of Mammalian Evolution, 27, 713–721. https://doi.org/10.1007/s10914-020-09501-0
  • Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). Ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787. https://doi.org/10.1111/ecog.02671
  • Escalante, T., Sánchez-Cordero, V., Morrone, J. J., & Linaje, M. (2007). Areas of endemism of Mexican terrestrial mammals: A case study using species’ ecological niche modeling, parsimony analysis of endemicity and Goloboff fit. Interciencia, 32, 151–159.
  • Gámez, N., Escalante, T., Rodríguez, G., Linaje, M., & Morrone, J. J. (2012). Caracterización biogeográfica de la Faja Volcánica Transmexicana y análisis de los patrones de distribución de su mastofauna. Revista Mexicana de Biodiversidad, 83, 258–272. https://doi.org/10.22201/ib.20078706e.2012.1.786
  • García, F. J., Sánchez-González, E., & Machado, M. (2020). Morphological variation in the skull of Nephelomys meridensis (Rodentia, Cricetidae): Evidence for cryptic species in andean populations from northern South America. Therya, 11, 193–202. https://doi.org/10.12933/therya-20-743
  • García-Mendoza, D. F., & López-González, C. (2005). Diminutive woodrat (Nelsonia neotomodon) in Chihuahua, Mexico. The Southwestern Naturalist, 50, 503–506. https://doi.org/10.1894/0038-4909(2005)050[0503:DWNNIC]2.0.CO;2
  • González-Elizondo, M. S., González-Elizondo, M., Tena-Flores, J. A., Ruacho-González, L., & López-Enríquez, L. (2012). Vegetación de la Sierra Madre Occidental, México: una síntesis. Acta Botánica Mexicana, 100, 351–403.
  • Hardy, D. K., González-Cózatl, F. X., Arellano, E., & Rogers, D. S. (2013). Molecular phylogenetics and phylogeographic structure of Sumichrast’s harvest mouse (Reithrodontomys sumichrasti: Cricetidae) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 68, 282–292. https://doi.org/10.1016/j.ympev.2013.03.028
  • Ivanova, N. V., Clare, E. L., & Borisenko, A. V. (2012). DNA barcoding in mammals. Methods in Molecular Biology (Clifton, N.J.), 858, 153–182. https://doi.org/10.1007/978-1-61779-591-6_8
  • Kalcounis-Rueppell, M. C., & Spoon, T. R. (2009). Peromyscus boylii (Rodentia: Cricetidae). Mammalian Species, 838, 1–14. https://doi.org/10.1644/838.1
  • Kilpatrick, C. W., Pradhan, N., & Norris, R. W. (2021). A re-examination of the molecular systematics and phylogeography of taxa of the Peromyscus aztecus species group, with comments on the distribution of P. winkelmanni. Therya, 12, 331–346. https://doi.org/10.12933/therya-21-1115
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Jezkova, T., & Wiens, J. J. (2018). Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards and snakes). Molecular Ecology, 27, 2754–2769. https://doi.org/10.1111/mec.14717
  • Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020
  • Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics (Oxford, England), 30, 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
  • León-Tapia, M. A., & Cervantes, R. F. A. (2019). Noteworthy records and ecological niche modeling of the rare and endangered Goldman’s diminutive woodrat Nelsonia goldmani (Rodentia: Cricetidae) endemic to central Mexican highlands. Mammalia, 83, 330–342. https://doi.org/10.1515/mammalia-2018-0023
  • León-Tapia, M. A., Fernández, J. A., Rico, Y., Cervantes, F. A., & Espinosa de los Monteros, A. (2020). A new mouse of the Peromyscus maniculatus species complex (Cricetidae) from the highlands of central Mexico. Journal of Mammalogy, 101, 1117–1132. https://doi.org/10.1093/jmammal/gyaa027
  • León-Tapia, M. A., Rico, Y., Fernández, J. A., Arellano, E., & Espinosa de los Monteros, A. (2021). Role of Pleistocene climatic oscillations on genetic differentiation and evolutionary history of the Transvolcanic deer mouse Peromyscus hylocetes (Rodentia: Cricetidae) throughout the Mexican central highlands. Journal of Zoological Systematics and Evolutionary Research, 59, 2481–2499. https://doi.org/10.1111/jzs.12541
  • Lindsay, E. H., & Cazplewski, N. J. (2011). New rodents (Mammalia, Rodentia, Cricetidae) from the Verde fauna of Arizona and the Maxum fauna of California, USA, early Blancan land mammal age. Palaeontologia Electronica, 14, 16.
