265
Views
4
CrossRef citations to date
0
Altmetric
Review

Cardiotoxicity in pediatric lymphoma survivors

, , , , &
Pages 957-974 | Received 05 Aug 2021, Accepted 30 Nov 2021, Published online: 27 Dec 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.
  • Mulrooney DA, Yeazel MW, Kawashima T, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer. retrospective analysis of the childhood cancer survivor study cohort. BMJ. 2009;339(dec08 1):b4606.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020 Jan;70(1):7–30.
  • Castellino SM, Geiger AM, Mertens AC, et al. Morbidity and mortality in long-term survivors of Hodgkin lymphoma: a report from the childhood cancer survivor study. Blood. 2011;117(6):1806–1816.
  • Armstrong GT, Liu Q, Yasui Y, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the childhood cancer survivor study. J Clin Oncol. 2009;27(14):2328–2338.
  • Mertens AC, Liu Q, Neglia JP, et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the childhood cancer survivor study. J Natl Cancer Inst. 2008;100(19):1368–1379.
  • Lipshultz SE, Adams MJ, Colan SD, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013 Oct 22;128(17):1927–1995.
  • Mulrooney DA, Armstrong GT, Huang S, et al. Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy: a cross-sectional study. Ann Intern Med. 2016;164(2):93–101.
  • Lipshultz SE, Lipsitz SR, Mone SM, et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–1743.
  • Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol. 2010;28(8):1276–1281.
  • Kupari M, Volin L, Suokas A, et al. Cardiac involvement in bone marrow transplantation: electrocardiographic changes, arrhythmias, heart failure and autopsy findings. Bone Marrow Transplant. 1990 Feb;5(2):91–98.
  • Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000 Apr;22(4):263–302.
  • Morandi P, Ruffini PA, Benvenuto GM, et al. Serum cardiac troponin I levels and ECG/Echo monitoring in breast cancer patients undergoing high-dose (7 g/m(2)) cyclophosphamide. Bone Marrow Transplant. 2001 Aug;28(3):277–282.
  • Pediatric Non-Hodgkin Lymphoma Treatment & Management. Medscape. https://emedicine.medscape.com/article/987540-treatment. , 2021 Accessed15 November 2021.
  • Nishikawa T, Miyahara E, Kurauchi K, et al. Mechanisms of Fatal Cardiotoxicity following High-Dose Cyclophosphamide therapy and a method for its prevention. PloS One. 2015;10(6):e0131394.
  • Bini I, Asaftei SD, Riggi C, et al. Anthracycline-induced cardiotoxicity in patients with paediatric bone sarcoma and soft tissue sarcoma. Cardiol Young. 2017 Nov;27(9):1815–1822.
  • Thompson KL, Rosenzweig BA, Zhang J, et al. Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol. 2010 Jul;66(2):303–314.
  • Floyd JD, Nguyen DT, Lobins RL, et al. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005 Oct 20;23(30):7685–7696.
  • Radhakrishnan V, Bakhshi S. 5-Fluorouracil-induced acute dilated cardiomyopathy in a pediatric patient. Pediatr Hematol Oncol. 2011 May;33(4):323.
  • Bair SM, Choueiri TK, Moslehi J. Cardiovascular complications associated with novel angiogenesis inhibitors: emerging evidence and evolving perspectives. Trends Cardiovasc Med. 2013 May;23(4):104–113.
  • Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009 Jun 16;53(24):2231–2247.
  • Valcovici M, Andrica F, Serban C, et al. Cardiotoxicity of anthracycline therapy: current perspectives. Arch Med Sci. 2016 Apr 01;12(2):428–435.
  • Barry E, Alvarez JA, Scully RE, et al. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007 Jun;8(8):1039–1058.
  • Nysom K, Holm K, Lipsitz SR, et al. Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16(2):545–550.
  • Bhatia S. Genetics of Anthracycline Cardiomyopathy in cancer survivors: JACC: cardioOncology state-of-the-art review. JACC CardioOncol. 2020 Nov;2(4):539–552.
  • Lebrecht D, Setzer B, Ketelsen UP, et al. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation. 2003 Nov 11;108(19):2423–2429.
  • Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229.
  • Horenstein MS, Vander Heide RS, L’Ecuyer TJ. Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol Genet Metab. 2000;71(1–2):436–444.
  • Gianni L, Herman EH, Lipshultz SE, et al. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008;26(22):3777–3784.
