481
Views
1
CrossRef citations to date
0
Altmetric
Review

New and developing pharmacotherapies for hypertension

, , , , , & show all
Pages 647-666 | Received 04 Apr 2022, Accepted 20 Jul 2022, Published online: 03 Aug 2022

References

  • Ferdinand KC, Harrison D, and Johnson A. The NEW-HOPE study and emerging therapies for difficult-to-control and resistant hypertension. Prog Cardiovasc Dis. 2020;63(1):64–73.
  • Brouwers S, Sudano I, Kokubo Y, et al. Arterial hypertension. Lancet. 2021;398(10296):249–261.
  • Egan BM, Li J, Sutherland SE, et al. Hypertension control in the United States 2009 to 2018: factors underlying falling control rates during 2015 to 2018 across age- and race-ethnicity groups. Hypertension. 2021;78(3):578–587.
  • Bhudia RP. Treatment of the hypertensive patient in 2030. J Hum Hypertens. 2021;35(9):818–820.
  • Nagai M, Dote K. Treatment-resistant hypertension assessed by home blood pressure monitoring: a new target for intervention?. Hypertens Res. 2022;45(1):167–169.
  • Kario K. The Sacubitril/Valsartan, a First-in-Class, angiotensin receptor neprilysin inhibitor (ARNI): potential uses in hypertension, heart failure, and beyond. Curr Cardiol Rep. 2018;20(1):5.
  • Wehland M, Simonsen U, Buus NH, et al. An evaluation of the fixed-dose combination sacubitril/valsartan for the treatment of arterial hypertension. Expert Opin Pharmacother. 2020;21(10):1133–1143.
  • Ruiz-Hurtado G, Ruilope LM. Advantages of sacubitril/valsartan beyond blood pressure control in arterial hypertension. Eur Heart J. 2017;38(44):3318–3320.
  • Ruilope LM, Dukat A, Böhm M, et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375(9722):1255–1266.
  • Hunter PG, Chapman FA, Dhaun N. Hypertension: Current trends and future perspectives. Br J Clin Pharmacol. 2021;87(10):3721–3736.
  • Galo J, Celli D, Colombo R. Effect of Sacubitril/Valsartan on neurocognitive function: current status and future directions. Am J Cardiovasc Drugs. 2021;21(3):267–270.
  • Wang TD, Tan RS, Lee HY, et al. Effects of Sacubitril/Valsartan (LCZ696) on natriuresis, diuresis, blood pressures, and NT-proBNP in salt-sensitive hypertension. Hypertension. 2017;69(1):32–41.
  • Williams B, Cockcroft JR, and Kario K, et al, Effects of Sacubitril/Valsartan Versus olmesartan on central hemodynamics in the elderly with systolic hypertension: The Parameter Study. Hypertension. 2017 .69(3): 411–420.
  • Rakugi H, Kario K, Yamaguchi M, et al. Efficacy of sacubitril/valsartan versus olmesartan in Japanese patients with essential hypertension: a randomized, double-blind, multicenter study. Hypertens Res. 2022 Jan 21;45(5):824–833.
  • Jackson AM, Jhund PS, Anand IS, et al. Sacubitril-valsartan as a treatment for apparent resistant hypertension in patients with heart failure and preserved ejection fraction. Eur Heart J. 2021;42(36):3741–3752.
  • Schmieder RE, Wagner F, Mayr M, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38(44):3308–3317.
  • Cheung DG, Aizenberg D, Gorbunov V, et al. Efficacy and safety of sacubitril/valsartan in patients with essential hypertension uncontrolled by olmesartan: A randomized, double-blind, 8-week study. J Clin Hypertens (Greenwich). 2018;20(1):150–158.
  • Supasyndh O, Wang J, Hafeez K, et al. Efficacy and safety of Sacubitril/Valsartan (LCZ696) compared with olmesartan in elderly asian patients (≥65 Years) with systolic hypertension. Am J Hypertens. 2017;30(12):1163–1169.
  • Ohishi M. Sacubitril/valsartan-A new weapon for fighting the hypertension paradox. Hypertens Res. 2022 Mar 10;45(5):915–916.
  • Bernardez-Pereira S, Ramires FJA, de Melo RFT, et al. Was the enalapril dose too low in the PARADIGM-HF Trial?. Cardiol Rev. 2018;26(4):196–200.
