160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Total-evidence dating and the phylogenetic affinities of early fossil passerines

ORCID Icon, , , &
Article: 2356086 | Received 02 May 2023, Accepted 13 May 2024, Published online: 19 Jun 2024

References

  • Angelis, K., Álvarez-Carretero, S., Dos Reis, M., & Yang, Z. (2018). An evaluation of different partitioning strategies for Bayesian estimation of species divergence times. Systematic Biology, 67, 61–77. https://doi.org/10.1093/sysbio/syx061
  • Barker, F. K., Cibois, A., Schikler, P., Feinstein, J., & Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences, 101, 11040–11045. https://doi.org/10.1073/pnas.0401892101
  • Baumel, Julian J., & Witmer, L. M. (1993). Osteologia. In J. J. Baumel, A. S. King, H. E. Evans, & J. C. Vanden Berge (Eds.), Handbook of avian anatomy: Nomina anatomica avium (pp. 45–131). Nuttall Ornithological Club.
  • Beck, R. M. D., & Lee, M. S. Y. (2014). Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proceedings of the Royal Society B: Biological Sciences, 281, 20141278. https://doi.org/10.1098/rspb.2014.1278
  • Bertelli, S., Lindow, B. E. K., Dyke, G. J., & Chiappe, L. M. (2010). A well-preserved ‘charadriiform-like’ fossil bird from the Early Eocene Fur Formation of Denmark. Palaeontology, 53, 507–531. https://doi.org/10.1111/j.1475-4983.2010.00950.x
  • Bjarnason, A., & Benson, R. (2021). A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseum, 7, 1–10. https://doi.org/10.18563/journal.m3.125
  • Bochenski, Z. M., Tomek, T., Bujoczek, M., & Salwa, G. (2021). A new passeriform (Aves: Passeriformes) from the early Oligocene of Poland sheds light on the beginnings of Suboscines. Journal of Ornithology, 162, 593–604. https://doi.org/10.1007/s10336-021-01858-0
  • Bochenski, Z. M., Tomek, T., Bujoczek, M., & Wertz, K. (2011). A new passerine bird from the early Oligocene of Poland. Journal of Ornithology, 152, 1045–1053. https://doi.org/10.1007/s10336-011-0693-2
  • Bochenski, Z. M., Tomek, T., & Swidnicka, E. (2014a). A complete passerine foot from the late Oligocene of Poland. Palaeontologia Electronica, 17, 1–7. https://doi.org/10.26879/431
  • Bochenski, Z. M., Tomek, T., & Swidnicka, E. (2014b). The first complete leg of a passerine bird from the early Oligocene of Poland. Acta Palaeontologica Polonica, 59, 281–285. https://doi.org/10.4202/app.2012.0021
  • Bochenski, Z. M., Tomek, T., Wertz, K., Happ, J., Bujoczek, M., & Swidnicka, E. (2018). Articulated avian remains from the early Oligocene of Poland adds to our understanding of Passerine evolution. Palaeontologia Electronica, 21, 1–12. https://doi.org/10.26879/843
  • Bochenski, Z. M., Tomek, T., Wertz, K., & Swidnicka, E. (2013). The third nearly complete passerine bird from the early Oligocene of Europe. Journal of Ornithology, 154, 923–931. https://doi.org/10.1007/s10336-013-0958-z
  • Bock, W. J. (1985). The skeletomuscular system of the feeding apparatus of the noisy scrub-bird, Atrichornis clamosus (Passeriformes: Atrichornithidae). Records of the Australian Museum, 37, 193–210. https://doi.org/10.3853/j.0067-1975.37.1985.309
  • Boles, W. E (1997). Fossil songbirds (Passeriformes) from the early Eocene of Australia. Emu, 97, 43–50. https://doi.org/10.1071/MU97004
  • Brown, J. W., Rest, J. S., García-Moreno, J., Sorenson, M. D., & Mindell, D. P. (2008). Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology, 6. https://doi.org/10.1186/1741-7007-6-6
  • Claramunt, S. (2022). CladeDate: Calibration information generator for divergence time estimation. Methods in Ecology and Evolution, 13, 2331–2338. https://doi.org/10.1111/2041-210X.13977
  • Claramunt, S., & Cracraft, J. (2015). A new time tree reveals Earth history’s imprint on the evolution of modern birds. Science Advances, 1, e1501005. https://doi.org/10.1126/sciadv.1501005
  • Clarke, J. A., & Middleton, K. M. (2008). Mosaicism, modules, and the evolution of birds: Results from a Bayesian approach to the study of morphological evolution using discrete character data. Systematic Biology, 57, 185–201. https://doi.org/10.1080/10635150802022231