  • SA CE. Cancer chemotherapy. Be K, editor. 9th ed. New York: Lange Medical Books/McGraw-Hill; 2004.
  • Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94(4):525–533.
  • Simunek T, Sterba M, Popelova O, et al. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61(1):154–171.
  • Greenlee H, Hershman DL, Jacobson JS. Use of antioxidant supplements during breast cancer treatment: a comprehensive review. Breast Cancer Res Treat. 2009;115(3):437–452.
  • Ladas EJ, Jacobson JS, Kennedy DD, et al. Antioxidants and cancer therapy: a systematic review. J Clin Oncol. 2004;22(3):517–528.
  • Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–1642.
  • Khiati S, Dalla Rosa I, Sourbier C, et al. Mitochondrial topoisomerase I (top1mt) is a novel limiting factor of doxorubicin cardiotoxicity. Clin Cancer Res. 2014;20(18):4873–4881.
  • Vejpongsa P, Yeh ET. Topoisomerase 2beta: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther. 2014;95(1):45–52.
  • Ong DS, Aertker RA, Clark AN, et al. Radiation-associated valvular heart disease. J Heart Valve Dis. 2013;22(6):883–892.
  • L’Ecuyer T, Sanjeev S, Thomas R, et al. DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1273–80.
  • Lebrecht D, Walker UA. Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol. 2007;7(2):108–113.
  • Lipshultz SE, Walker VE, Torres SM, et al. Frequent mitochondrial DNA mutations and polymorphisms in long-term survivors of childhood Acute Lymphoblastic Leukemia. Blood. 2007;110(11):2800.
  • Lipshultz SE, Anderson LM, Miller TL, et al. Impaired mitochondrial function is abrogated by dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors. Cancer. 2016 Mar 15;122(6):946–953.
  • Kaplan HS. The radical radiotherapy of regionally localized Hodgkin’s disease. Radiology. 1962;78:553–561.
  • Maraldo MV, Ng AK. Minimizing cardiac risks with contemporary radiation therapy for Hodgkin Lymphoma. J Clin Oncol. 2016;34(3):208–210.
  • Cohn KE, Stewart JR, Fajardo LF, et al. Heart disease following radiation. Medicine (Baltimore). 1967;46(3):281–298.
  • Stewart JR, Fajardo LF. Radiation-induced heart disease. Clinical and experimental aspects. Radiol Clin North Am. 1971;9(3):511–531.
  • Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin’s disease. An analysis of technique, tumor eradication, and complications. Cancer. 1976;37(6):2813–2825.
  • Martin RG, Ruckdeschel JC, Chang P, et al. Radiation-related pericarditis. Am J Cardiol. 1975;35(2):216–220.
  • Dollinger MR, Lavine DM, Foye LV Jr. Myocardial infarction due to postirradiation fibrosis of the coronary arteries. Case of successfully treated Hodgkin’s disease with lower esophageal involvement. Jama. 1966;195(4):316–319.
  • Rodgers DL. Precocious myocardial infarction after radiation treatment for Hodgkin’s disease. Chest. 1976;70(5):675–677.
  • Bluhm EC, Ronckers C, Hayashi RJ, et al. Cause-specific mortality and second cancer incidence after non-Hodgkin lymphoma: a report from the childhood cancer survivor study. Blood. 2008;111(8):4014–4021.
  • Allen CE, Kelly KM, Bollard CM. Pediatric lymphomas and histiocytic disorders of childhood. Pediatr Clin North Am. 2015;62(1):139–165.
  • Minard-Colin V, Brugieres L, Reiter A, et al. Non-Hodgkin Lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963–2974.
  • Landy DC, Lipsitz SR, Kurtz JM, et al. Dietary quality, caloric intake, and adiposity of childhood cancer survivors and their siblings: an analysis from the cardiac risk factors in childhood cancer survivors study. Nutr Cancer. 2013;65(4):547–555.
  • Landy DC, Miller TL, Lipsitz SR, et al. Cranial irradiation as an additional risk factor for anthracycline cardiotoxicity in childhood cancer survivors: an analysis from the cardiac risk factors in childhood cancer survivors study. Pediatr Cardiol. 2013;34(4):826–834.
  • Aisenberg AC. Problems in Hodgkin’s disease management. Blood. 1999;93(3):761–779.
  • Lee CK, Aeppli D, Nierengarten ME. The need for long-term surveillance for patients treated with curative radiotherapy for Hodgkin’s disease: university of Minnesota experience. Int J Radiat Oncol Biol Phys. 2000;48(1):169–179.