  • Bottino LG, Fuchs FD. The role of angiotensin receptor blockers in CVD risk management. Expert Rev Cardiovasc Ther. 2020;18(4):181–185.
  • Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97.
  • Eguchi S, Kawai T, Scalia R, et al. Understanding angiotensin II type 1 receptor signaling in vascular pathophysiology. Hypertension. 2018;71(5):804–810.
  • Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17(2):116–129.
  • Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–792.
  • Hemnes AR, Rathinasabapathy A, Austin EA, et al. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J. 2018;51(6):1702638.
  • Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234.
  • Goulter AB, Goddard MJ, Allen JC, et al. ACE2 gene expression is up-regulated in the human failing heart. BMC Med. 2004;2(1):19.
  • Burrell LM, Risvanis J, Kubota E, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J. 2005;26(4):369–375.
  • Kittleson MM, Minhas KM, Irizarry RA, et al. Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics. 2005;21(3):299–307.
  • Roig E, Perez-Villa F, Morales M, et al. Clinical implications of increased plasma angiotensin II despite ACE inhibitor therapy in patients with congestive heart failure. Eur Heart J. 2000;21(1):53–57.
  • Touyz RM, Montezano AC. Angiotensin-(1-7) and vascular function: the clinical context. Hypertension. 2018;71(1):68–69.
  • Reaux A, Iturrioz X, Vazeux G, et al. Aminopeptidase A, which generates one of the main effector peptides of the brain renin-angiotensin system, angiotensin III, has a key role in central control of arterial blood pressure. Biochem Soc Trans. 2000;28(4):435–440.
  • Fournie-Zaluski M-C, Fassot C, Valentin B, et al. Brain renin angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci U S A. 2004;101(20):7775–7778.
  • Keck M, De Almeida H, Compère D, et al. NI956/QGC006, a potent orally active, brain penetrating aminopeptidase A inhibitor for treating hypertension. Hypertension. 2019;73(6):1300–1307.
  • Gupta R, Alcantara R, Popli T, et al. Firibastat: a novel brain aminopeptidase inhibitor- a new era of antihypertensive therapy. Curr Probl Cardiol2021100859.
  • Marc Y, Hmazzou R, Balavoine F, et al. Central antihypertensive effects of chronic treatment with RB150: an orally active aminopeptidase A inhibitor in deoxycorticosterone acetate-salt rats. J Hypertens. 2018;36(3):641–650.
  • Bodineau L, Frugiere A, Marc Y, et al. Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension. 2008;51(5):1318–1325.
  • Marc Y, Gao J, Balavoine F, et al. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension. 2012;60(2):411–418.
  • Ferdinand KC, Balavoine F, Besse B, et al, Efficacy and Safety of Firibastat, A First-in-Class Brain Aminopeptidase A Inhibitor, in Hypertensive Overweight Patients of Multiple Ethnic Origins. Circulation. 2019. 140(2): 138–146.
  • Balavoine F, Azizi M, Bergerot D, et al. Randomised, double-blind, placebo-controlled, dose-escalating phase I study of QGC001, a centrally acting aminopeptidase a inhibitor prodrug. Clin Pharmacokinet. 2014;53(4):385–395.
  • Marc Y, Boitard SE, Balavoine F, et al. Targeting brain aminopeptidase A: a new strategy for the treatment of hypertension and heart failure. Can J Cardiol. 2020;36(5):721–731.
  • Azizi M, Courand PY, Denolle T, et al. A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension. J Hypertens. 2019;37(8):1722–1728.
  • Makani H, Bangalore S, Desouza KA, et al Efficacy and safety of dual blockade of the renin-angiotensin system: meta-analysis of randomised trials. BMJ. 2013;346(jan28 1):f360.
  • Morgan ES, Tami Y, Hu K, et al. Antisense Inhibition of Angiotensinogen With IONIS-AGT-LRx: Results of Phase 1 and Phase 2 Studies. JACC Basic Transl Sci. 2021;6(6):485–496.
  • Bakris G, Yang YF, Pitt B. Mineralocorticoid receptor antagonists for hypertension management in advanced chronic kidney disease: BLOCK-CKD trial. Hypertension. 2020;76(1):144–149.
