109
Views
0
CrossRef citations to date
0
Altmetric
Review

Managing Covid-19 in patients with heart failure: current status and future prospects

, , , , , & ORCID Icon show all
Pages 807-828 | Received 13 May 2022, Accepted 30 Sep 2022, Published online: 12 Oct 2022

References

  • Wu Y, Ho W, Huang Y, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet. 2020;395(10228):949–950.
  • Wang H, Paulson KR, Pease SA, et al. Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. Lancet. 2022;399(10334):1513–1536.
  • Yonas E, Alwi I, Pranata R, et al. Effect of heart failure on the outcome of COVID-19 - A meta-analysis and systematic review. Am J Emerg Med. 2021;46:204–211.
  • Xie Y, Xu E, Bowe B, et al. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–590.
  • Rossi GA, Sacco O, Mancino E, et al. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Infection. 2020;48(5):665–669.
  • Walls AC, Park YJ, Tortorici MA, et al. Function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6.
  • Astuti I, Srafil Y. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020;14(4):407–412.
  • Cascella M, Rajnik M, Aleem A, et al. Evaluation, and treatment of coronavirus (COVID-19) [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. [cited 2022 Jul 2]. Available from http://www.ncbi.nlm.nih.gov/books/NBK554776/
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.
  • Beyerstedt S, Casaro EB, Éb R. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905–919.
  • Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020; 369. m1966
  • Sokolski M, Trenson S, Sokolska JM, et al. Heart failure in COVID-19: the multicentre, multinational PCHF-COVICAV registry. ESC Heart Fail. 2021;8(6):4955–4967.
  • Alvarez-Garcia J, Lee S, Gupta A, et al. Prognostic impact of prior heart failure in patients hospitalized with COVID-19. J Am Coll Cardiol. 2020;76(20):2334–2348.
  • Tomasoni D, Inciardi RM, Lombardi CM, et al. Impact of heart failure on the clinical course and outcomes of patients hospitalized for COVID −19. Results of the Cardio-COVID-Italy multicentre study. Eur J Heart Fail. 2020;22(12):2238–2247.
  • Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810.
  • Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835.
  • Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848.
  • Akhmerov A, Marbán E. COVID-19 and the heart. Circ Res. 2020;126(10):1443–1455.
  • Long B, Carius BM, Chavez S, et al. Clinical update on COVID-19 for the emergency clinician: presentation and evaluation. Am J Emerg Med. 2022;54:46–57.
  • Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22(5):911–915.
  • Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–1285.
  • Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861–1862.
  • Albert CL, Carmona-Rubio AE, Weiss AJ, et al. The enemy within: sudden-onset reversible cardiogenic shock with biopsy-proven cardiac myocyte infection by severe acute respiratory syndrome coronavirus 2. Circulation. 2020;142(19):1865–1870.
  • Gauchotte G, Venard V, Segondy M, et al. SARS-Cov-2 fulminant myocarditis: an autopsy and histopathological case study. Int J Legal Med. 2021;135(2):577–581
  • Kesici S, Aykan HH, Orhan D, et al. Fulminant COVID-19-related myocarditis in an infant. Eur Heart J. 2020;41(31):3021.
  • Bulfamante GP, Perrucci GL, Falleni M, et al. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of covid-19 patients without clinical signs of cardiac involvement. Biomedicines. 2020;8(12):E626.
  • Adeghate EA, Eid N, Singh J. Mechanisms of COVID-19-induced heart failure: a short review. Heart Fail Rev. 2021;26(2):363–369.
  • Pellegrini D, Kawakami R, Guagliumi G, et al. Microthrombi as a major cause of cardiac injury in COVID-19: a pathologic study. Circulation. 2021;143:1031–1042.
  • Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411–417.
  • Fox SE, Li G, Akmatbekov A, et al. Unexpected features of cardiac pathology in COVID-19 infection. Circulation. 2020;142(11):1123–1125.
  • Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097–1100.
  • Zhang Y, Coats AJS, Zheng Z, et al. Management of heart failure patients with COVID −19: a joint position paper of the chinese heart failure association & national heart failure committee and the heart failure association of the european society of cardiology. Eur J Heart Fail. 2020;22(6):941–956.