  • Crouch, N. M. A., Ramanauskas, K., & Igić, B. (2019). Tip-dating and the origin of Telluraves. Molecular Phylogenetics and Evolution, 131, 55–63. https://doi.org/10.1016/j.ympev.2018.10.006
  • Donoghue, P. C. J., & Yang, Z. (2016). The evolution of methods for establishing evolutionary timescales. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160020. https://doi.org/10.1098/rstb.2016.0020
  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1791–1797. https://doi.org/10.1093/nar/gkh340
  • Emerson, S. B., & Hastings, P. A. (1998). Morphological correlations in evolution: Consequences for phylogenetic analysis. The Quarterly Review of Biology, 73(2), 141–162. https://doi.org/10.1086/420182
  • Ericson, P. G. P., Christidis, L., Cooper, A., Irestedt, M., Jackson, J., Johansson, U. S., & Norman, J. A. (2002). A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society B: Biological Sciences, 269, 235–241. https://doi.org/10.1098/rspb.2001.1877
  • Ericson, P. G. P., Irestedt, M., & Johansson, U. S. (2003). Evolution, biogeography, and patterns of diversification in passerine birds. Journal of Avian Biology, 34, 3–15. https://doi.org/10.1034/j.1600-048X.2003.03121.x
  • Ericson, P. G. P., Klopfstein, S., Irestedt, M., Nguyen, J. M., & Nylander, J. A. (2014). Dating the diversification of the major lineages of Passeriformes (Aves). BMC Evolutionary Biology, 14, 1–15. https://doi.org/10.1186/1471-2148-14-8
  • Ezcurra, M. D., & Agnolín, F. L. (2012). A new global palaeobiogeographical model for the late Mesozoic and early Tertiary. Systematic Biology, 61, 553–566. https://doi.org/10.1093/sysbio/syr115
  • Feduccia, A. (1975). Morphology of the bony stapes in the Menuridae and Acanthisittidae: Evidence for oscine affinities. The Wilson Bulletin, 87, 418–420.
  • Fleagle, J. G., Perkins, M. E., Heizler, M. T., Nash, B., Bown, T. M., Tauber, A. A., Dozo, M. T., & Tejedor, M. F. (2012). Absolute and relative ages of fossil localities in the Santa Cruz and Pinturas Formations. In S. F. Vizcaíno, R. F. Kay, & M. S. Bargo (Eds.), Early Miocene paleobiology in Patagonia: High-latitude paleocommunities of the Santa Cruz Formation (pp. 41–58). Cambridge University Press.
  • Goloboff, P. A., & De Laet, J. (2024). Farewell to the requirement for character independence: Phylogenetic methods to incorporate different types of dependence between characters. Cladistics. Advance online publication. https://doi.org/10.1111/cla.12564
  • Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
  • Goloboff, P. A., Mattoni, C. I., & Quinteros, A. S. (2006). Continuous characters analyzed as such. Cladistics, 22, 589–601. https://doi.org/10.1111/j.1096-0031.2006.00122.x
  • Goodman, S. M., Raherilalao, M. J., & Muldoon, K. (2013). Bird fossils from Ankilitelo Cave: Inference about Holocene environmental changes in Southwestern Madagascar. Zootaxa, 3750, 534–548. https://doi.org/10.11646/zootaxa.3750.5.6
  • Groth, J. G., & Barrowclough, G. F. (1999). Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution, 12, 115–123. https://doi.org/10.1006/mpev.1998.0603
  • Harvey, M. G., Bravo, G. A., Claramunt, S., Cuervo, A. M., Derryberry, G. E., Battilana, J., Seeholzer, G. F., McKay, J. S., O’Meara, B. C., Faircloth, B. C., Edwards, S. V., Pérez-Emán, J., Moyle, R. G., Sheldon, F. H., Aleixo, A., Smith, B. T., Chesser, R. T., Silveira, L. F., Cracraft, J., … Derryberry, E. P. (2020). The evolution of a tropical biodiversity hotspot. Science, 370, 1343–1348. https://doi.org/10.1126/science.aaz6970
  • Heath, T. A., Huelsenbeck, J. P., & Stadler, T. (2014). The fossilized birth-death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences, 111, E2957–E2966. https://doi.org/10.1073/pnas.1319091111
  • Hieronymus, T. L., Waugh, D. A., & Clarke, J. A. (2019). A new zygodactylid species indicates the persistence of stem passerines into the early Oligocene in North America. BMC Evolutionary Biology, 19, 1–9. https://doi.org/10.1186/s12862-018-1319-6
  • Hirao, K., Yano, T., Uyeno, T., Yabumoto, Y., & Aoki, T. (2005). Stratigraphy and fossil fishes of the Fuganji Formation at Miyanoshita, Kokufu-cho, Tottori, Japan. Bulletin of the Tottori Prefectural Museum, 42, 3–20.