  • Pitt B, Jaisser F, Bakris G. An evaluation of KBP-5074 in advanced chronic kidney disease with uncontrolled hypertension. Expert Opin Investig Drugs. 2021;30(10):1017–1023.
  • Parthasarathy HK, Ménard J, White WB, et al. A double-blind, randomized study comparing the antihypertensive effect of eplerenone and spironolactone in patients with hypertension and evidence of primary aldosteronism. J Hypertens. 2011;29(5):980–990.
  • Agarwal R, Kolkhof P, Bakris G, et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021;42(2):152–161.
  • Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022;43(6):474–484. FIDELIO-DKD and FIGARO-DKD investigators.
  • Bakris GL, Agarwal R, Anker SD, et al. FIDELIO-DKD Investigators. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–2229.
  • Duggan S. Esaxerenone: first global approval. Drugs. 2019;79(4):477–481.
  • Ito S, Itoh H, Rakugi H, et al. Double-Blind randomized phase 3 study comparing esaxerenone (CS-3150) and eplerenone in patients with essential hypertension (ESAX-HTN Study). Hypertension. 2020;75(1):51–58.
  • Rakugi H, Ito S, Itoh H, et al. Long-term phase 3 study of esaxerenone as mono or combination therapy with other antihypertensive drugs in patients with essential hypertension. Hypertens Res. 2019;42(12):1932–1941.
  • Itoh H, Ito S, Rakugi H, et al. Efficacy and safety of dosage-escalation of low-dosage esaxerenone added to a RAS inhibitor in hypertensive patients with type 2 diabetes and albuminuria: a single-arm, open-label study. Hypertens Res. 2019;42(10):1572–1581.
  • Satoh F, Ito S, Itoh H, et al. Efficacy and safety of esaxerenone (CS-3150), a newly available nonsteroidal mineralocorticoid receptor blocker, in hypertensive patients with primary aldosteronism. Hypertens Res. 2021;44(4):464–472.
  • Morimoto S, Ichihara A. Efficacy of esaxerenone-a nonsteroidal mineralocorticoid receptor blocker-on nocturnal hypertension. Hypertens Res. 2022;45(2):376–377.
  • Ishikawa T, Morimoto S, Ichihara A. Effects of mineralocorticoid receptor antagonists on sex hormones and body composition in patients with primary aldosteronism. Hypertens Res. 2022;45(3):496–506.
  • BLOCK-CKD Study Group, Bakris G, Pergola PE, Delgado B, et al. Effect of KBP-5074 on blood pressure in advanced chronic kidney disease: results of the BLOCK-CKD Study. Hypertension. 2021 Jul;78(1):74–81.
  • Schiffrin EL. Endothelin and endothelin antagonists in hypertension. J Hypertens. 1998;16(12 Pt 2):1891–1895.
  • Rautureau Y, Schiffrin EL. Endothelin in hypertension: an update. Curr Opin Nephrol Hypertens. 2012;21(2):128–136.
  • Iglarz M, Clozel M. At the heart of tissue: endothelin system and end-organ damage. Clin Sci (Lond). 2010;119(11):453–463.
  • Angeli F, Verdecchia P, Reboldi GA. A dual endothelin receptor antagonist under development for the treatment of resistant hypertension. Cardiol Ther. 2021;10(2):397–406.
  • Chen Y, Luo J, Chen J, et al. The transition from ambrisentan to macitentan in patients with pulmonary arterial hypertension: A Real-world Prospective Study. Front Pharmacol. 2022;12:811700.
  • Schiffrin EL. Endothelin and endothelin antagonists in hypertension. J Hypertens. 1998;16(12 Pt 2):1891–1895.
  • Krum H, Viskoper RJ, Lacourciere Y, et al. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. Bosentan Hypertension Investigators. N Engl J Med. 1998;338(12):784–790.
  • Black HR, Bakris GL, Weber MA, et al. Efficacy and safety of darusentan in patients with resistant hypertension: results from a randomized, double-blind, placebo-controlled dose-ranging study. J Clin Hypertens (Greenwich). 2007;9(10):760–769.
  • Weber MA, Black H, Bakris G, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9699):1423–1431.
  • Verweij P, Danaietash P, and Flamion B, et al, Randomized Dose-Response Study of the new dual endothelin receptor antagonist aprocitentan in hypertension. Hypertension. 2020. 75(4): 956–965.
