282
Views
6
CrossRef citations to date
0
Altmetric
Articles

Two new species of fossil Paratydeidae (Acari: Trombidiformes) from the late Eocene amber highlight ultraslow morphological evolution in a soil-inhabiting arthropod lineage

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 607-629 | Received 11 Jul 2019, Accepted 30 Jul 2019, Published online: 08 Oct 2019

References

  • Adams, D. C., Berns, C. M., Kozak, K. H. & Wiens, J. J. 2009. Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society B: Biological Sciences, 276, 2729–2738.
  • Baker, E. W. 1949. Paratydeidae, a new family of mites. Proceedings of the Entomological Society of Washington, 51, 119–122.
  • Baker, E. W. 1950. Further notes on the family Paratydeidae (Acarina), with a description of another new genus and species. Journal of the Washington Academy of Sciences, 40, 289–291.
  • Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution, 66, 2369–2383.
  • Benton, M. J. & Pearson, P. N. 2001. Speciation in the fossil record. Trends in Ecology & Evolution, 16, 405–411.
  • Berlese, A. 1910. Acari nuovi. Redia (Firenze), 6, 199–234.
  • Bochkov, A. V. 2008. A review of the mite family Stigmocheylidae Berlese (Acari: Prostigmata). Annales Zoologici (Warsaw), 58, 311–325.
  • Bochkov, A. V., O’Connor, B. M. & Wauthy, G. 2008. Phylogenetic position of the mite family Myobiidae within the infraorder Eleutherengona (Acariformes) and origins of parasitism in eleutherengone mites. Zoologischer Anzeiger, 247, 15–45.
  • Bomfleur, B., McLoughlin, S. & Vajda, V. 2014. Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science, 343, 1376–1377.
  • Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A. & Drummond, A. J. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, 1–6.
  • Boucot, A. J. & Watkins, R. 1978. Community evolution and rates of cladogenesis. Evolutionary Biology (New York), 11, 545–655.
  • Charlesworth, B., Lande, R. & Slatkin, M. 1982. A Neo-Darwinian commentary on macroevolution. Evolution, 36, 474–498.
  • Coleman, C. O. 2006. Substituting time-consuming pencil drawings in arthropod taxonomy using stacks of digital photographs. Zootaxa, 1360, 61–68.
  • Delfinado, M. D. & Baker, E. W. 1974. Terrestrial mites of New York (Acarina: Prostigmata), I – Tarsocheylidae, Paratydeidae, and Pseudocheylidae. Journal of the New York Entomological Society, 82, 202–211.
  • de Windt, J. T. 1974. Callianassid burrows as indicators of subsurface beach trend, Mississippi River delta plain. Journal of Sedimentary Petrology, 44, 1136–1139, illust.
  • Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, 699–710.
  • Dunlop, J. A., Penney, D. & Jekel, D. 2019. A summary list of fossil spiders and their relatives. World Spider Catalog, version 20.0. Updated at http://wsc.nmbe.ch, accessed 15 January 2019. doi:10.24436/2
  • Eldredge, N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution, 25, 156–167.
  • Estes, S. & Arnold, S. J. 2007. Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist, 169, 227–244.
  • Fan, Q.-H. & Chen, Y. 2005. A review of the Pomerantziidae (Acari: Prostigmata: Pomerantzioidea), with the description of a new genus. Zootaxa, 1037, 1–22.
  • Fuangarworn, M., Lekprayoon, C. & Butcher, B. A. 2016. Chulacaridae, a new family of prostigmatic mites (Acari, Trombidiformes) from Thailand. Zootaxa, 4061, 527–552.
  • Gingerich, P. D. 1974. Stratigraphic record of early Eocene Hyopsodus and geometry of mammalian phylogeny. Nature, 248, 107–109.
  • Grandjean, F. 1934. Les poils des épimières chez les Oribates (Acariens). Bulletin du Muséum national d'Histoire naturelle, Série 2, 6, 504–512.