  • Höhna, S., Stadler, T., Ronquist, F., & Britton, T. (2011). Inferring speciation and extinction rates under different sampling schemes. Molecular Biology and Evolution, 28, 2577–2589. https://doi.org/10.1093/molbev/msr095
  • Jarvis, E. D., Ye, C., Liang, S., Yan, Z., Zepeda, M. L., Campos, P. F., Missael, A., Velazquez, V., Samaniego, J. A., Avila-arcos, M., Martin, M. D., Barnett, R., Ribeiro, A. M., Mello, C. V, Lovell, P. V, Almeida, D., Maldonado, E., Pereira, J., Sunagar, K., … Nabholz, B. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346, 1126–1138. https://doi.org/10.1126/science.1251385
  • Kainer, D., & Lanfear, R. (2015). The effects of partitioning on phylogenetic inference. Molecular Biology and Evolution, 32, 1611–1627. https://doi.org/10.1093/molbev/msv026
  • Kakegawa, Y., & Hirao, K. (2003). A Miocene passeriform bird from the Iwami Formation, Tottori Group, Tottori, Japan. Bulletin of the National Museum of Nature and Science, Series C (Geology & Paleontology), 49, 33–37.
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 11–120. https://doi.org/10.1007/BF01731581
  • Kramarz, A. G., & Bellosi, E. S. (2005). Hystricognath rodents from the Pinturas Formation, Early–Middle Miocene of Patagonia, biostratigraphic and paleoenvironmental implications. Journal of South American Earth Sciences, 18, 199–212. https://doi.org/10.1016/j.jsames.2004.10.005
  • Ksepka, D. T., Grande, L., & Mayr, G. (2019). Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Current Biology, 29, 657–663. https://doi.org/10.1016/j.cub.2018.12.040
  • Lepage, T., Bryant, D., Philippe, H., & Lartillot, N. (2007). A general comparison of relaxed molecular clock models. Molecular Biology and Evolution, 24, 2669–2680. https://doi.org/10.1093/molbev/msm193
  • Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913–925. https://doi.org/10.1080/106351501753462876
  • Livezey, B. C., & Zusi, R. L. (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society, 149, 1–95. https://doi.org/10.1111/j.1096-3642.2006.00293.x
  • Maddison, W. P., & Maddison, D. R. (2016). Mesquite: A modular system for evolutionary analysis. Version 3.04. http://www.mesquiteproject.org
  • Manegold, A. (2008). Passerine diversity in the late Oligocene of Germany: Earliest evidence for the sympatric coexistence of Suboscines and Oscines. Ibis, 150, 377–387. https://doi.org/10.1111/j.1474-919X.2008.00802.x
  • Manegold, A. (2009). The early fossil record of perching birds (Passeriformes). Palaentologia Africana, 44, 103–107.