  • Trachtman H, Nelson P, Adler S, et al. DUET: A Phase 2 Study evaluating the efficacy and safety of sparsentan in patients with FSGS. J Am Soc Nephrol. 2018;29(11):2745–2754.
  • Komers R, Diva U, Inrig JK, et al. Study design of the phase 3 sparsentan versus irbesartan (DUPLEX) Study in patients with focal segmental glomerulosclerosis. Kidney Int Rep. 2020;5(4):494–502.
  • Ataei Ataabadi E, Golshiri K, Jüttner A, et al. Nitric oxide-cGMP signaling in hypertension. Current Future Options Pharmacotherapy Hypertension. 2020;76(4): 1055–1068
  • Sandner P, Follmann M, Becker-Pelster E, et al. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol. 2021 Oct 2. DOI:10.1111/bph.15698
  • Chrysant SG. A novel approach for the treatment of hypertension with the soluble guanylate cyclase stimulating drug. Expert Opin Drug Saf. 2021;20(6):635–640.
  • Hanrahan JP, Seferovic JP, Wakefield JD, et al. An exploratory, randomised, placebo-controlled, 14 day trial of the soluble guanylate cyclase stimulator praliciguat in participants with type 2 diabetes and hypertension. Diabetologia. 2020;63(4):733–743.
  • Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327–338.
  • Bakris GL, Fonseca VA, Sharma K, et al. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int. 2009;75(12):1272–1277.
  • Rahmoune H, Thompson PW, Ward JM, et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005;54(12):3427–3434.
  • Wilcox CS. Antihypertensive and renal mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) inhibitors. Hypertension. 2020;75(4):894–901.
  • Packer M, Anker SD, Butler J, et al. EMPEROR-reduced trial investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15): 1413–1424
  • Anker SD, Butler J, Filippatos G, et al. EMPEROR-preserved trial investigators. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–1461.
  • Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(21):2099.
  • Wiviott SD, Raz I, Bonaca MP, et al. DECLARE–TIMI 58 investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357.
  • McMurray JJV, Solomon SD, Inzucchi SE, et al. DAPA-HF trial committees and investigators. dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.
  • Ye N, Jardine MJ, Oshima M, et al. Blood pressure effects of canagliflozin and clinical outcomes in type 2 diabetes and chronic kidney disease: insights From the CREDENCE trial. Circulation. 2021;143(18):1735–1749.
  • Tikkanen I, Narko K, Zeller C, et al. EMPA-REG BP Investigators. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–428.
  • Ferreira JP, Fitchett D, Ofstad AP, et al. Empagliflozin for patients with presumed resistant hypertension: a post hoc analysis of the EMPA-REG OUTCOME trial. Am J Hypertens. 2020;33(12):1092–1101.
  • Kario K, Okada K, Kato M, et al. 24-Hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA Study. Circulation. 2018;139(18):2089–2097.
  • Ferdinand KC, Izzo JL, Lee J, et al. Antihyperglycemic and blood pressure effects of empagliflozin in black patients with type 2 diabetes mellitus and hypertension. Circulation. 2019;139(18):2098–2109.
  • Kario K, Ferdinand KC, O’Keefe JH. Control of 24-hour blood pressure with SGLT2 inhibitors to prevent cardiovascular disease. Prog Cardiovasc Dis. 2020;63(3):249–262.
  • Cheng HM, Chuang SY, Wang TD, et al. Central blood pressure for the management of hypertension: is it a practical clinical tool in current practice?. J Clin Hypertens (Greenwich). 2020;22(3):391–406.
  • Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation. 2017;136(12):1167–1169.
  • Bosch A, Ott C, Jung S, et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44.
  • Chilton R, Tikkanen I, Hehnke U, et al. Impact of empagliflozin on blood pressure in dipper and non-dipper patients with type 2 diabetes mellitus and hypertension. Diabetes Obes Metab. 2017;19(11):1620–1624.
  • Goud A, Zhong J, Peters M, et al. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016;18(2):16.
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. LEADER steering committee; LEADER trial investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–322.
  • Marso SP, Bain SC, Consoli A, et al. SUSTAIN-6 Investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844.
  • EXSCEL Study Group, Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–1239.