  • Mauch PM, Kalish LA, Marcus KC, et al. Long-term survival in Hodgkin’s disease: relative impact of mortality, second tumors, infection, and cardiovascular disease. Cancer J Sci Am. 1995;1(1):33–42.
  • Hoppe RT. Hodgkin’s disease: complications of therapy and excess mortality. Ann Oncol. 1997;8(Suppl 1):115–118.
  • Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. Jama. 1993;270(16):1949–1955.
  • Tukenova M, Guibout C, Oberlin O, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28(8):1308–1315.
  • Lindsay S, Kohn Hi, Dakin RL, et al. Aortic arteriosclerosis in the dog after localized aortic x-irradiation. Circ Res. 1962;10:51–60.
  • Artom C, Lofland HB Jr., Clarkson TB. Ionizing radiation, atherosclerosis, and lipid metabolism in pigeons. Radiat Res. 1965;26(2):165–177.
  • Brosius FC, Waller BF, Roberts WC. Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart. Am J Med. 1981;70(3):519–530.
  • Veinot JP, Edwards WD. Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996;27(8):766–773.
  • Fajardo LF, Stewart JR, Cohn KE. Morphology of radiation-induced heart disease. Arch Pathol. 1968;86(5):512–519.
  • Stewart JR, Fajardo LF. Radiation-induced heart disease: an update. Prog Cardiovasc Dis. 1984;27(3):173–194.
  • Chello M, Mastroroberto P, Romano R, et al. Changes in the proportion of types I and III collagen in the left ventricular wall of patients with post-irradiative pericarditis. Cardiovasc Surg. 1996;4(2):222–226.
  • Rudolph AM. Myocardial growth before and after birth: clinical implications. Acta paediatrica. 2000;89(2):129–133.
  • Schultz-Hector S, Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys. 2007;67(1):10–18.
  • Robbins ME, Zhao W. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol. 2004;80(4):251–259.
  • Orzan F, Brusca A, Gaita F, et al. Associated cardiac lesions in patients with radiation-induced complete heart block. Int J Cardiol. 1993;39(2):151–156.
  • Cohen SI, Bharati S, Glass J, et al. Radiotherapy as a cause of complete atrioventricular block in Hodgkin’s disease. An electrophysiological-pathological correlation. Arch Int Med. 1981;141(5):676–679.
  • La Vecchia L. Physiologic dual chamber pacing in radiation-induced atrioventricular block. Chest. 1996;110(2):580–581.
  • Stewart JR, Fajardo LF, Gillette SM, et al. Radiation injury to the heart. Int J Radiat Oncol Biol Phys. 1995;31(5):1205–1211.
  • Lipshultz SE, Sallan SE. Cardiovascular abnormalities in long-term survivors of childhood malignancy. J Clin Oncol. 1993;11(7):1199–1203.
  • Orzan F, Brusca A, Conte MR, et al. Severe coronary artery disease after radiation therapy of the chest and mediastinum: clinical presentation and treatment. Br Heart J. 1993;69(6):496–500.
  • Hancock S. Cardiac toxicity after cancer therapy. National Cancer Institute. Bethesda MD. Conf Proc. 1998;1(1):3.
  • Carlson RG, Mayfield WR, Normann S, et al. Radiation-associated valvular disease. Chest. 1991;99(3):538–545.
  • Heidenreich PA, Hancock SL, Lee BK, et al. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 2003;42(4):743–749.
  • Slama MS, Le Guludec D, Sebag C, et al. Complete atrioventricular block following mediastinal irradiation: a report of six cases. Pacing Clin Electrophysiol. 1991;14(7):1112–1118.
  • Armenian SH, Gelehrter SK, Vase T, et al. Screening for cardiac dysfunction in anthracycline-exposed childhood cancer survivors. Clin Cancer Res. 2014;20(24):6314–6323.
  • Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991 Mar 21;324(12):808–815.
  • Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005 Apr 20;23(12):2629–2636.
  • Wouters KA, Kremer LC, Miller TL, et al. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Hematol. 2005 Dec;131(5):561–578.
  • van Dalen EC, Michiels EM, Caron HN, et al. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. 2006 Oct;18(4):Cd005006.
  • Giantris A, Abdurrahman L, Hinkle A, et al. Anthracycline-induced cardiotoxicity in children and young adults. Crit Rev Oncol Hematol. 1998 Jan;27(1):53–68.
  • Adams MJ, Lipshultz SE. Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005 Jun 15;44(7):600–606.