  • Marshall, C. R. (2019). Using the fossil record to evaluate timetree timescales. Frontiers in Genetics, 10, 1–20. https://doi.org/10.3389/fgene.2019.01049
  • Matzke, N. J., & Wright, A. (2016). Inferring node dates from tip dates in fossil Canidae: The importance of tree priors. Biology Letters, 12, 20160328. https://doi.org/10.1098/rsbl.2016.0328
  • Mayr, G. (2004). Old World fossil record of modern-type hummingbirds. Science, 304, 861–864. https://doi.org/10.1126/science.1096856
  • Mayr, G. (2008). Phylogenetic affinities of the enigmatic avian taxon Zygodactylus based on new material from the early Oligocene of France. Journal of Systematic Palaeontology, 6, 333–344. https://doi.org/10.1017/S1477201907002398
  • Mayr, G. (2013). The age of the crown group of passerine birds and its evolutionary significance – molecular calibrations versus the fossil record. Systematics and Biodiversity, 11, 7–13. https://doi.org/10.1080/14772000.2013.765521
  • Mayr, G. (2015). A reassessment of Eocene parrotlike fossils indicates a previously undetected radiation of zygodactyl stem group representatives of passerines (Passeriformes). Zoologica Scripta, 44, 1–16. https://doi.org/10.1111/zsc.12128
  • Mayr, G. (2017). New species of Primozygodactylus from Messel and the ecomorphology and evolutionary significance of early Eocene zygodactylid birds (Aves, Zygodactylidae). Historical Biology, 29, 875–884. https://doi.org/10.1080/08912963.2016.1261135
  • Mayr, G. (2020). A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birds. Journal of Systematic Palaeontology, 18, 1891–1906. https://doi.org/10.1080/14772019.2020.1862930
  • Mayr, G. (2022). Paleogene fossil birds. (2nd ed.). Springer.
  • Mayr, G., & De Pietri, V. L. (2014). Earliest and first Northern Hemispheric hoatzin fossils substantiate Old World origin of a ‘Neotropic endemic’. Naturwissenschaften, 101, 143–148. https://doi.org/10.1007/s00114-014-1144-8
  • Mayr, G., & Kitchener, A. C. (2023a). Psittacopedids and zygodactylids: The diverse and species-rich psittacopasserine birds from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK). Historical Biology, 35, 2372–2395. https://doi.org/10.1080/08912963.2022.2141629
  • Mayr, G., & Kitchener, A. C. (2023b). The Vastanavidae and Messelasturidae (Aves) from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 307, 113–139.
  • Mayr, G., & Manegold, A. (2004). The oldest European fossil songbird from the early Oligocene of Germany. Naturwissenschaften, 91, 173–177. https://doi.org/10.1007/s00114-004-0509-9
  • Mayr, G., & Manegold, A. (2006a). New specimens of the earliest European passeriform bird. Acta Palaeontologica Polonica, 51, 315–323.
  • Mayr, G., & Manegold, A. (2006b). A small suboscine-like passeriform bird from the early Oligocene of France. The Condor, 108, 717–720. https://doi.org/10.1650/0010-5422(2006)108[717:asspbf]2.0.co;2
  • Millener, P. R. (1988). Contributions to New Zealand’s late Quaternary avifauna. 1: Pachyplichas, a new genus of wren (Aves: Acanthisittidae), with two new species. Journal of the Royal Society of New Zealand, 18, 383–406. https://doi.org/10.1080/03036758.1988.10426464
  • Millener, P. R., & Worthy, T. H. (1991). Contributions to New Zealand’s Late Quaternary avifauna. II: Dendroscansor decurvirostris, a new genus and species of wren (Aves: Acanthisittidae). Journal of the Royal Society of New Zealand, 21, 179–200. https://doi.org/10.1080/03036758.1991.10431406
  • Mitchell, K. J., Cooper, A., & Phillips, M. J. (2015). Comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science, 349, 1460–1460. https://doi.org/10.1126/science.aab1062
  • Mourer-Chauviré, C., Pickford, M., & Senut, B. (2015). Stem group galliform and stem group psittaciform birds (Aves, Galliformes, Paraortygidae, and Psittaciformes, family incertae sedis) from the Middle Eocene of Namibia. Journal of Ornithology, 156, 275–286. https://doi.org/10.1007/s10336-014-1124-y
  • Moyle, R. G., Oliveros, C. H., Andersen, M. J., Hosner, P. A., Benz, B. W., Manthey, J. D., Travers, S. L., Brown, R. M., & Faircloth, B. C. (2016). Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nature Communications, 7, 12709. https://doi.org/10.1038/ncomms12709
  • Nguyen, J. M., Boles, W. E., Worthy, T. H., Hand, S. J., & Archer, M. (2014). New specimens of the logrunner Orthonyx kaldowinyeri (Passeriformes: Orthonychidae) from the Oligo–Miocene of Australia. Alcheringa: An Australasian Journal of Palaeontology, 38, 245–255. https://doi.org/10.1080/03115518.2014.861732