  • Okerson T, Yan P, Stonehouse A, et al. Effects of exenatide on systolic blood pressure in subjects with type 2 diabetes. Am J Hypertens. 2010;23(3):334–339.
  • Sun F, Wu S, Guo S, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Res Clin Pract. 2015;110(1):26–37.
  • Li C, Luo J, Jiang M, et al. The efficacy and safety of the combination therapy with GLP-1 receptor agonists and SGLT-2 inhibitors in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Pharmacol. 2022;13:838277.
  • Ferdinand KC, White WB, Calhoun DA, et al. Effects of the once-weekly glucagon-like peptide-1 receptor agonist dulaglutide on ambulatory blood pressure and heart rate in patients with type 2 diabetes mellitus. Hypertension. 2014;64(4):731–737.
  • Berra C, Manfrini R, Regazzoli D, et al. Blood pressure control in type 2 diabetes mellitus with arterial hypertension. The important ancillary role of SGLT2-inhibitors and GLP1-receptor agonists. Pharmacol Res. 2020;160:105052.
  • Nyström T, Gonon AT, Sjöholm A, et al. Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept. 2005;125(1–3):173–177.
  • Schlatter P, Beglinger C, Drewe J, et al. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells. Regul Pept. 2007;141(1–3):120–128.
  • Moreno C, Mistry M, Roman RJ. Renal effects of glucagon-like peptide in rats. Eur J Pharmacol. 2002;434(3):163–167.
  • Gutzwiller JP, Tschopp S, Bock A, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab. 2004;89(6):3055–3061.
  • Muskiet MH, Smits MM, Morsink LM, et al. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes?. Nat Rev Nephrol. 2014 Feb;10(2):88–103.
  • Li CJ, Yu Q, Yu P, et al. Changes in liraglutide-induced body composition are related to modifications in plasma cardiac natriuretic peptides levels in obese type 2 diabetic patients. Cardiovasc Diabetol. 2014;13:36.
  • Kim M, Platt MJ, Shibasaki T, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19(5):567–575.
  • Liakos CI, Papadopoulos DP, Sanidas EA, et al. Blood pressure-lowering effect of newer antihyperglycemic agents (SGLT-2 inhibitors, GLP-1 receptor agonists, and DPP-4 inhibitors). Am J Cardiovasc Drugs. 2021;21(2):123–137.
  • Look AHEAD Research Group, Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34(7):1481–1486.
  • Puglisi S, Rossini A, Poli R, et al. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol (Lausanne). 2021;12:738848.
  • Skov J, Dejgaard A, Frøkiær J, et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab. 2013Apr;984:E664–71. Epub 2013 Mar 5. PMID: 23463656
  • ESC Scientific Document Group, Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.
  • Mahmoodpoor F, Rahbar Saadat Y, Barzegari A, et al. The impact of gut microbiota on kidney function and pathogenesis. Biomed Pharmacother. 2017;93:412–419.
  • Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–8803.
  • Li F, Wang M, Wang J, et al. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 2019;9:206.
  • Cavalcanti Neto MP, Aquino JS, da Silva Lf R, et al. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?. Pharmacol Res. 2018;130:152–163.
  • Avolio E, Gualtieri P, Romano L, et al. Obesity and body composition in man and woman: associated diseases and the new role of gut microbiota. Curr Med Chem. 2020;27(2):216–229.
  • De Filippis A, Ullah H, Baldi A, et al. Gastrointestinal disorders and metabolic syndrome: dysbiosis as a key link and common bioactive dietary components useful for their treatment. Int J Mol Sci. 2020;21(14):4929.
  • Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021.
  • Reid G, Gadir AA, Dhir R. Probiotics: reiterating what they are and what they are not. Front Microbiol. 2019;10:424.
  • Wegh CAM, Geerlings SY, Knol J, et al. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci. 2019;20(19):4673.
  • Xue Y, Cui L, Qi J, et al. The effect of dietary fiber (oat bran) supplement on blood pressure in patients with essential hypertension: A randomized controlled trial. Nutr Metab Cardiovasc Dis. 2021;31(8):2458–2470.
  • Lavefve L, Marasini D, Carbonero F. Microbial ecology of fermented vegetables and non-alcoholic drinks and current knowledge on their impact on human health. Adv Food Nutr Res. 2019;87:147–185.