  • López-González, C., García-Mendoza, D. F., & Correa-Ramírez, M. M. (2013). Morphologic and morphometric characterization of Peromyscus schmidlyi (Rodentia: Cricetidae), an endemic of the Sierra Madre Occidental, Mexico. Journal of Mammalogy, 94, 923–937. https://doi.org/10.1644/13-MAMM-A-004.1
  • López-González, C., Correa-Ramírez, M. M., & García-Mendoza, D. F. (2014). Phylogeography of Peromyscus schmidlyi: An endemic of the Sierra Madre Occidental, Mexico. Journal of Mammalogy, 95, 254–268. https://doi.org/10.1644/13-MAMM-A-166
  • Mastretta-Yanes, A., Moreno-Letelier, A., Piñero, D., Jorgensen, T. H., & Emerson, B. C. (2015). Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography, 42, 1586–1600. https://doi.org/10.1111/jbi.12546
  • McCormack, J. E., Peterson, A. T., Bonaccorso, E., & Smith, T. B. (2008). Speciation in the highlands of Mexico: Genetic and phenotypic divergence in the Mexican jay (Aphelocoma ultramarina). Molecular Ecology, 17, 2505–2521. https://doi.org/10.1111/j.1365-294x.2008.03776.x
  • McCormack, J. E., Tsai, W. L. E., & Faircloth, B. C. (2016). Sequence capture of ultraconserved elements from bird museum specimens. Molecular Ecology Resources, 16, 1189–1203. https://doi.org/10.1111/1755-0998.12466
  • Menviel, L., Capron, E., Govin, A., Dutton, A., Tarasov, L., Abe-Ouchi, A., Drysdale, R. N., Gibbard, P. L., Gregoire, L., He, F., Ivanovic, R. F., Kageyama, M., Kawamura, K., Landais, A., Otto-Bliesner, B. L., Oyabu, I., Tzedakis, P. C., Wolff, E., & Zhang, X. (2019). The penultimate deglaciation: Protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geoscientific Model Development, 12, 3649–3685. https://doi.org/10.5194/gmd-12-3649-2019
  • Miller, J. R., & Engstrom, M. D. (2008). The relationships of major lineages within Peromyscine rodents: A molecular phylogenetic hypothesis and systematic reappraisal. Journal of Mammalogy, 89, 1279–1295. https://doi.org/10.1644/07-MAMM-A-195.1
  • Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38, 100–114. https://doi.org/10.1007/s11692-011-9109-8
  • Morrone, J. J. (2017). Biogeographic regionalization of the Sierra Madre del Sur province, Mexico. Revista Mexicana de Biodiversidad, 88, 710–714. https://doi.org/10.1016/j.rmb.2017.07.012
  • Morrone, J. J. (2019). Regionalización biogeográfica y evolución biótica de México: encrucijada de la biodiversidad del Nuevo Mundo. Revista Mexicana de Biodiversidad, 90, e902980. https://doi.org/10.22201/ib.20078706e.2019.90.2980
  • Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261
  • Nehme, C., Verheyden, S., Breitenbach, S. F., Gillikin, D. P., Verheyden, A., Cheng, H., Edwards, R. L., Hellstrom, J., Noble, S. R., Farrant, A. R., Sahy, D., Goovaerts, T., Salem, G., & Claeys, P. (2018). Climate dynamics during the penultimate glacial period recorded in a speleothem from Kanaan Cave, Lebanon (central Levant). Quaternary Research, 90, 10–25. https://doi.org/10.1017/qua.2018.18
  • Osorio‐Olvera, L., Lira‐Noriega, A., Soberón, J., Peterson, A. T., Falconi, M., Contreras‐Díaz, R. G., Martínez‐Meyer, E., Barve, V., & Barve, N. (2020). NTBOX: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11, 1199–1206. https://doi.org/10.1111/2041-210X.13452
  • Pardiñas, U., Kryštufek, B., Bradley, R., Ordóñez-Garza, N., Cook, J., Shenbrot, G., Haslauer, R., León-Paniagua, L., & Brito, J. (2017). Family Cricetidae (true hamsters, voles, lemmings and new world rats and mice). In D. E. Wilson, T. E. Lacher, & R. A. Mittermeier (Eds.), Handbook of the mammals of the world, volume 7: Rodents II (pp. 205–535). Lynx Edicions.