  • Arévalos V, Ortega-Paz L, Rodríguez-Arias JJ, et al. Myocardial Injury in COVID-19 patients: association with inflammation, coagulopathy and in-hospital prognosis. J Clin Med. 2021;10(10):2096
  • Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818.
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034
  • Kumar A, Brar R, Wang P, et al. Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol. 1999;276(1):R265–276.
  • Joulin O, Petillot P, Labalette M, et al. Cytokine profile of human septic shock serum inducing cardiomyocyte contractile dysfunction. Physiol Res. 2007;56:291–297.
  • Kumar A, Thota V, Dee L, et al. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med. 1996;183(3):949–958.
  • Chen H, Wang C, Li J, et al. Chinese herbal formula, huayu tongbi fang, attenuates inflammatory proliferation of rat synoviocytes induced by IL-1β by regulating proliferation and differentiation of t lymphocytes. Evid Based Complement Alternat Med. 2020;2020:1706837.
  • Italia L, Tomasoni D, Bisegna S, et al. COVID-19 and heart failure: from epidemiology during the pandemic to myocardial injury, myocarditis, and heart failure sequelae. Front Cardiovasc Med. 2021;8:713560.
  • Takasu O, Gaut JP, Watanabe E, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187(5):509–517
  • Alvarez-Garcia J, Jaladanki S, Rivas-Lasarte M, et al. New heart failure diagnoses among patients hospitalized for COVID-19. J Am Coll Cardiol. 2021;77(17):2260–2262.
  • Bader F, Manla Y, Atallah B, et al. Heart failure and COVID-19. Heart Fail Rev. 2021;26(1):1–10.
  • Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–2371.
  • Rey JR, Caro-Codón J, Rosillo SO, et al. Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications. Eur J Heart Fail. 2020;22(12):2205–2215.
  • Greene SJ, Lautsch D, Yang L, et al. Prognostic interplay between covid-19 and heart failure with reduced ejection fraction. J Card Fail [Internet] 2022 [cited 2022 Jul 1];Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116978/
  • Szekely Y, Lichter Y, Taieb P, et al. Spectrum of cardiac manifestations in COVID-19. Circulation. 2020;142(4):342–353.
  • Hadzibegovic S, Lena A, Churchill TW, et al. Heart failure with preserved ejection fraction according to the HFA-PEFF score in COVID −19 patients: clinical correlates and echocardiographic findings. Eur J Heart Fail. 2021;23(11):1891–1902.
  • Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the heart failure association (HFA) of the European society of cardiology (ESC). Eur J Heart Fail. 2020;22(3):391–412.
  • Magoon R. Left-ventricular diastolic dysfunction in coronavirus disease: opening pandora’s box! Korean J Anesthesiol. 2021;74(6):557–558.
  • Freaney PM, Shah SJ, Khan SS. COVID-19 and heart failure with preserved ejection fraction. JAMA. 2020;324(15):1499–1500.
  • Wagdy K, Nagy S. EMPEROR-preserved: SGLT2 inhibitors breakthrough in the management of heart failure with preserved ejection fraction. Glob Cardiol Sci Pract. 2021;2021(3):e202117.
  • Chin JH, Lee EH, Kim WJ, et al. Positive end-expiratory pressure aggravates left ventricular diastolic relaxation further in patients with pre-existing relaxation abnormality. Br J Anaesth. 2013;111(3):368–373
  • Raman B, Bluemke DA, Lüscher TF, et al. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172.
  • Committee W, Gluckman TJ, Bhave NM, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of Covid-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of sars-COV-2 infection, and return to play: a report of the american college of cardiology solution set oversight committee. J Am Coll Cardiol. 2022;S0735-1097(22):1717–1756.
  • Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–862.