  • Lau E, Neves JS, Ferreira-Magalhães M, et al. Probiotic ingestion, obesity, and metabolic-related disorders: results from NHANES, 1999-2014. Nutrients. 2019;11(7):1482.
  • Azizi NF, Kumar MR, Yeap SK, et al. Kefir and its biological activities. Foods. 2021;10(6):1210.
  • Vasquez EC, Aires R, Ton AMM, et al. New insights on the beneficial effects of the probiotic Kefir on vascular dysfunction in cardiovascular and neurodegenerative diseases. Curr Pharm Des. 2020;26(30):3700–3710.
  • Pimenta FS, Luaces-Regueira M, Ton AM, et al. Mechanisms of action of Kefir in chronic cardiovascular and metabolic diseases. Cell Physiol Biochem. 2018;48(5):1901–1914.
  • Sipola M, Finckenberg P, Santisteban J, et al. Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J Phys Pharm. 2001;52. 745–754.
  • Seppo L, Kerojoki O, Suomalainen T, et al. The effect of a Lactobacillus helveticus LBK-16 H fermented milk on hypertension: a pilot study on humans. Milchwissenschaft. 2002;57:124–127.
  • Jiang X, Li X, Zhu C, et al. The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr. 2019;59(6):921–946.
  • Louis-Jean S, Martirosyan D. Nutritionally attenuating the human gut microbiome to prevent and manage metabolic syndrome. J Agric Food Chem. 2019;67(46):12675–12684.
  • Coates AM, Hill AM, Tan SY. Nuts and Cardiovascular Disease Prevention. Curr Atheroscler Rep. 2018;20(10):48.
  • Shah RD, Tang ZZ, Chen G, et al. Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner. Nutr Metab Cardiovasc Dis. 2020;30(9):1500–1511.
  • Mullins AP, Arjmandi BH. Health benefits of plant-based nutrition: focus on beans in cardiometabolic diseases. Nutrients. 2021;13(2):519.
  • Marques FZ, Nelson E, Chu PY, et al. High-Fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–977.
  • Li J, Sun F, Guo Y, et al. High-Salt diet gets involved in gastrointestinal diseases through the reshaping of gastroenterological milieu. Digestion. 2019;99(4):267–274.
  • Blaženović I, Oh YT, Li F, et al. Effects of gut bacteria depletion and High-Na+ and Low-K+ intake on circulating levels of biogenic amines. Mol Nutr Food Res. 2019;63(4):e1801184.
  • Coutinho-Wolino KS, Cardozo de F, Lfm DOLV, et al. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far?. Eur J Nutr. 2021;60(7):3567–3584.
  • Juul F, Vaidean G, Parekh N. Ultra-processed foods and cardiovascular diseases: potential mechanisms of action. Adv Nutr. 2021;12(5):1673–1680.
  • Cavalcante RGS, de Albuquerque TMR, de Luna Freire MO, et al. The probiotic lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Nutr Metab Cardiovasc Dis. 2019;29(12):1408–1417.
  • Wan Y, Jiang J, Lu M, et al. Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes. 2020;11(5):1438–1449.
  • de Oliveira Y, Cavalcante RGS, Cavalcanti Neto MP, et al. Oral administration of Lactobacillus fermentum post-weaning improves the lipid profile and autonomic dysfunction in rat offspring exposed to maternal dyslipidemia. Food Funct. 2020;11(6):5581–5594.
  • Guimarães KSL, Braga VA, Noronha SISR, et al. Lactiplantibacillus plantarum WJL administration during pregnancy and lactation improves lipid profile, insulin sensitivity and gut microbiota diversity in dyslipidemic dams and protects male offspring against cardiovascular dysfunction in later life. Food Funct. 2020;11(10):8939–8950.
  • Hsu CN, Hou CY, Chan JYH, et al. Hypertension programmed by perinatal high-fat diet: effect of maternal gut microbiota-targeted therapy. Nutrients. 2019;11(12):2908.
  • Robles-Vera I, Toral M, de la Visitación N, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short-chain fatty acids. Mol Nutr Food Res. 2020;64(6):e1900616.
  • Robles-Vera I, de la Visitación N, Toral M, et al. Probiotic bifidobacterium breve prevents DOCA-salt hypertension. FASEB J. 2020;34(10):13626–13640.
