460
Views
1
CrossRef citations to date
0
Altmetric
Review

Evaluation of the right ventricle by echocardiography: particularities and major challenges

&
Pages 259-275 | Received 10 Dec 2017, Accepted 05 Mar 2018, Published online: 14 Mar 2018

References

  • Kurtz CE. Right ventricular anatomy, function, and echocardiography evaluation. In: Catherine Otto; The clinical practice of echocardiography. 4th ed. Saunders W.P, Philadelphia; 2012. p. 615–628.
  • Haddad F, Hunt SA, Rosenthal DN, et al. Anatomy, physiology, aging and functional assessment right ventricle. Circulation. 2008;114:1436–1448.
  • Kong D, Shu X, Dong L, et al. Right ventricular regional systolic function and dyssynchrony in patients with pulmonary hypertension evaluated by three-dimensional echocardiography. J Am Soc Echocardiogr. 2013;26:649–656.
  • Markley RR, Asghar A, Potfay J, et al. Echocardiographic evaluation of the right heart. J. Cardiovac Ultrasound. 2016;24:183–190.
  • Ho SY. Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(SupplI):i2–i13.
  • Jurcut R, Giusca S, La Gerche A, et al. The echocardiographic assessment of the right ventricle: what to do in 2010. Eur J Echocardiogr. 2010;11:81–96.
  • Rudski LG, Lai WW, Afilalo J, et al. Guidelines for echocardiographic assessment of right heart in adults: a report of the American Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.
  • Wong SP, Otto CM. Echocardiographic findings in acute and chronic pulmionary diseases. In: Catherine Otto; The clinical practice of echocardiography. 2nd ed. Saunders W.P, Philadelphia; 2002. p. 739–760.
  • Levine R, Gibson TC, Aretz T, et al. Echocardiographic measurement of right ventricular volume. Circulation. 1984;69:497–505.
  • Leibundgut G, Rohner A, Grize L, et al. Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr. 2010;23:116–126.
  • Forfia PR, Wiegers SE. Echocardiographic findings in acute and chronic respiratory disease. In: Catherine Otto; The clinical practice of echocardiography. 3rd ed. Saunders W.P, Philadelphia; 2007. p. 848–876.
  • Fusini L, Tamborini G, Gripari P, et al. Feasibility of intraoperative three-dimensional trans-esophageal echocardiography in the evaluation of right ventricular volumes and function in patients undergoing cardiac surgery. J Am Soc Echocardiogr. 2011;24:868–877.
  • Addetia K, Yamat M, Mediratta A, et al. Comprehensive two-dimensional interrogation of the tricuspid valve using knowledge derived from three-dimensional echocardiography. J Am Soc Echocardiogr. 2016;29:74–82.
  • Bruce JC, Connolly HM. Right sided valve disease. In: Catherine Otto; The clinical practice of echocardiography. 4th ed. 2012. Saunders W.P, Philadelphia; p. 646–662.
  • Anwar AM, Geleijnse M, Soliman OI, et al. Assessment of normal tricuspid valve anatomy in adults by real-time three-dimensional echocardiography. J Cardiovasc Imaging. 2007;23:717–724.
  • Addetia K, Muraru D, Veronesi F, et al. 3-Dimensional echocardiographic analysis of the tricuspid annulus provides new insights into tricuspid valve geometry and dynamics. J Am Coll Cardiol Img. 2017. [Epub ahead of print]. DOI:10.1016/j.jcmg.2017.08.022
  • Hayabuchi Y, Ono A, Homma Y, et al. Temporal sequential pattern of right ventricular free wall contraction in normal children. Circ J. 2017;81:1699–1706.
  • Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J - Cardiovascular Imaging. 2012;13:1–46.
  • Calcutteea A, Chung R, Lindqvist P, et al. Differential right ventricular regional function and the effect of pulmonary hypertension: three-dimensional echo study. Heart. 2011;97:1004–1011.
  • Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contribution to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40:289–308.
  • Leather HA, Ama’ R, Missant C, et al. Longitudinal but not circumferential deformation reflects global contractile function in the right ventricle with open pericardium. Am J Physiol Heart Circ Physiol. 2006;290:H2369–H2375.