  • Aminkeng F, Ross CJ, Rassekh SR, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–695.
  • Krischer JP, Epstein S, Cuthbertson DD, et al. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997 Apr;15(4):1544–1552.
  • Krischer JP, Cuthberston DD, Epstein S, et al. Risk factors for early anthracycline clinical cardiotoxicity in children: the pediatric oncology group experience. Prog Pediatr Cardiol. 1997;8(2):83–90.
  • Rinehart JJ, Lewis RP, Balcerzak SP. Adriamycin cardiotoxicity in man. Ann Intern Med. 1974;81(4):475–478.
  • Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol. 1998;25(4 Suppl 10):72–85.
  • Bryant J, Picot J, Levitt G, et al. Cardioprotection against the toxic effects of anthracyclines given to children with cancer: a systematic review. Health Technol Assess. 2007;11(27):iii, ix–x, 1–84.
  • Kremer LC, van der Pal HJ, Offringa M, et al. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol. 2002;13(6):819–829.
  • Smith LA, Cornelius VR, Plummer CJ, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010 Jun;29(10):337.
  • Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H: quinoneoxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer. 2008;112(12):2789–2795.
  • Lipshultz SE, Lipsitz SR, Kutok JL, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013;119(19):3555–3562.
  • Polikar R, Burger AG, Scherrer U, et al. The thyroid and the heart. Circulation. 1993;87(5):1435–1441.
  • Glanzmann C, Kaufmann P, Jenni R, et al. Cardiac risk after mediastinal irradiation for Hodgkin’s disease. Radiother Oncol. 1998;46(1):51–62.
  • van Nimwegen FA, Schaapveld M, Cutter DJ, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin Lymphoma. J Clin Oncol. 2016;34(3):235–243.
  • Perrault DJ, Levy M, Herman JD, et al. Echocardiographic abnormalities following cardiac radiation. J Clin Oncol. 1985;3(4):546–551.
  • Cameron EH, Lipshultz SE, Tarbell NJ, et al. Cardiovascular disease in long-term survivors of pediatric Hodgkin’s disease. Prog Pediatr Cardiol. 1998;8(3):139–144.
  • Aleman BM, van Den Belt-dusebout AW, De Bruin ML, et al. Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood. 2007;109(5):1878–1886.
  • Swerdlow AJ, Higgins CD, Smith P, et al. Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst. 2007;99(3):206–214.
  • Hancock SL, Donaldson SS, Hoppe RT. Cardiac disease following treatment of Hodgkin’s disease in children and adolescents. J Clin Oncol. 1993;11(7):1208–1215.
  • Adams MJ, Lipshultz SE, Schwartz C, et al. Radiation-associated cardiovascular disease: manifestations and management. Semin Radiat Oncol. 2003 Jul;13(3):346–356.
  • Mulrooney DA, Hyun G, Ness KK, et al. Major cardiac events for adult survivors of childhood cancer diagnosed between 1970 and 1999: report from the childhood cancer survivor study cohort. BMJ. 2020 Jan 15;368:l6794.
  • Shankar SM, Marina N, Hudson MM, et al. Monitoring for cardiovascular disease in survivors of childhood cancer: report from the cardiovascular disease task force of the children’s oncology group. Pediatrics. 2008;121(2):e387–96.
  • Bansal N, Amdani SM, Hutchins KK, et al. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018;30(5):628–638.
  • Steinherz LJ, Graham T, Hurwitz R, et al. Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the cardiology committee of the childrens cancer study group. Pediatrics. 1992;89(5):942–949.
  • Lipshultz SE, Sanders SP, Goorin AM, et al. Monitoring for anthracycline cardiotoxicity. Pediatrics. 1994;93(3):433–437.
  • van Dalen EC, van Den Brug M, Caron HN, et al. Anthracycline-induced cardiotoxicity: comparison of recommendations for monitoring cardiac function during therapy in paediatric oncology trials. Eur J Carncer. 2006;42(18):3199–3205.
  • Lipshultz SE, Diamond MB, Franco VI, et al. Managing chemotherapy-related cardiotoxicity in survivors of childhood cancers. Paediatr Drugs. 2014;16(5):373–389.
  • Guta AC, Badano LP, Ochoa-Jimenez RC, et al. Three-dimensional echocardiography to assess left ventricular geometry and function. Expert Rev Cardiovasc Ther. 2019;17(11):801–815.