  • Robles-Vera I, Toral M, de la Visitación N, et al. The probiotic lactobacillus fermentum prevents dysbiosis and vascular oxidative stress in rats with hypertension induced by chronic nitric oxide blockade. Mol Nutr Food Res. 2018;62(19):e1800298.
  • Daliri EB, Lee BH, Oh DH. Current perspectives on antihypertensive probiotics. Probiotics Antimicrob Proteins. 2017;9(2):91–101.
  • Vasquez EC, Pereira TMC, Peotta VA, et al. Probiotics as beneficial dietary supplements to prevent and treat cardiovascular diseases: uncovering their impact on oxidative stress. Oxid Med Cell Longev. 2019;2019:3086270.
  • Grylls A, Seidler K, Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed Pharmacother. 2021;137:111334.
  • Khan KU, Minhas MU, Badshah SF, et al. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022;291:120301.
  • van der Merwe J, Steenekamp J, Steyn D, et al. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics. 2020;12(5):393.
  • Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release. 2008;132(3):153–163.
  • Malaterre V, Ogorka J, Loggia N, et al. Oral osmotically driven systems: 30 years of development and clinical use. Eur J Pharm Biopharm. 2009;73(3):311–323.
  • Allo MA, Boquete C, Moretton MA, et al. Desarrollo de implantes subcutáneos de liberación controlada de Carvedilol para la reducción sostenida de la presión arterial en modelos experimentales de hipertensión arterial. Rev Argent Cardiol. 2020;88:126–131.
  • El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits. PLoS One. 2018;13(8):e0203405.
  • Amarachinta PR, Sharma G, Samed N, et al. Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J Nanobiotechnology. 2021 Apr 9 19(1):100.
  • Ahad A, Aqil M, Kohli K, et al. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012;8(2):237–249.
  • Liu D, Yu S, Zhu Z, et al. Controlled delivery of carvedilol nanosuspension from osmotic pump capsule: in vitro and in vivo evaluation. Int J Pharm. 2014;475(1–2):496–503.
  • Pardeshi CV, Rajput PV, Belgamwar VS, et al. Formulation, optimization and evaluation of spray-dried mucoadhesive microspheres as intranasal carriers for Valsartan. J Microencapsul. 2012;29(2):103–114.
  • Goo YT, Park SY, Chae BR, et al. Optimization of solid self-dispersing micelle for enhancing dissolution and oral bioavailability of valsartan using Box-Behnken design. Int J Pharm. 2020;585:119483.
  • Zhang Z, Gao F, Bu H, et al. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine. 2012;8(5):740–747.
  • AbuElfadl A, Boughdady M, Meshali M. New Peceol™/Span™ 60 Niosomes Coated with Chitosan for Candesartan Cilexetil: perspective increase in absolute bioavailability in rats. Int J Nanomedicine. 2021;16:5581–5601.
  • Teaima M, Abdelmonem R, Adel YA, et al. Transdermal delivery of telmisartan: formulation, in vitro, ex vivo. Iontophoretic Permeation Enhancement and Comparative Pharmacokinetic Study in Rats. Drug Des Devel Ther. 2021;15. 4603–4614.
  • Bajaj A, Rao MR, Pardeshi A, et al. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012;13(4):1331–1340.
  • Borba PA, Pinotti M, Andrade GR, et al. The effect of mechanical grinding on the formation, crystalline changes and dissolution behaviour of the inclusion complex of telmisartan and β-cyclodextrins. Carbohydr Polym. 2015;133:373–383.
  • Albash R, El-Nabarawi MA, Refai H, et al. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine. 2019;14:6555–6574.
  • Alsofany JM, Hamza MY, Abdelbary AA. Fabrication of Nanosuspension Directly Loaded Fast-Dissolving Films for Enhanced Oral Bioavailability of Olmesartan Medoxomil: In Vitro Characterization and Pharmacokinetic Evaluation in Healthy Human Volunteers. AAPS PharmSciTech. 2018;19(5):2118–2132.
  • Gorain B, Choudhury H, Kundu A, et al. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf B Biointerfaces. 2014;115:286–294.
  • Si S, Li H, Han X. Sustained release olmesartan medoxomil loaded PLGA nanoparticles with improved oral bioavailability to treat hypertension. J Drug Delivery Sci Technol. 2020;55:101422.