  • Hospitalized Adults: Therapeutic Management [Internet]. COVID-19 treatment guidelines [cited 2022 Mar 18];Available from: https://www.covid19treatmentguidelines.nih.gov/management/clinical-management/hospitalized-adults–therapeutic-management/
  • Nonhospitalized Adults: Therapeutic Management [Internet]. COVID-19 treatment guidelines [cited 2022 Mar 18];Available from: https://www.covid19treatmentguidelines.nih.gov/management/clinical-management/nonhospitalized-adults–therapeutic-management/
  • Therapeutics and COVID-19: living guideline [Internet]. [cited 2022 Mar 18];Available from: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-therapeutics-2022.2
  • Tchesnokov EP, Feng JY, Porter DP, et al. Mechanism of inhibition of ebola virus rna-dependent rna polymerase by remdesivir. Viruses. 2019;11(4):E326.
  • Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936.
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of covid-19 - final report. N Engl J Med. 2020;383(19):1813–1826.
  • Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA. 2020;324(11):1048–1057.
  • Humeniuk R, Mathias A, Cao H, et al. Safety, Tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19, in healthy subjects. Clin Transl Sci. 2020;13(5):896–906.
  • Rafaniello C, Ferrajolo C, Sullo MG, et al. Cardiac events potentially associated to remdesivir: an analysis from the european spontaneous adverse event reporting system. Pharmaceuticals (Basel). 2021;14(7):611.
  • Michaud V, Dow P, Rihani SBA, et al. Risk assessment of drug‐induced long QT syndrome for some COVID‐19 repurposed drugs. Clin Transl Sci. 2021;14:20.
  • Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe covid-19. N Engl J Med. 2020;382(24):2327–2336.
  • Mulangu S, Dodd LE, Davey RT, et al. A randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med. 2019;381(24):2293–2303.
  • Barkas F, Styla CP, Bechlioulis A, et al. Sinus bradycardia associated with remdesivir treatment in COVID-19: a case report and literature Review. J Cardiovasc Dev Dis. 2021;8(2):18.
  • Chow EJ, Maust B, Kazmier KM, et al. Sinus bradycardia in a pediatric patient treated with remdesivir for acute coronavirus disease 2019: a case report and a review of the literature. J Pediatric Infect Dis Soc. 2021;10(9):926–929.
  • Gubitosa JC, Kakar P, Gerula C, et al. Marked Sinus bradycardia associated with remdesivir in COVID-19: a Case and Literature Review. JACC case rep. 2020;2(14):2260–2264.
  • Sanchez-Codez MI, Rodriguez-Gonzalez M, Gutierrez-Rosa I. Severe sinus bradycardia associated with remdesivir in a child with severe SARS-CoV-2 infection. Eur J Pediatr. 2021;180(5):1627.
  • Selvaraj V, Bavishi C, Patel S, et al. Complete heart block associated with remdesivir in COVID-19: a case report. Eur Heart JCase Rep. 2021;5(7):ytab200.
  • Gowda RM, Khan IA, Wilbur SL, et al. Torsade de pointes: the clinical considerations. Int J Cardiol. 2004;96(1):1–6.
  • Rahman F, Al Rifai M, Blaha MJ, et al. Relation of diastolic blood pressure and coronary artery calcium to coronary events and outcomes (from the multi-ethnic study of atherosclerosis). Am J Cardiol. 2017;120(10):1797–1803.
  • Whitley R. Molnupiravir — a step toward orally bioavailable therapies for covid-19. N Engl J Med. 2022;386(6):592–593.
  • Jayk Bernal A, da Silva Mm G, Musungaie DB, et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N Engl J Med. 2021;386:NEJMoa2116044.
  • Arribas JR, Bhagani S, Lobo SM, et al. Randomized trial of molnupiravir or placebo in patients hospitalized with covid-19. NEJM Evid. 2021;1(2).
  • Fda G. Fact sheet for healthcare providers: emergency use authorization for lagevriotm (molnupiravir) capsules 2022.
  • Reina J, Iglesias C. Nirmatrelvir plus ritonavir (Paxlovid) a potent SARS-CoV-2 3CLpro protease inhibitor combination. Rev Esp Quimioter. 2022;35(3):236–240. reina21feb2022
  • Drewe J, Gutmann H, Fricker G, et al. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem Pharmacol. 1999;57(10):1147–1152.
  • Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19. N Engl J Med. 2022;386(15):1397–1408.
  • Ritonavir-Boosted Nirmatrelvir (Paxlovid) [Internet]. COVID-19 treatment guidelines [cited 2022 Mar 18];Available from: https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/ritonavir-boosted-nirmatrelvir–paxlovid-/
  • Zhou SF, Xue CC, Yu XQ, et al. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687–710.
  • Tse S, Mazzola N. Ivabradine (Corlanor) for heart failure: the first selective and specific if inhibitor. P T. 2015;40(12):810–814.
  • gov F. Fact sheet for healthcare providers: emergency use authorization for paxlovidtm 2021.
  • Katzenmaier S, Markert C, Riedel KD, et al. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using A limited sampling strategy. Clin Pharmacol Ther. 2011;90(5):666–673.
  • Stader F, Khoo S, Stoeckle M, et al. Stopping lopinavir/ritonavir in COVID-19 patients: duration of the drug interacting effect. J Antimicrob Chemother. 2020;75(10):3084–3086.
  • Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 1998;16(3–4):249–284.
  • Hirano T, Taga T, Yamasaki K, et al. Molecular cloning of the cDNAs for interleukin-6/B cell stimulatory factor 2 and its receptor. Ann N Y Acad Sci. 1989;557(1):167–178. discussion 178-180.
  • Naka T, Nishimoto N, Kishimoto T. The paradigm of IL-6: from basic science to medicine. Arthritis Res. 2002;4(3):S233–242.
  • McCarty D, Robinson A. Efficacy and safety of sarilumab in patients with active rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2018;10(3):61–67.
  • Brown MJ, Allazawi W, Kanoni S. Interleukin-6 receptor antagonists in critically Ill patients with covid-19. N Engl J Med. 2021;384(16):1491–1502.
  • Domingo P, Mur I, Mateo GM. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association between administration of il-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA. 2021;326(6):499–518.
  • Naksuk N, Lazar S, Peeraphatdit TB. Cardiac safety of off-label COVID-19 drug therapy: a review and proposed monitoring protocol. Eur Heart J Acute Cardiovasc Care. 2020;9(3):215–221.
  • Ptaszynska-Kopczynska K, Szpakowicz A, Marcinkiewicz-Siemion M, et al. Interleukin-6 signaling in patients with chronic heart failure treated with cardiac resynchronization therapy. Arch Med Sci. 2017;13:1069–1077.
  • Fontes JA, Rose NR, Čiháková D. The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine. 2015;74(1):62–68.
  • Yndestad A, Damås JK, Oie E, et al. Systemic inflammation in heart failure–the whys and wherefores. Heart Fail Rev. 2006;11(1):83–92.
  • Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91(11):988–998.
  • Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999;97(2):189–198.
  • Hirota H, Yoshida K, Kishimoto T, et al. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proceedings of the National Academy of Sciences of the United States of America. United States of America. 1995;92:4862.
  • Yamauchi-Takihara K, Kishimoto T. Cytokines and their receptors in cardiovascular diseases — role of gp130 signalling pathway in cardiac myocyte growth and maintenance. Int J Exp Pathol. 2000;81(1):1–16.
  • Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res. 2004;95(12):1140–1153.
  • Wollert KC, Taga T, Saito M, et al. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem. 1996;271(16):9535–9545.
  • Smart N, Mojet MH, Latchman DS, et al. IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc Res. 2006;69(1):164–177.
  • Kobara M, Noda K, Kitamura M, et al. Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc Res. 2010;87(3):424–430.
  • Su JH, Luo MY, Liang N, et al. Interleukin-6: a novel target for cardio-cerebrovascular diseases. Front Pharmacol. 2021;12:745061.
  • Castagné B, Viprey M, Martin J, et al. Cardiovascular safety of tocilizumab: a systematic review and network meta-analysis. PLOS ONE. 2019;14(8):e0220178.