  • Corella Aznar EG, Ayerza Casas A, Jimenez Montanes L, et al. Use of speckle tracking in the evaluation of late subclinical myocardial damage in survivors of childhood acute leukaemia. Int J Cardiovasc Imaging. 2018 Sep;34(9):1373–1381.
  • Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014 Sep;27(9):911–939.
  • Yu AF, Raikhelkar J, Zabor EC, et al. Two-dimensional speckle tracking echocardiography detects subclinical left ventricular systolic dysfunction among adult survivors of childhood, adolescent, and young adult cancer. BioMed Res Int. 2016;2016:9363951.
  • Sipola P, Vanninen E, Jantunen E, et al. A prospective comparison of cardiac magnetic resonance imaging and radionuclide ventriculography in the assessment of cardiac function in patients treated with anthracycline-based chemotherapy. Nucl Med Commun. 2012;33(1):51–59.
  • Tantawy AA, Elmasry OA, Shaaban M, et al. Radionuclide ventriculography detects early anthracycline cardiotoxicity in children with hodgkin lymphoma. J Pediatr Hematol Oncol. 2011;33(4):e132–7.
  • Prosnitz RG, Hubbs JL, Evans ES, et al. Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment. Cancer. 2007;110(8):1840–1850.
  • Heidenreich PA, Schnittger I, Strauss HW, et al. Screening for coronary artery disease after mediastinal irradiation for Hodgkin’s disease. J Clin Oncol. 2007;25(1):43–49.
  • Nousiainen T, Vanninen E, Jantunen E, et al. Comparison of echocardiography and radionuclide ventriculography in the follow-up of left ventricular systolic function in adult lymphoma patients during doxorubicin therapy. J Intern Med. 2001;249(4):297–303.
  • Lipshultz SE, Miller TL, Scully RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30(10):1042–1049.
  • Pellegrini L, Sileno S, D’Agostino M, et al. MicroRNAs in cancer treatment-induced cardiotoxicity. Cancers (Basel). 2020 Mar 17;12(3):704.
  • Leger KJ, Leonard D, Nielson D, et al. Circulating microRNAs: potential markers of cardiotoxicity in children and young adults treated with anthracycline chemotherapy. J Am Heart Assoc. 2017;6(4):4.
  • Bagnes C, Panchuk PN, Recondo G. Antineoplastic chemotherapy induced QTc prolongation. Curr Drug Saf. 2010;5(1):93–96.
  • Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers, version 5.0. 2018. cited 2020 Jul 19. Available from http://www.survivorshipguidelines.org/.
  • Armstrong GT, Joshi VM, Ness KK, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol. 2015;65(23):2511–2522.
  • Mavinkurve-Groothuis AM, Groot-Loonen J, Marcus KA, et al. Myocardial strain and strain rate in monitoring subclinical heart failure in asymptomatic long-term survivors of childhood cancer. Ultrasound Med Biol. 2010;36(11):1783–1791.
  • Slieker MG, Fackoury C, Slorach C, et al. Echocardiographic assessment of cardiac function in pediatric survivors of anthracycline-treated childhood cancer. Circ Cardiovasc Imaging. 2019;12(12):e008869.
  • Goff DC Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American heart association task force on practice guidelines. Circulation. 2014;129(25 Suppl 2):S49–73.
  • Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.
  • Yousuf O, Mohanty BD, Martin SS, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62(5):397–408.
  • Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499–511.
  • Lipshultz SE, Landy DC, Lopez-Mitnik G, et al. Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. J Clin Oncol. 2012;30(10):1050–1057.
  • McEniery PT, Dorosti K, Schiavone WA, et al. Clinical and angiographic features of coronary artery disease after chest irradiation. Am J Cardiol. 1987;60(13):1020–1024.
  • Radwaner BA, Geringer R, Goldmann AM, et al. Left main coronary artery stenosis following mediastinal irradiation. Am J Med. 1987;82(5):1017–1020.
  • Totterman KJ, Pesonen E, Siltanen P. Radiation-related chronic heart disease. Chest. 1983;83(6):875–878.
  • Lee TH, Boucher CA. Clinical practice. Noninvasive tests in patients with stable coronary artery disease. N Engl J Med. 2001;344(24):1840–1845.
  • Adams MJ, Lipsitz SR, Colan SD, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22(15):3139–3148.
  • Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol. 2002 Mar 15;20(6):1677–1682.
  • Tardi PG, Boman NL, Cullis PR. Liposomal doxorubicin. J Drug Target. 1996;4(3):129–140.
  • O’Brien ME, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–449.
  • Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19(5):1444–1454.
  • Fulbright JM, Huh W, Anderson P, et al. Can anthracycline therapy for pediatric malignancies be less cardiotoxic? Curr Oncol Rep. 2010;12(6):411–419.
  • Marina NM, Cochrane D, Harney E, et al. Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: a pediatric oncology group study. Clin Cancer Res. 2002;8(2):413–418.
  • Lowis S, Lewis I, Elsworth A, et al. A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. Br J Cancer. 2006;95(5):571–580.
  • Hutchins KK, Siddeek H, Franco VI, et al. Prevention of cardiotoxicity among survivors of childhood cancer. Br J Clin Pharmacol. 2017;83(3):455–465.
  • Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004 Jul 8;351(2):145–153.
  • Lipshultz SE, Scully RE, Lipsitz SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010 Oct;11(10):950–961.
  • Kopp LM, Womer RB, Schwartz CL, et al. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: a report from the Children’s Oncology Group. Cardiooncology. 2019;5:15.
  • Schwartz CL, Wexler LH, Krailo MD, et al. Intensified Chemotherapy With Dexrazoxane Cardioprotection in Newly Diagnosed Nonmetastatic Osteosarcoma: a Report From the Children’s Oncology Group. Pediatr Blood Cancer. 2016 Jan;63(1):54–61.
  • Tebbi CK, London WB, Friedman D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25(5):493–500.
  • Lipshultz SE, Lipsitz SR, Orav EJ. Dexrazoxane-associated risk for secondary malignancies in pediatric Hodgkin’s disease: a claim without compelling evidence. J Clin Oncol. 2007;25(21):3179. author reply 3180.
  • Asselin BL, Devidas M, Chen L, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed t-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-hodgkin lymphoma: a report of the children’s oncology group randomized trial pediatric oncology group 9404. J Clin Oncol. 2016 Mar 10;34(8):854–862.
  • Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 accf/aha guideline for the management of heart failure: a report of the American College of Cardiology/American heart association task force on clinical practice guidelines and the heart failure society of america. Circulation. 2017;136(6):e137–61.
  • Bansal N, Adams MJ, Ganatra S, et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 2019;5:18.
  • Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–4522.
  • Silber JH, Cnaan A, Clark BJ, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22(5):820–828.
  • El-Shitany NA, Tolba OA, El-Shanshory MR, et al. Protective effect of carvedilol on Adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607–613.
  • N.I.H. U.S. National Library of Medicine. ClinicalTrials.gov. Carvedilol in Preventing Heart Failure in Childhood Cancer Survivors. cited 15 November, 2021. Available from https://clinicaltrials.gov/ct2/show/NCT02717507.
  • Shakir DK, Rasul KI. Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. J Clin Med Res. 2009 Apr;1(1):8–12.
  • Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006;354(23):2443–2451.
  • Hallas J, Christensen R, Andersen M, et al. Long term use of drugs affecting the renin-angiotensin system and the risk of cancer: a population-based case-control study. Br J Clin Pharmacol. 2012;74(1):180–188.
  • Lipshultz SE, Colan SD. Cardiovascular trials in long-term survivors of childhood cancer. J Clin Oncol. 2004;22(5):769–773.
  • Bock MJ, Pahl E, Rusconi PG, et al. Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: a report from the Pediatric Heart Transplant Study (PHTS) group. Pediatr Transpl. 2017 Aug;21(5):5.
  • Hoppe RT, Advani RH, Ai WZ, et al. Hodgkin Lymphoma, Version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(6):755–781.
  • Advani RH. Updates in Treatment Strategies for Hodgkin Lymphoma. J Natl Compr Canc Netw. 2019;17(11.5):1411–1413.
  • Giulino-Roth L, Keller FG, Hodgson DC, et al. Current approaches in the management of low risk Hodgkin lymphoma in children and adolescents. Br J Hematol. 2015;169(5):647–660.
  • Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma. N Engl J Med. 2016;374(25):2419–2429.
  • Lipshultz SE, Cochran TR, Franco VI, et al. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol. 2013;10(12):697–710.
  • Groarke JD, Tanguturi VK, Hainer J, et al. Abnormal exercise response in long-term survivors of hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015;65(6):573–583.
  • Deuring G, Kiss A, Halter JP, et al. Cardiac autonomic functioning is impaired among allogeneic hematopoietic stem cell transplantation survivors: a controlled study. Bone Marrow Transplant. 2017;52(1):66–72.