  • Qadri GR, Ahad A, Aqil M, et al. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. Artif Cells Nanomed Biotechnol. 2017;45(1):139–145.
  • Pechanova O, Barta A, Koneracka M, et al. Protective effects of nanoparticle-loaded aliskiren on cardiovascular system in spontaneously hypertensive rats. Molecules. 2019;24(15):2710.
  • Khan MA, Ansari MM, Arif ST, et al. Eplerenone nanocrystals engineered by controlled crystallization for enhanced oral bioavailability. Drug Deliv. 2021;28(1):2510–2524.
  • Pereira A, Gadad AP, Patil AS, et al. Development and bioavailability assessment of ramipril nanoparticle formulation. Indian J Pharm Educ Res. 2019;53(4):S587–S595.
  • Mady OY, Abulmeaty MMA, Donia AA, et al. Formulation and bioavailability of novel mucoadhesive buccal films for candesartan cilexetil in rats. Membranes (Basel). 2021;11(9):659.
  • Sosnik A, Seremeta KP, Imperiale JC, et al. Novel formulation and drug delivery strategies for the treatment of pediatric poverty-related diseases. Expert Opin Drug Deliv. 2012;9(3):303–323.
  • Moin A, Mohanty N, Tedla YG, et al. Under-recognition of pediatric hypertension diagnosis: examination of 1 year of visits to community health centers. J Clin Hypertens (Greenwich). 2021;23(2):257–264.
  • Buontempo F, Bernabeu E, Glisoni RJ, et al. Carvedilol stability in paediatric oral liquid formulations. Farm Hosp. 2010;34(6):293–297.
  • Wegmann M, Parola L, Bertera FM, et al. Novel carvedilol paediatric nanomicelle formulation: in-vitro characterization and in-vivo evaluation. J Pharm Pharmacol. 2017;69(5):544–553.
  • Sinnott SJ, Smeeth L, Williamson E, et al. Trends for prevalence and incidence of resistant hypertension: population based cohort study in the UK 1995-2015. BMJ. 2017;358:j3984.
  • Walsh JM, McDonald KM, Shojania KG, et al. Quality improvement strategies for hypertension management: a systematic review. Med Care. 2006;44(7):646–657.
  • Holder KK. Interventions to improve blood pressure control in patients with hypertension. Am Fam Physician. 2007;76(3):373–374.
  • Bourque G, Hiremath S. Rethinking resistant hypertension. J Clin Med. 2022;11(5):1455.
  • Gupta AK, Arshad S, Poulter NR. Compliance, safety, and effectiveness of fixed-dose combinations of antihypertensive agents: a meta-analysis. Hypertension. 2010;55(2):399–407.
  • Ribeiro CD, Resqueti VR, Lima Í, et al. Educational interventions for improving control of blood pressure in patients with hypertension: a systematic review protocol. BMJ Open. 2015;5(3):e006583.
  • Endorsed by the European Society of Hypertension (ESH) Working Group on Cardiovascular Pharmacotherapy and Adherence, Lane D, Lawson A, Burns A, et al. Nonadherence in hypertension: how to develop and implement chemical adherence testing. Hypertension. 2022;79(1):12–23.
  • Kario K. Management of hypertension in the digital era: small wearable monitoring devices for remote blood pressure monitoring. Hypertension. 2020;76(3):640–650.
  • Kitt J, Fox R, Tucker KL, et al. New approaches in hypertension management: a review of current and developing technologies and their potential impact on hypertension care. Curr Hypertens Rep. 2019;21(6):44.
  • Milani RV, Lavie CJ, Bober RM, et al. Improving hypertension control and patient engagement using digital tools. Am J Med. 2017;130(1):14–20.
  • Dudenbostel T, Siddiqui M, Gharpure N, et al. Refractory versus resistant hypertension: novel distinctive phenotypes. J Nat Sci. 2017;3(9):e430.
  • Verdecchia P, Cavallini C, Angeli F. Advances in the treatment strategies in hypertension: present and future. J Cardiovasc Dev Dis. 2022;9(3):72.
  • Guo J, Guo X, Sun Y, et al. Application of omics in hypertension and resistant hypertension. Hypertens Res. 2022 Mar 9;45(5):775–788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.