  • Hashizume M, Yoshida H, Koike N, et al. Overproduced interleukin 6 decreases blood lipid levels via upregulation of very-low-density lipoprotein receptor. Ann Rheum Dis. 2010;69(4):741–746.
  • Fleischmann R, Genovese MC, Lin Y, et al. Long-term safety of sarilumab in rheumatoid arthritis: an integrated analysis with up to 7 years’ follow-up. Rheumatology (Oxford). 2020;59(2):292–302.
  • Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–862.
  • Seif F, Aazami H, Khoshmirsafa M, et al. JAK inhibition as a new treatment strategy for patients with COVID-19. Iaa. 2020;181:467–475.
  • Guimarães PO, Quirk D, Furtado RH, et al. Tofacitinib in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med. 2021;385(5):406–415.
  • Iastrebner M, Castro J, Espina EG, et al. Ruxolitinib in severe COVID-19: results of a multicenter, prospective, single arm, open-label clinical study to investigate the efficacy and safety of ruxolitinib in patients with COVID-19 and severe acute respiratory syndrome. Rev Fac Cien Med Univ Nac Cordoba. 2021;78(3):294–302.
  • Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020;146(1):137–146.e3.
  • Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407–1418
  • Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2021;384(9):795–807.
  • Kotyla PJ, Islam MA, Engelmann M. Clinical aspects of janus kinase (JAK) inhibitors in the cardiovascular system in patients with rheumatoid arthritis. Int J Mol Sci. 2020;21(19):E7390.
  • Wang K, Li B, Xie Y, et al. Statin rosuvastatin inhibits apoptosis of human coronary artery endothelial cells through upregulation of the JAK2/STAT3 signaling pathway. Mol Med Rep. 2020;22(3):2052–2062.
  • Liao YH, Xia N, Zhou SF, et al. IL-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J Am Coll Cardiol. 2012;59(4):420–429.
  • Charles Schoeman C, Wicker P, Mantecón MÁ G-G, et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin Arthritis Rheum. Internet] 2016 [cited 2022 Mar 24];Available from;46 261–271.
  • Mehta NN. Potential cardiovascular implications of Janus kinase inhibitors in immune mediated diseases. Cardiovasc Res. 2018;114(11):e81–3.
  • Charles‐Schoeman C, Fleischmann R, Davignon J, et al. Potential mechanisms leading to the abnormal lipid profile in patients with Rheumatoid arthritis versus healthy volunteers and reversal by Tofacitinib. Arthritis Rheumatol. 2015;67(3):616–625.
  • Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98.
  • Sholzberg M, Tang GH, Rahhal H, et al. Heparin for moderately Ill patients with covid-19. medRxiv. 2021; 2021.07.08.21259351.
  • Lamore SD, Kohnken RA, Peters MF, et al. Cardiovascular toxicity induced by kinase inhibitors: mechanisms and preclinical approaches. Chem Res Toxicol. 2020;33(1):125–136.
  • Gao C, Wang Y. Untangle A broken heart via janus kinase 1. Circ Res. 2017;121(6):589–590.
  • Liverpool COVID-19 Interactions [Internet]. [cited 2022 Mar 26];Available from: https://covid19-druginteractions.org/checker
  • Catapano AL, Papadopoulos N. The safety of therapeutic monoclonal antibodies: implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis. 2013;228(1):18–28.
  • Shanmugaraj B, Siriwattananon K, Wangkanont K, et al. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac J Allergy Immunol. 2020;38(1):10–18.
  • Renn A, Fu Y, Hu X, et al. Fruitful neutralizing antibody pipeline brings hope to defeat SARS-Cov-2. Trends Pharmacol Sci. 2020;41(11):815–829.
  • Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941–1950.
  • Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Effect of sotrovimab on hospitalization or death among high-risk patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2022;327(13):1236–1246.
  • Early Treatment for COVID-19 With Neutralizing Antibody Sotrovimab [Internet]. American college of cardiology [cited 2022 Jun 28];Available from: https://www.acc.org/latest-in-cardiology/journal-scans/2021/10/29/18/31/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2fjournal-scans%2f2021%2f10%2f29%2f18%2f31%2fearly-treatment-for-covid-19
  • Taylor PC, Adams AC, Hufford MM, et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol. 2021;21(6):382–393.