  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
  • Noriega, J. I., & Chiappe, L. M. (1993). An early Miocene passeriform from Argentina. The Auk, 110, 936–938. https://doi.org/10.2307/4088653
  • Oliveros, C. H., Field, D. J., Ksepka, D. T., Barker, K. F., Aleixo, A., Andersen, M. J., Alström, P., Benz, B. W., Braun, E. L., Braun, M. J., Bravo, G. A., Brumfield, R. T., Chesser, T. R., Claramunt, S., Cracraft, J., Cuervo, A. M., Derryberry, E. P., Glenn, T. C., Harvey, M. G., … Faircloth, B. C. (2019). Earth history and the passerine superradiation. Proceedings of the National Academy of Sciences of the United States of America, 116, 7916–7925. https://doi.org/10.1073/pnas.1813206116
  • O’Reilly, J. E., dos Reis, M., & Donoghue, P. C. J. (2015). Dating tips for divergence-time estimation. Trends in Genetics, 31, 637–650. https://doi.org/10.1016/j.tig.2015.08.001
  • Parins-Fukuchi, C. (2018). Use of continuous traits can improve morphological phylogenetics. Systematic Biology, 67, 328–339. https://doi.org/10.1093/sysbio/syx072
  • Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526, 569–573. https://doi.org/10.1038/nature15697
  • Püschel, H. P., O’Reilly, J. E., Pisani, D., & Donoghue, P. C. J. (2020). The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates. Palaeontology, 63, 67–83. https://doi.org/10.1111/pala.12443
  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  • Riamon, S., Tourment, N., & Louchart, A. (2020). The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France. Scientific Reports, 10, 1–14. https://doi.org/10.1038/s41598-020-66149-9
  • Rich, P. V, McEvey, A. R., & Baird, R. (1985). Osteological comparison of the scrub-birds, Atrichornis, and lyrebirds, Menura (Passeriformes: Atrichornithidae and Menuridae). Records of the Australian Museum, 37, 165–191. https://doi.org/10.3853/j.0067-1975.37.1985.308
  • Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., & Rasnitsyn, A. P. (2012). A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera. Systematic Biology, 61, 973–999. https://doi.org/10.1093/sysbio/sys058
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ronquist, F., Lartillot, N., & Phillips, M. J. (2016). Closing the gap between rocks and clocks using total-evidence dating. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150136. https://doi.org/10.1098/rstb.2015.0136
  • Schrago, C. G., Mello, B., & Soares, A. E. R. (2013). Combining fossil and molecular data to date the diversification of New World Primates. Journal of Evolutionary Biology, 26, 2438–2446. https://doi.org/10.1111/jeb.12237
  • Selvatti, A. P., Galvão, A., Mayr, G., Miyaki, C. Y., & Russo, C. A. D. M. (2022). Southern hemisphere tectonics in the Cenozoic shaped the pantropical distribution of parrots and passerines. Journal of Biogeography, 49, 1753–1766. https://doi.org/10.1111/jbi.14466
  • Selvatti, A. P., Galvão, A., Pereira, A. G., Pedreira Gonzaga, L., & Russo, C. A. de M. (2017). An African origin of the Eurylaimides (Passeriformes) and the successful diversification of the ground-foraging pittas (Pittidae). Molecular Biology and Evolution, 34, 483–499. https://doi.org/10.1093/molbev/msw250
  • Selvatti, A. P., Gonzaga, L. P., & Russo, C. A. de M. (2015). A Paleogene origin for crown passerines and the diversification of the Oscines in the New World. Molecular Phylogenetics and Evolution, 88, 1–15. https://doi.org/10.1016/j.ympev.2015.03.018
  • Simões, T. R., Caldwell, M. W., & Pierce, S. E. (2020). Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biology, 18, 1–30. https://doi.org/10.1186/s12915-020-00901-5
  • Smith, N. A., DeBee, A. M., & Clarke, J. A. (2018). Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA. PeerJ, 6, e4950. https://doi.org/10.7717/peerj.4950
  • Steell, E. M., Nguyen, J. M. T., Benson, R. B. J., & Field, D. J. (2023). Comparative anatomy of the passerine carpometacarpus helps illuminate the early fossil record of crown Passeriformes. Journal of Anatomy, 242, 495–509. https://doi.org/10.1111/joa.13761
  • Stervander, M., Fjeldsa, J., Christidis, L., Ericson, P. G., Ohlson, J. I., & Alstrom, P. (2020). Appendix 2: An updated chronology of passerine birds. In J. Fjeldså, L. Christidis & P. G. P. Ericson (Eds.), The largest avian radiation. The evolution of perching birds, or the Order Passeriformes (pp. 387–396). Lynx Edicions.