  • Kind T, Mauritz GJ, Marcus JT, et al. Right ventricular ejection fraction is better reflected by tranverse rather than longitudinal wall motion in pulmonary hypertension. J Cardiovasc Magn Reson. 2010;12(35):1–11.
  • Vonk-Noordgraaf A, Hadady F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D22–D32.
  • Dandel M, Knosalla C, Kemper D, et al. Assessment of right ventricular adaptability to loading conditions can improve timing of listing to transplantation in patients with pulmonary arterial hypertension. J Heart Lung Trasplant. 2015;34:319–328.
  • Neyer J, Arsanjani R, Moriguchi J. Echocardiographic parameters associated with right ventricular failure after left ventricular assist device: a review. J Heart LungTransplant. 2016;35:283–293.
  • Jorstig S, Waldenborg M, Lidén M, et al. Right ventricular ejection fraction measured using two-dimensional echocardiography by applying an ellipsoid model. Cardiovasc Ultrasound. 2017;15(1–9):4.
  • Medvedofsky D, Mor-Avi V, Kruse E, et al. Quantification of right ventricular size and function from contrast-enhanced three-dimensional echocardiographic images. J Am Soc Echocardiogr. 2017;30:1193–1202.
  • Hamilton-Craig CR, Stedman K, Maxwell R, et al. Accuracy of quantitative echocardiographic measures of right ventricular function as compared to cardiovascular magnetic resonance. Int J Cardiol Heart Vasc. 2016;12:38–44.
  • Park JB, Lee SP, Lee JH, et al. Quantification of right ventricular volume and function using single-beat three-dimensional echocardiography: a validation study with cardiac magnetic resonance. J Am Soc Echocardiogr. 2016;29:392–401.
  • Knight DS, Grasso AE, Quail MA, et al. Accuracy and reproducibility of right ventricular quantification in patients with pressure and volume overload using single-beat three-dimensional echocardiography. J Am Soc Echocardiogr. 2015;28:363–374.
  • Anavekar NS, Gerson D, Skali H, et al. Two-dimensional assessment of right ventricular function. An echocardiographic-MRI correlative study. Echocardiography. 2007;24:452–456.
  • Atsumi A, Ishizu T, Kameda Y, et al. Application of 3-dimensional speckle tracking imaging to the assessment of right ventricular regional deformation. Circ J. 2013;77:1760–1768.
  • DiLorenzo MP, Bhatt SM, Mercer-Rosa L. How best to assess right ventricular function by echocardiography. Cardiol Young. 2015;25:1473–1481.
  • Focardi M, Cameli M, Carbone SF, et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. 2015;16:47–52.
  • Dandel M, Hetzer R. Echocardiographic assessment of the right ventricle: impact of the distinctly load dependency of its size, geometry and performance. Int J Cardiol. 2016;221:1132–1142.
  • Hsiao SH, Lin SK, Wang WC. Severe tricuspid regurgitation shows significant impact in the relationship among peak systolic tricuspid annular velocity, tricuspid annular plane systolic excursion, and right ventricular ejection fraction. J Am Soc Echocardiogr. 2006;19:902–910.
  • Forner F, Hasheminejad E, Sabate S, et al. Agreement of tricuspid annular systolic excursion measurement between transthoracic and transesophageal echocardiography in perioperative setting. Int J Cardiovasc Imaging. 2017;33(9):1385–1394.
  • Markin NW, Chamsi-Pasha M, Jiangtao Luo J, et al. Transesophageal speckle-tracking echocardiography improves right ventricular systolic function assessment in the perioperative setting. J Am Soc Echocardiogr. 2017;30:180–188.
  • Allam LE, Osny AM, Ghalip HA. Right ventricular outflow tract systolic excursion and fractional shortening: can these echocardiographic parametrs be used for the assessment of right ventricular function? J Cardiovasc Echocardiogr. 2017;27:52–58.
  • Lindquist P, Henein M, Kazzam E. Right ventricular outflow-tract fractional-shortening an applicable measure of right ventricular systolic function. Eur J Echocardiogr. 2003;4:29–35.