  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049
  • Platt, R. N., Amman, B. R., Keith, M. S., Thompson, C. W., & Bradley, R. D. (2015). What is Peromyscus? Evidence from nuclear and mitochondrial DNA sequences suggest the need for a new classification. Journal of Mammalogy, 96, 708–719. https://doi.org/10.1093/jmammal/gyv067
  • Prescott, C. L., Dolan, A. M., Haywood, A. M., Hunter, S. J., & Tindall, J. C. (2018). Regional climate and vegetation response to orbital forcing within the mid-Pliocene warm period: A study using HadCM3. Global and Planetary Change, 161, 231–243. https://doi.org/10.1016/j.gloplacha.2017.12.015
  • R Core Team. (2018). R: A language and environment for statistical computing. https://www.r-project.org/
  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  • Ramírez-Barahona, S., & Eguiarte, L. E. (2013). The role of glacial cycles in promoting genetic diversity in the Neotropics: The case of cloud forests during the Last Glacial Maximum. Ecology and Evolution, 3, 725–738. https://doi.org/10.1002/ece3.483
  • Roberts, H. R., Schmidly, D. J., & Bradley, R. D. (2001). Peromyscus simulus. Mammalian Species, 669, 1–3. https://doi.org/10.2307/0.669.1
  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40. https://doi.org/10.2307/2992207
  • Rohlf, F. J. (2005). TpsDig, digitize landmarks and outlines, version 25. Department of Ecology and Evolution, State University of New York at Stony Brook New York, USA. http://life.bio.sunysb.edu/ee/rohlf/software.html
  • Ronez, C., Martin, R. A., Kelly, T. S., Barbière, F., & Pardiñas, U. (2021). A brief critical review of sigmodontine rodent origins, with emphasis on paleontological data. Mastozoología Neotropical, 28, e0495–026. https://doi.org/10.31687/saremMN.21.28.1.0.07
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ruane, S., & Austin, C. C. (2017). Phylogenomics using formalin-fixed and 100+ year-old intractable natural history specimens. Molecular Ecology Resources, 17, 1003–1008. https://doi.org/10.1111/1755-0998.12655
  • Santiago-Alvarado, M., Montaño-Arias, G., & Espinosa, D. (2016). Áreas de endemismo de la Sierra Madre del Sur. In Luna-Vega, I., Espinosa, D., & Contreras-Medina, R. (Eds.), Biodiversidad de la Sierra Madre del Sur: una síntesis preliminar (pp. 431–448). Universidad Nacional Autónoma de México.
  • Sarmiento-Pérez, J. C., Lorenzo, C., González-Díaz, A. A., & Hernández-Betancourt, S. F. (2020). Cranial morphological variation in a tropical rodent (Rodentia: Heteromyidae): Taxonomic implications. Mastozoología Neotropical, 27, 349–363. https://doi.org/10.31687/saremMN.20.27.2.0.15
  • Schlager, S. (2017). Morpho and Rvcg - shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. In Zheng, G., Li, S., & Szekely, G. (Eds.), Statistical shape and deformation analysis (pp. 217–256). Academic Press.
  • Schmidly, D. J. (1973). Geographic variation and taxonomy of Peromyscus boylii from Mexico and the Southern United States. Journal of Mammalogy, 54, 111–130. https://doi.org/10.2307/1378875
  • Schmidly, D. J., & Bradley, R. D. (1995). Morphological variation in the sinaloan mouse Peromyscus simulus. Revista Mexicana de Mastozoología (Nueva Epoca), 1, 44–58. https://doi.org/10.22201/ie.20074484e.1995.1.1.158
  • Schoener, T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49, 704–726. https://doi.org/10.2307/1935534
  • Smith, M. F., & Patton, J. L. (1993). The diversification of South American murid rodents: Evidence from mitochondrial DNA sequence data for the akodontine tribe. Biological Journal of the Linnean Society, 50, 149–177. https://doi.org/10.1111/j.1095-8312.1993.tb00924.x
  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England), 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  • Steppan, S. J., & Schenk, J. J. (2017). Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. Public Library of Science One, 12, e0183070. https://doi.org/10.1371/journal.pone.0183070l
  • Sullivan, J., Markert, J. A., & Kilpatrick, C. W. (1997). Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Systematic Biology, 46, 426–440. https://doi.org/10.1093/sysbio/46.3.426
  • Sullivan, K. A. M., Platt, R. N., Bradley, R. D., & Ray, D. A. (2017). Whole mitochondrial genomes provide increased resolution and indicate paraphyly in deer mice. BMC Zoology, 2, 1–6. https://doi.org/10.1186/s40850-017-0020-3
  • Tiemann-Boege, I., Kilpatrick, C. W., Schmidly, D. J., & Bradley, R. D. (2000). Molecular Phylogenetics of the Peromyscus boylii species group (Rodentia: Muridae) based on mitochondrial cytochrome b sequences. Molecular Phylogenetics and Evolution, 16, 366–378. https://doi.org/10.1006/mpev.2000.0806
  • Wickliffe, J. K., Hoffmann, F. G., Carroll, D. S., Duninia-Barkovskaya, Y., & Bradley, R. D. (2003). PCR and sequencing primers for intron 7 (Fgb-I7) of the fibrinogen, B beta polypeptide (Fgb) in mammals: A novel nuclear DNA phylogenetic marker. Occasional Papers Museum of Texas Tech University, 219, 1–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.