  • Christoffersen L, Gibson TM, Pui CH, et al. Cardiac autonomic dysfunction in survivors of childhood acute lymphoblastic leukemia: the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2020;67(7):e28388.
  • Christiansen JR, Kanellopoulos A, Lund MB, et al. Impaired exercise capacity and left ventricular function in long-term adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62(8):1437–1443.
  • Caru M, Samoilenko M, Drouin S, et al. Childhood Acute Lymphoblastic Leukemia Survivors Have a Substantially Lower Cardiorespiratory Fitness Level Than Healthy Canadians Despite a Clinically Equivalent Level of Physical Activity. J Adolesc Young Adult Oncol. 2019;8(6):674–683.
  • Miller AM, Lopez-Mitnik G, Somarriba G, et al. Exercise capacity in long-term survivors of pediatric cancer: an analysis from the Cardiac Risk Factors in Childhood Cancer Survivors Study. Pediatr Blood Cancer. 2013;60(4):663–668.
  • Wolf CM, Reiner B, Kuhn A, et al. Subclinical Cardiac Dysfunction in Childhood Cancer Survivors on 10-Years Follow-Up Correlates With Cumulative Anthracycline Dose and Is Best Detected by Cardiopulmonary Exercise Testing, Circulating Serum Biomarker, Speckle Tracking Echocardiography, and Tissue Doppler Imaging. Front Pediatr. 2020;8:123.
  • Florin TA, Fryer GE, Miyoshi T, et al. Physical inactivity in adult survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study. Cancer Epidemiol Biomarkers Prev. 2007;16(7):1356–1363.
  • Pophali PA, Ip A, Larson MC, et al. The association of physical activity before and after lymphoma diagnosis with survival outcomes. Am J Hematol. 2018;93(12):1543–1550.
  • Jones LW, Liu Q, Armstrong GT, et al. Exercise and risk of major cardiovascular events in adult survivors of childhood hodgkin lymphoma: a report from the childhood cancer survivor study. J Clin Oncol. 2014;32(32):3643–3650.
  • Scott JM, Li N, Liu Q, et al. Association of Exercise With Mortality in Adult Survivors of Childhood Cancer. JAMA Oncol. 2018;4(10):1352–1358.
  • Zhi X, Xie M, Zeng Y, et al. Effects of Exercise Intervention on Quality of Life in Adolescent and Young Adult Cancer Patients and Survivors: a Meta-Analysis. Integr Cancer Ther. 2019;18:1534735419895590.
  • Le A, Mitchell HR, Zheng DJ, et al. A home-based physical activity intervention using activity trackers in survivors of childhood cancer: a pilot study. Pediatr Blood Cancer. 2017;64(2):387–394.
  • Blaauwbroek R, Bouma MJ, Tuinier W, et al. The effect of exercise counselling with feedback from a pedometer on fatigue in adult survivors of childhood cancer: a pilot study. Support Care Cancer. 2009;17(8):1041–1048.
  • Berg CJ, Stratton E, Giblin J, et al. Pilot results of an online intervention targeting health promoting behaviors among young adult cancer survivors. Psychooncology. 2014;23(10):1196–1199.
  • Rabin C, Dunsiger S, Ness KK, et al. Internet-Based Physical Activity Intervention Targeting Young Adult Cancer Survivors. J Adolesc Young Adult Oncol. 2011;1(4):188–194.
  • Valle CG, Tate DF, Mayer DK, et al. A randomized trial of a Facebook-based physical activity intervention for young adult cancer survivors. J Cancer Surviv. 2013;7(3):355–368.
  • Long TM, Rath SR, Wallman KE, et al. Exercise training improves vascular function and secondary health measures in survivors of pediatric oncology related cerebral insult. PloS One. 2018;13(8):e0201449.
  • Vallerand JR, Rhodes RE, Walker GJ, et al. Feasibility and preliminary efficacy of an exercise telephone counseling intervention for hematologic cancer survivors: a phase II randomized controlled trial. J Cancer Surviv. 2018;12(3):357–370.
  • Jarvela LS, Saraste M, Niinikoski H, et al. Home-Based Exercise Training Improves Left Ventricle Diastolic Function in Survivors of Childhood ALL: a Tissue Doppler and Velocity Vector Imaging Study. Pediatr Blood Cancer. 2016;63(9):1629–1635.
  • Marques-Aleixo I, Santos-Alves E, Oliveira PJ, et al. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer. 2018;1869(2):189–199.