  • Grandjean, F. 1946. Au sujet de l’ organe de Claparède, des eupathides multiples et des taenidies mandibulaires chez les Acariens actinochitineux. Archives des Sciences physiques et naturelles, 28, 63–87.
  • Heath, T. A., Huelsenbeck, J. P. & Stadler, T. 2014. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences of the United States of America, 111, E2957–E2966.
  • Heethoff, M., Domes, K., Laumann, M., Maraun, M., Norton, R. A. & Scheu, S. 2007. High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392–402.
  • Hothorn, T., Hornik, K., van de Wiel, M. A. V. & Zeileis, A. 2008. Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28, 1–23.
  • Hudson, J. D. & Palmer, T. J. 1976. A euryhaline oyster from the Middle Jurassic and the origin of the true oysters. Palaeontology, 19, 79–93.
  • Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology, 32, 578–601.
  • Hunt, G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences of the United States of America, 104, 18404–18408.
  • Hunt, G., Hopkins, M. J. & Lidgard, S. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences of the United States of America, 112, 4885–4890.
  • Kandeel, M. M. H. 1991 [1992]. Revision of family Paratydeidae with the description of Hexatydeus amabilis n. sp. from Egypt (Acari: Actinedida). Bulletin of the Entomological Society of Egypt (A.R.E.), 70, 1–9.
  • Kandeel, M. M. H. & Hoda, F. M. 1984. First record of Paratydeidae from Egypt with the description of a new species (Acari: Actinedida). Agricultural Research Review Cairo, 62, 311–316.
  • Kearey, P., Klepeis, K. A. & Vine, F. J. 2009. Global tectonics. Third Edition. Wiley-Blackwell, Chichester, 482 pp.
  • Kethley, J. B. 1990. Acarina: Prostigmata (Actinedida). Pp. 667–756 in D. Dindal (ed.) Soil biology guide. John Wiley & Sons, New York.
  • Khaustov, A. A. 2017. Review of the Paratydeidae (Acari: Prostigmata), with description of three new species. Zootaxa, 4303, 151–212.
  • Khaustov, A. A. & Perkovsky, E. E. 2010. The first fossil record of mites of the family Pyemotidae (Acari: Heterostigmata), with description of a new species of the genus Pyemotes from Rovno amber. Paleontological Journal, 44, 418–421.
  • Khaustov, A. A., Sergeyenko, A. L. & Perkovsky, E. E. 2014. First fossil record of mites of the family Tuckerellidae (Acari: Tetranychoidea) from Rovno amber with description of a new species. International Journal of Acarology, 40, 367–369.
  • Klimov, P. B., O’Connor, B. M., Chetverikov, P. E., Bolton, S. J., Pepato, A. R., Mortazavi, A. L., Tolstikov, A. V., Bauchan, G. R. & Ochoa, R. 2018. Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Molecular Phylogenetics and Evolution, 119, 105–117.
  • Konikiewicz, M. & Mąkol, J. 2014. A fossil Paratrombiinae mite (Actinotrichida: Trombidioidea) from the Rovno amber, Ukraine. Zootaxa, 3847, 583–589.
  • Kuznetsov, N. N., Khaustov, A. A. & Perkovsky, E. E. 2010. First record of mites of the family Stigmaeidae (Acari, Raphignathoidea) from Rovno amber with description of a new species of the genus Mediolata. Vestnik Zoologii, 44, 549–551.
  • Lee, M. S., Cau, A., Naish, D. & Dyke, G. J. 2014a. Dinosaur evolution. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science, 345, 562–566.
  • Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. 2014b. Morphological clocks in paleontology, and a mid-Cretaceous origin of crown Aves. Systematic Biology, 63, 442–449.
  • Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913–925.
  • Norton, R. A. 1977. A review of F. Grandjean's system of leg chaetotaxy in the Oribatei and its application to the Damaeidae. Pp. 33–62, illust. in D. L. Dindal (ed.) Biology of oribatid mites. State University of New York, New York.