  • Razonable RR, Pawlowski C, O’Horo JC, et al. Casirivimab-Imdevimab treatment is associated with reduced rates of hospitalization among high-risk patients with mild to moderate coronavirus disease-19. EClinicalMedicine. 2021;40:101102.
  • Abani O, Abbas A, Abbas F, et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399:665–676.
  • Kumar M, Thangavel C, Becker RC, et al. Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers (Basel). 2021;13(1):86.
  • Jain V, Bahia J, Mohebtash M, et al. Cardiovascular complications associated with novel cancer immunotherapies. Curr Treat Options Cardiovasc Med. 2017;19(5):36.
  • Minasian L, Dimond E, Davis M, et al. The evolving design of nih-funded cardio-oncology studies to address cancer treatment-related cardiovascular toxicity. JACC CardioOncol. 2019;1(1):105–113.
  • Zaidi N, Jaffee EM. Immunotherapy transforms cancer treatment. J Clin Invest. 2019;129(1):46–47.
  • Saiki H, Petersen IA, Scott CG, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast Cancer. Circulation. 2017;135(15):1388–1396.
  • Upadhrasta S, Elias H, Patel K, et al. Managing cardiotoxicity associated with immune checkpoint inhibitors. Chronic Dis Transl Med. 2019;5(1):6–14.
  • Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147.
  • Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743–1746.
  • Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14.
  • Fauvel C, Weizman O, Trimaille A, et al. Pulmonary embolism in COVID-19 patients: a French multicentre cohort study. Eur Heart J. 2020;41(32):3058–3068.
  • Nopp S, Moik F, Jilma B, et al. Risk of venous thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Res Pract Thromb Haemost. 2020;4(7):1178–1191.
  • Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–150.
  • Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
  • The Task Force for the management of COVID-19 of the European Society of Cardiology. ESC guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 2—care pathways, treatment, and follow-up. Eur Heart J. 2022;43(11):1059–1103.
  • Gozzo L, Viale P, Longo L, et al. The potential role of heparin in patients with covid-19: beyond the anticoagulant effect. A Review Front Pharmacol. 2020;11:1307.
  • Mujib M, Rahman AAZ, Desai RV, et al. Warfarin use and outcomes in patients with advanced chronic systolic heart failure without atrial fibrillation, prior thromboembolic events, or prosthetic valves. Am J Cardiol. 2011;107(4):552–557.
  • Zeitler EP, Eapen ZJ. Anticoagulation in heart failure: a review. J Atr Fibrillation. 2015;8(1):1250.
  • Spyropoulos AC, Goldin M, Giannis D, et al. Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with covid-19: the hep-covid randomized clinical trial. JAMA Intern Med. 2021;181(12):1612–1620.
  • INSPIRATION Investigators. Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with covid-19 admitted to the intensive care unit: the inspiration randomized clinical trial. JAMA. 2021;325:1620–1630.
  • Sepehrvand N, Ezekowitz JA. Oxygen therapy in patients with acute heart failure: friend or foe? JACC Heart Fail. 2016;4(10):783–790.
  • Chapalamadugu KC, Panguluri SK, Bennett ES, et al. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation. Toxicol Appl Pharmacol. 2015;282(1):100–107.
  • Rajagopal K, Keller SP, Akkanti B, et al. Advanced pulmonary and cardiac support of COVID-19 patients: emerging recommendations from ASAIO-a living working document. Circ Heart Fail. 2020;13(5):e007175.
  • Poston JT, Patel BK, Davis AM. Management of critically Ill adults with COVID-19. JAMA. 2020;323(18):1839–1841.
  • Pattison N. End-of-life decisions and care in the midst of a global coronavirus (COVID-19) pandemic. Intensive Crit Care Nurs. 2020;58:102862.