  • Kanzaki H, Nakatani S, Kawada T, et al. Right ventricular dP/dt/P(max), noninvasively derived from tricuspid regurgitation velocity is a useful index of right ventricular contractility. J Am Soc Echocardiogr. 2002;15:136–142.
  • Blanchard DG, Malouf PJ, Swaminatha V, et al. Utility of Tei Index in the non-invasive evaluation of chronic thromboembolic pulmonary hypertension before and after pulmonary thrombendarterectomy. JACC. 2009;2:143–149.
  • Yoshifuku S, Otsuji Y, Takasaki K, et al. Pseudonormalized Doppler total ejection isovolume (Tei) index in patients with right ventricular acute myocardial infarction. Am J Cardiol. 2003;91:527–531.
  • Topilsky Y, Oh JK, Dipesh KS, et al. Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. J Am Coll Cardiol Imag. 2011;4:211–222.
  • Kukulski T, Hubbert L, Arnold M, et al. Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study. J Am Soc Echocardiogr. 2000;13:194–204.
  • Lindqvist P, Waldenström A, Wikström G, et al. The use of isovolumetric contraction velocity to determine right ventricular state of contractility and filling pressures. A pulsed Doppler tissue imaging study. Eur J Echocardiography. 2005;6:264–270.
  • Chrysohoou C, Antoniou C-K, Kotrogiannis I, et al. Role of right ventricular systolic function on long term outcome in patients with newly diagnosed systolic heart failure. Circ J. 2011;75:2176–2181.
  • Cameli M, Loiacono F, Sparla S, et al. Systematic left ventricular assist device implant eligibility with non-invasive assessment: the SIENA protocol. J Cardiovasc Ultrasound. 2017;25:39–46.
  • Mertens LL, Friedberg MK. Imaging the right ventricle–current state of the art. Nat Rev Cardiol. 2010;7:551–563.
  • Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging – clinical applications. Int J Cardiol. 2009;132:11–24.
  • Cameli M, Lisi M, Mondillo S, et al. Prediction of stroke volume by global left ventricular longitudinal strain in patients undergoing assessment for cardiac transplantation. J Crit Care. 2011;26(433):e 13–20.
  • Cameli M, Bernazzali S, Lisi M, et al. Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: left ventricular assist device suitability for transplant candidates. Transpant Proc. 2012;44:213–215.
  • Rajagopal S, Forsha DE, Risum N, et al. Comprehensive assessment of right ventricular function in patients with pulmonary hypertension with global longitudinal peak systolic strain derived from multiple right ventricular views. J Am Soc Echocardiogr. 2014;27:657–665.
  • Liu Y, Wang Y, Wang Y, et al. Evaluation of two-dimensional strain echocardiography for quantifying right ventricular function in patients with pulmonary arterial hypertension. Exp Ther Med. 2017;14:1248–1252.
  • Longobardo L, Suma V, Jain R, et al. Role of two-dimensional speckle-tracking echo-cardiography strain in the assessment of right ventricular systolic function and comparison with conventional parameters. J Am Soc Echocardiogr. 2017;30:937–946.
  • Kemal HS, Kayikcioglu M, Kultursay H, et al. Right ventricular free-wall longitudinal speckle tracking strain in patients with pulmonary arterial hypertension under specific treatment. Echocardiography. 2017;34(4):530–536.
  • Park J-H, Negishi K, Kwon DH, et al. Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: comparison with cardiac magnetic resonance and outcome. J Cardiovasc Ultrasound. 2014;22:113–120.
  • Motoki H, Borowski AG, Shrestha K, et al. Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. J Am Soc Echocardiogr. 2014;27:726–732.
  • Evaldsson W, Ingvarsson A, Waktare J, et al. Right ventricular speckle tracking assessment for differentiation of pressure-versus volume-overload right ventricle. Clin Physiol Funct Imaging. 2017. [Epub ahead of print]. DOI:10.1111/cpf.12477
  • Ishizu T, Seo Y, Atsumi A, et al. Global and regional right ventricular function assessed by novel three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2017. [Epub ahead of print]. DOI:10.1016/j.echo.2017.08.007
  • Bellavia D, Iacovoni A, Scardulla C, et al. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19:926–946.