  • Smuder AJ. Exercise stimulates beneficial adaptations to diminish doxorubicin-induced cellular toxicity. Am J Physiol Regul Integr Comp Physiol. 2019;317(5):R662–72.
  • Cohen JB, Geara AS, Hogan JJ, et al. Hypertension in Cancer Patients and Survivors: epidemiology, Diagnosis, and Management. JACC CardioOncol. 2019 Dec;1(2):238–251.
  • Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31(29):3673–3680.
  • Cardous-Ubbink MC, Geenen MM, Schade KJ, et al. Hypertension in long-term survivors of childhood cancer: a nested case-control study. Eur J Cancer. 2010 Mar;46(4):782–790.
  • Meacham LR, Chow EJ, Ness KK, et al. Cardiovascular risk factors in adult survivors of pediatric cancer–a report from the childhood cancer survivor study. Cancer Epidemiol Biomarkers Prev. 2010 Jan;19(1):170–181.
  • Gibson TM, Li Z, Green DM, et al. Blood Pressure Status in Adult Survivors of Childhood Cancer: a Report from the St. Jude Lifetime Cohort Study. Cancer Epidemiol Biomarkers Prev. 2017 Dec;26(12):1705–1713.
  • Karlage RE, Wilson CL, Zhang N, et al. Validity of anthropometric measurements for characterizing obesity among adult survivors of childhood cancer: a report from the St. Jude Lifetime Cohort Study. Cancer. 2015;121(12):2036–2043.
  • Garmey EG, Liu Q, Sklar CA, et al. Longitudinal changes in obesity and body mass index among adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2008;26(28):4639–4645.
  • Leahy J, Spahis S, Bonneil E, et al. Insight from mitochondrial functions and proteomics to understand cardiometabolic disorders in survivors of acute lymphoblastic leukemia. Metabolism. 2018;85:151–160.
  • Hiensch AE, Bolam KA, Mijwel S, et al. Doxorubicin-induced skeletal muscle atrophy: elucidating the underlying molecular pathways. Acta Physiol (Oxf). 2020;229(2):1–18.
  • Gilliam LA, Moylan JS, Callahan LA, et al. Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy. Muscle Nerve. 2011;43(1):94–102.
  • Baker KS, Chow EJ, Goodman PJ, et al. Impact of treatment exposures on cardiovascular risk and insulin resistance in childhood cancer survivors. Cancer Epidemiol Biomarkers Prev. 2013;22(11):1954–1963.
  • Williams HE, Howell CR, Chemaitilly W, et al. Diabetes mellitus among adult survivors of childhood acute lymphoblastic leukemia: a report from the St. Jude Lifetime Cohort Study. Cancer. 2020;126(4):870–878.
  • Levy E, Samoilenko M, Morel S, et al. Cardiometabolic risk factors in childhood, adolescent and young adult survivors of acute lymphoblastic leukemia - a petale cohort. Sci Rep. 2017;7(1):17684.
  • Mertens AC, Yasui Y, Liu Y, et al. Pulmonary complications in survivors of childhood and adolescent cancer. A report from the childhood cancer survivor study. Cancer. 2002;95(11):2431–2441.
  • Mulrooney DA, Hyun G, Ness KK, et al. The changing burden of long-term health outcomes in survivors of childhood acute lymphoblastic leukaemia: a retrospective analysis of the St Jude Lifetime Cohort Study. Lancet Haematol. 2019;6(6):e306–16.
  • Jacola LM, Krull KR, Pui CH, et al. Longitudinal assessment of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated on a contemporary chemotherapy protocol. J Clin Oncol. 2016;34(11):1239–1247.
  • Marjerrison S, Hendershot E, Empringham B, et al. Smoking, binge drinking, and drug use among childhood cancer survivors: a meta-analysis. Pediatr Blood Cancer. 2016;63(7):1254–1263.
  • Robien K, Ness KK, Klesges LM, et al. Poor adherence to dietary guidelines among adult survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2008;30(11):815–822.
  • Salchow J, Mann J, Koch B, et al. Comprehensive assessments and related interventions to enhance the long-term outcomes of child, adolescent and young adult cancer survivors - presentation of the CARE for CAYA-Program study protocol and associated literature review. BMC Cancer. 2020;20(1):16.
  • Hall SE, Smuder AJ, Hayward R. Effects of Calorie Restriction and Voluntary Exercise on Doxorubicin-Induced Cardiotoxicity. Integr Cancer Ther. 2019;18:1534735419843999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.