  • O'Reilly, J. E., Dos Reis, M. & Donoghue, P. C. J. 2015. Dating tips for divergence-time estimation. Trends in Genetics, 31, 637–650.
  • Perkovsky, E. E., Zosimovich, V. Y. & Vlaskin, A. P. 2010. Rovno amber. Pp. 116–136 in D. Penney (ed.) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester.
  • Phipps, C. J., Taylor, T. N., Taylor, E. L., Cuneo, N. R., Boucher, L. D. & Yao, X. L. 1998. Osmunda (Osmundaceae) from the Triassic of Antarctica: An example of evolutionary stasis. American Journal of Botany, 85, 888–895.
  • Rabosky, D. L., Santini, F., Eastman, J., Smith, S. A., Sidlauskas, B., Chang, J. & Alfaro, M. E. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications, 4, 1–8.
  • Rambaut, A. & Drummond, A. J. 2009. Tracer v1.6. Accessed at http://tree.bio.ed.ac.uk/software/tracer/
  • R Core Team. 2019. R: A language and environment for statistical computing. Updated at https://www.R-project.org/, accessed 15 January 2019.
  • Reuter, E. 1909. Zur Morphologie und Ontogenie der Acariden mit besonderer Berücksichtigung von Pediculopsis graminum (E. Reut.). Acta Societatis Scientiarum Fennicae, 36, 1–288.
  • Sellnick, M. 1931. Milben im Bernstein. Bernstein-Forschungen, 2, 148–180.
  • Sellwood, B. W. 1971. A Thalassinoides burrow containing the crustacean Glyphaea udressieri (Meyer) from the Bathonian of Oxfordshire. Palaeontology, 14, 589–591.
  • Sidorchuk, E. A. 2011. Preparation of six-sided micro-samples of Baltic amber for study of organismal inclusions. Pp. 47–53 in Z. V. Kostyashova (ed.) Amber mining and processing in Sambia, International Symposium Materials, 12–14 May 2010. Kaliningrad.
  • Sidorchuk, E. A. 2013. A new technique for the preparation of small-sized amber samples with application to mites. Pp. 189–201 in D. Azar, M. Engel, E. Jarzembowski, L. Krogmann, A. Nel & J. Santiago-Blay (eds) Insect evolution in an amberiferous and stone alphabet. Proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber. Koninklijke Brill NV, Leiden.
  • Sidorchuk, E. A. 2018. Mites as fossils: forever small? International Journal of Acarology, 44, 349–359.
  • Sidorchuk, E. A. & Bertrand, M. 2013. New fossil labidostomatids (Acari: Labidostomatidae) from Eocene amber and presence of an apustulate species in Europe. Acarologia, 53, 25–39.
  • Sidorchuk, E. A. & Vorontsov, D. D. 2018. Preparation of small-sized 3D amber samples: state of the technique. Palaeoentomology, 1, 80–90.
  • Stanley, S. M. 1975. A theory of evolution above the species level. Proceedings of the National Academy of Sciences of the United States of America, 72, 646–650.
  • Theron, P. D., Meyer, M. K. P. & Ryke, P. A. J. 1970 [1969]. Two new genera of the family Paratydeidae (Acari: Prostigmata) from South African soils. Acarologia, 11, 697–710.
  • Thomas, G. H., Freckleton, R. P. & Szekely, T. 2006. Comparative analyses of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proceedings of the Royal Society B: Biological Sciences, 273, 1619–1624.
  • Voje, K. L., Starrfelt, J. & Liow, L. H. 2018. Model adequacy and microevolutionary explanations for stasis in the fossil record. American Naturalist, 191, 509–523.
  • Walter, D. E., Lindquist, E. E., Smith, I. M., Cook, D. R. & Krantz, G. W. 2009. Order Trombidiformes. Pp. 233–420 in G. W. Krantz & D. E. Walter (eds) A manual of acarology. Third Edition. Texas Tech University Press, Lubbock, Texas.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.