  • Wright L, Negishi K, Dwyer N, et al. Afterload dependence of right ventricular myocardial strain. J Am Soc Echocardiogr. 2017;30:676–684.
  • Park J-H, Kusunose K, Kwon DH, et al. Relationship between right ventricular longitudinal strain, invasive hemodynamics, and functional assessment in pulmonary arterial hypertension. Korean Circ J. 2015;45:398–407.
  • Yu HCM, Sanderson JE. Different prognostic significance of right and left ventricular diastolic dysfunction in heart failure. Clin Cardiol. 1999;22:504–512.
  • Sallach JA, Tang WH, Borowski A, et al. Right atrial volume index in chronic systolic heart failure and prognosis. JACC Cardiovasc Imaging. 2009;2:527–534.
  • Dandel M, Potapov E, Krabatsch T, et al. Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation. 2013;128:S14–S23.
  • Amsallem M, Boulate D, Aymami M, et al. Load adaptability in patients with pulmonary arterial hypertension. Am J Cardiol. 2017;120:874–882.
  • Dandel M, Krabatsch T, Valk V. Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol. 2015;198:241–250.
  • Sharma J, Bhise M, Singh A, et al. Hemodynamic measurements after cardiac surgery: trans-esophageal Doppler versus pulmonary artery catheter. J Cardiothorac Vasc Anest. 2005;19(6):746–750.
  • Frea S, Bovolo V, Bergerone S, et al. Echocardiographic evaluation of right ventricular stroke work index in advanced heart failure: a new index? J Card Fail. 2012;18:886–893.
  • Di Maria MV, Burkett DA, Youoszai MD, et al. Echocardiographic estimation of right ventricular stroke work in children with pulmonary arterial hypertension. Comparison with invasive methods. J. Am Soc Echocardiogr. 2015;28(11):1350–1357.
  • Guazzi M, Bandera F, Pelissero G, et al. Tricuspid annular systolic excursion and pulmonary artery pressure relationship in heart failure: an index of right ventricular function and prognosis. Am J Physiol Heart Circ Physiol. 2013;305:H1373–H1381.
  • Lopez-Candales A, Lopez FR, Trivedi S, et al. Right ventricular ejection efficiency: a new echocardiographic measure of mechanical performance in chronic pulmonary hypertension. Echocardiography. 2014;31:516–523.
  • Guazzi M, Naeije R, Arena R, et al. Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest. 2015;148:226–234.
  • Guazzi M, Dixon D, Labate V, et al. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging. 2017;10:1211–1221.
  • Abbas E, Franey LM, Marwick T, et al. Noninvasive assessment of pulmonary vascular resistance by Doppler echocardiography. J Am Soc Echocardiogr. 2013;26:1270–1277.
  • Naeije R, Manes A. The right ventricle in pulmonary arterial hypertension. Eur Resp Res. 2014;23:476–487.
  • Ryo K, Goda A, Onishi T. Pulmonary hypertension associated with patient outcomes by 3-dimensional wall motion tracking echocardiography. Circ Cardiovasc Imag. 2015;8:e003176.
  • Shiran H, Zamanian RT, McConnell MV, et al. Relationship between echocardiographic and magnetic resonance derived measures of right ventricular size and function in patients with pulmonary hypertension. Am Soc Echocardiogr. 2014;27:405–412.
  • Porter TR, Shillkutt SK, Adams MS, et al. Guidelines for the use of ehocardiography as a monitor for therapeutic interventions in adults: a report of the American Society of Echocardiography. Am Soc Echocardiogr. 2015;28:40–56.
  • Dandel M, Weng Y, Siniawski H, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criterial for weaning from ventricular assist devices. Eur Heart Journal. 2011;32:1148–1160.
  • Dang N, Topkara V, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.
  • Ramberg E, Olausson M, Jørgensen TB, et al. Right atrial and ventricular function evaluated with speckle tracking in patients with acute pulmonary embolism. Am J Emerg Med. 2017;35:136–143.
  • Fields JM, Davis J, Girson L, et al. Transthoracic echocardiography for diagnosing pulmonary embolism: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30:714–723.