  • Stiller, J., Feng, S., Chowdhury, A., Rivas-González, I., Duchene, D., Fang, Q., Deng, Y., Kozlov, A., Stamatakis, A., Claramunt, A., Nguyen, J. M. T., Ho, S. Y. W., Faircloth, B. C., Haag, J., Houde, P., Cracraft, J., Balaban, M., Mai, U., Chen, G., … Zhang, G. (2024). Complexity of avian evolution revealed by family-level genomes. Nature, https://doi.org/10.1038/s41586-024-07323-1
  • Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H., & Whiteside, J. H. (2020). Temperature changes across the Paleocene–Eocene Thermal Maximum – a new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth and Planetary Science Letters, 544, 116388. https://doi.org/10.1016/j.epsl.2020.116388
  • Stokke, E. W., Liu, E., & Jones M. T. (2020). Evidence of explosive hydromagmatic eruptions during the emplacement of the North Atlantic Igneous Province. Volcanica, 3, 227–250. https://doi.org/10.30909/vol.03.02.227250
  • Strauss, D., & Sadler, P. M. (1989). Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology, 21, 411–427. https://doi.org/10.1007/BF00897326
  • Tavaré, S. (1986). Some probabilistic and statistical problems on the analysis of DNA sequence. Lecture of Mathematics for Life Science, 17, 57.
  • van Tuinen, M., & Hedges, S. B. (2001). Calibration of avian molecular clocks. Molecular Biology and Evolution, 18, 206–213. https://doi.org/10.1093/oxfordjournals.molbev.a003794
  • Weidig, I. (2010). New birds from the lower Eocene Green River Formation, North America. Records of the Australian Museum, 62, 29–44. https://doi.org/10.3853/j.0067-1975.62.2010.1544
  • Wiens, J. J., & Moen, D. S. (2008). Missing data and the accuracy of Bayesian phylogenetics. Journal of Systematics and Evolution, 46, 307–314. https://doi.org/10.3724/SP.J.1002.2008.08040
  • Wilkinson, S. P. (2019). aphid: An R package for analysis with profile hidden Markov models. Bioinformatics, 35, 3829–3830. https://doi.org/10.1093/bioinformatics/btz159
  • Woodhead, J., Hand, S. J., Archer, M., Graham, I., Sniderman, K., Arena, D. A., Black, K. H., Godthelp, H., Creaser, P., & Price, E. (2016). Developing a radiometrically-dated chronologic sequence for Neogene biotic change in Australia, from the Riversleigh World Heritage Area of Queensland. Gondwana Research, 29, 153–167. https://doi.org/10.1016/j.gr.2014.10.004
  • Worthy, T. H., Tennyson, A. J., & Scofield, R. P. (2011). An early Miocene diversity of parrots (Aves, Strigopidae, Nestorinae) from New Zealand. Journal of Vertebrate Paleontology, 31, 1102–1116. https://doi.org/10.1080/02724634.2011.595857
  • Xie, W., Lewis, P. O., Fan, Y., Kuo, L., & Chen, M. H. (2011). Improving marginal likelihood estimation for bayesian phylogenetic model selection. Systematic Biology, 60, 150–160. https://doi.org/10.1093/sysbio/syq085

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.