  • Ochiai Y, McCarthy P, Smedira N, et al. Predictors of severe right ventricular failure after implantable assist device insertion: analysis of 245 patients. Circulation. 2002;106:1198–1202.
  • Matthews JC, Koelling T, Pagani F, et al. The right ventricular failure risk score a preoperative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–2172.
  • Potapov EV, Stepanenko A, Dandel M, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27:1275–1281.
  • Kaczorowski DJ, Woo YJ. Who needs an RVAD in addition to an LVAD? Cardiol Clin J. 2011;29:599–605.
  • Miller LW, Russel SD. Candidate selection for long-term left ventricular assist device therapy for advanced heart failure. In: Kormos RL, Miller LW, editors. Mechanical circulatory support: a companion to Braunwald’s heart disease. Philadelphia (PA): Elsevier Saunders; 2012. p. 72–87.
  • Kukucka M, Potapov E, Stepaneko A, et al. Acute impact of left ventricular unloading by left ventricular assist device on right ventricle geometry and function: effect of nitric oxide inhalation. J Thorac Cardiovasc Surg. 2011;141:1009–1014.
  • Fukamachi K, McCarty PM, Smedira NG, et al. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg. 1999;68:2181–2184.
  • Baumwol J, Macdonald PS, Keogh AM, et al. Right heart failure and ‘failure to thrive’ after left ventricular assist device implantation: clinical predictors and outcome. J Heart Transplant. 2011;30:888–895.
  • Santambrogio L, Bianchi T, Fuardo M, et al. Right ventricular failure after left ventricular assist device insertion: preoperative risk factors. Interact Cardiovasc Thorac Surg. 2006;5:379–382.
  • Puwanant S, Hamilton KK, Klodell CT, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27(10):1102–1107.
  • Kato ST, Farr M, Schulze PC, et al. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2012;109:246–251.
  • Raina A, Harish R, Rammohan S, et al. Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic and functional parameters. J Cardiac Fail. 2013;19:16–24.
  • Grant ADM, Smedira GN, Starling RC, et al. Independent and incremental role of quantitative right ventricular evaluation for prediction of right ventricular failure after ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–528.
  • Imamura T, Koichiro K, Kato N, et al. Late-onset right ventricular failure in patient with preoperative small left ventricle after implantation of continuous flow left ventricular assist device. Circulation J. 2014;78:625–633.
  • Aissaoui N, Salem J-E, Paluszkiewicz L, et al. Assessment of right ventricular dysfunction predictors before the implantation of a left ventricular assist device in end-stage heart failure using echocardiographic measures (ARVADE): combination of left and right ventricular echo-cardiographic variables. Arch Cardiovasc Dis. 2015;108:300–309.
  • Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96:857–864.
  • Vivo RP, Cordero-Reyes AM, Qamar U, et al. Increased right-to-left diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32:792–799.
  • Kato TS, Jiang J, Schulze PC, et al. Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Failure. 2013;1:216–222.
  • Fitzpatrick JR III, Frederick JR, Hsu VM, et al. Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–1292.
  • Goldraich L, Kawajiri H, Foroutan F, et al. Tricuspid valve annular dilation as a predictor of right ventricular failure after implantation of a left ventricular assist device. J Card Surg. 2016;31:110–116.
  • Dandel M, Potapov E, Moazami N. Preoperative evaluation of right ventricular function. In: Montalto A, Loforte A, Musumeci F, et al., editors. Mechanical circulatory support in end-stage heart failure. 2017. Springer International Publishing, p. 75–93.
  • Barras N, Jeanrenaud X, Regamey J, et al. Echocardiographic predictors of post-implantation right ventricular failure. Right ventricular function before LVAD implantation. Cardiovasc Med. 2017;20:69–71.
  • Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122:164–172.
  • Humbert M, Sitbon O, Chaouat A, et al. Survival in patients with idiopathic, familial and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122:156–163.
  • Campo A, Mathai SC, Pavec L, et al. Outcomes of hospitalization for right heart failure in pulmonary arterial hypertension. Eur Resp J. 2011;38:359–367.
  • Haddad F, Petersen T, Fuh E, et al. Characteristics and outcome after hospitalization for acute right heart failure in patients with pulmonary arterial hypertension. Circ Heart Fail. 2011;4:692–699.
  • Rich S. Pulmonary Hypertension. In: Bonow RO, Mann DL, Zipes DP, et al., eds. Braunwald’s heart disease, a textbook of cardiovascular medicine. 9th ed. Philadelphia (PA): Elsevier Saunders; 2012. p. 1696–1718.
  • D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115:343–349.
  • Miller DP, Farber HW. ‘Who’ll be the next in line?’ The lung allocation score in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2013;32:1165–1167.
  • McLaughlin VV, Gaine SP, Howard LS, et al. Treatment goals of pulmonary hypertension. J Am Coll Cardiol. 2013;62:73–81.
  • Chandra S, Shah SJ, Thenappan T, et al. Carbon monoxide diffusing capacity and mortality in pulmonaly arterial hypertension. J Heart Lung Transplant. 2010;29:181–187.
  • Sato T, Tsujino I, Ohira H, et al. Validation study on the accuracy of echocardiographic measurements of right ventricular systolic function in pulmonary hypertension. J Am Soc Echocardiogr. 2012;25(3):280–286.
  • Spruijt OA, Di Pasqua MC, Bogaard HJ, et al. Serial assessment of right ventricular systolic function in patients with precapillary pulmonary hypertension using simple echo-cardiographic parameters: a comparison with cardiac magnetic resonance imaging. J Cardiol. 2017;69:182–188.
  • Amsallem M, Sweatt AJ, Aymami MC, et al. Right heart end-systolic remodeling index strongly predicts outcomes in pulmonary arterial hypertension comparison with validated models. Circ Cardiovasc Imaging. 2017;10:e005771.
  • Ghio S, Pazzano AS, Klersy C, et al. Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol. 2011;107:628–632.
  • Benza RL, Hinderliter AL, Willis PW, et al. Echocardiographic predictor of adverse outcome in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–1219.
  • Zhang R, Dai L-Z, Xie W-P. Survival of Chinese patients with pulmonary arterial hypertension in the modern treatment era. Chest. 2011;140:301–309.
  • Raymond RJ, Hinderliter AL, Willis PW, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. JACC. 2002;39:1214–1219.
  • Yeo TC, Dujardin KS, Tei C, et al. Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol. 1998;81:1157–1161.
  • Ernande L, Cottin V, Leroux PI, et al. Right ventricular isovolumic contraction velocity predicts survival in pulmonary hypertension. J Am Soc Echocardiogr. 2013;26:297–306.
  • Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imag. 2013;6:711–721.
  • Bustamante-Labarta M, Perrone S, De La Fuente RL, et al. Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr. 2002;15:1160–1164.
  • Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Resp Critical Care Med. 2006;174:1034–1041.
  • Lopez-Candales A, Dohi K, Rajagopolan N, et al. Right ventricular dysynchrony in patients with pulmonary hypertension is associated with disease severity and functional class. Cardiovasc Ultrasound. 2005;3:23–33.
  • Okumura K, Humpl T, Dragulescu A, et al. Longitudinal assessment of right ventricular myocardial strain in relation to transplant-free survival in children with idiopathic pulmonary hypertension. J Am Soc Echocardiogr. 2014;27:1344–1351.
  • Hardegree EL, Sachdev A, Villarraga HR, et al. Role of serial quantitative assessment of right ventricular function by strain in pulmonary arterial hypertension. Am J Cardiol. 2013;111(1):143–148.
  • Von Siebenthal C, Aubert J-D, Mitsakis P. Pulmonary hypertension and indicators of right ventricular function. Frontiers in Medicine (Lausanne). 2016;3:1–13.
  • Murata M, Tsugu T, Kawakami T, et al. Right ventricular dyssynchrony predicts clinical outcomes in patients with pulmonary hypertension. Int J Cardiol. 2017;228:912–918.
  • Smith BCF, Dobson G, Dawson D, et al. Three-dimensional speckle tracking of the right ventricle. Toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. JACC. 2014;64(1):41–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.