  • World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020 [Internet]. World Health Organization; 2020 [cited 2022 Jun 28]. Available from: https://apps.who.int/iris/handle/10665/331446
  • Fried JA, Ramasubbu K, Bhatt R, et al. The variety of cardiovascular presentations of COVID-19. Circulation. 2020;141(23):1930–1936.
  • Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, et al. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther. 2021;19(3):345–357.
  • Radley G, Pieper IL, Ali S, et al. The inflammatory response to ventricular assist devices. Front Immunol. 2018;9:2651.
  • Chau VQ, Oliveros E, Mahmood K, et al. The Imperfect cytokine storm: severe COVID-19 with ARDS in a patient on durable LVAD support. JACC Case Rep. 2020;2(9):1315–1320.
  • SINGH R, Domenico C, SD RAO, et al. Novel coronavirus disease 2019 in a patient on durable left ventricular assist device support. J Card Fail. 2020;26(5):438–439.
  • Kilic A, Acker MA, Atluri P. Dealing with surgical left ventricular assist device complications. J Thorac Dis. 2015;7(12):2158–2164.
  • McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (ESC) with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J. 2021;42(36):3599–3726.
  • Zhang R, Chen H, Gao Z, et al. The effect of loop diuretics on 28-day mortality in patients with acute respiratory distress syndrome. Front Med. 2021;8:740675.
  • Guragai N, Vasudev R, Hosein K, et al. Does baseline diuretics use affect prognosis in patients with COVID-19? Cureus. 2021;13(6):e15573.
  • Santos JLF, Zanardi P, Alo V, et al. Pulmonary edema in COVID-19 treated with furosemide and negative fluid balance (NEGBAL): a different and promising approach. J Clin Med. 2021;10(23):5599.
  • Henrina J, Putra ICS, Gunawan HFH, et al. Recommendations of RAAS blockers use amidst the coronavirus pandemic. J. Cardiol. 2020;41:98–107.
  • Rubattu S, Gallo G, Volpe M. Sacubitril/valsartan: potential impact of ARNi “Beyond the Wall” of ACE2 on treatment and prognosis of heart failure patients with coronavirus disease-19. Front Cardiovasc Med. 2020;7:616564.
  • Grover A, Oberoi M. A systematic review and meta-analysis to evaluate the clinical outcomes in COVID-19 patients on angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Eur Heart J Cardiovasc Pharmacother. 2020;7(2): 148–157.
  • Singh R, Rathore SS, Khan H, et al. Mortality and Severity in COVID-19 patients on ACEIs and ARBs—A systematic review, meta-analysis, and meta-regression analysis. Front Med (Lausanne). 2022;8:703661.
  • Loader J, Taylor FC, Lampa E, et al. Renin‐angiotensin aldosterone system inhibitors and COVID‐19: a systematic review and meta‐analysis revealing critical bias across a body of observational research. J Am Heart Assoc. 2022;11(11):e025289.
  • Baral R, Tsampasian V, Debski M, et al. Association between renin-angiotensin-aldosterone system inhibitors and clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. JAMA Network Open. 2021;4(3):e213594.
  • Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020;41(19):1821–1829.
  • Celik T, Iyisoy A, Kardesoglu E, et al. The anti-inflammatory effects of nebivolol in human coronary smooth muscle cells: clinical implications. Int J Cardiol. 2009;133(3):415–416.
  • Yuan Z, Shioji K, Kihara Y, et al. Cardioprotective effects of carvedilol on acute autoimmune myocarditis: anti-inflammatory effects associated with antioxidant property. Am J Physiol Heart Circ Physiol. 2004;286(1):H83–90.
  • Mookerjee RP, Pavesi M, Thomsen KL, et al. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J Hepatol. 2016;64(3):574–582.
  • da Silva Ramos FJ, de Freitas FGR, Machado FR. Sepsis in patients hospitalized with coronavirus disease 2019: how often and how severe? Curr Opin Crit Care. 2021;27(5):474–479.
  • Liaudet L, Szabo C. Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease. Crit Care. 2020;24(1):318.
  • Belden Z, Deiuliis JA, Dobre M, et al. The role of the mineralocorticoid receptor in inflammation: focus on kidney and vasculature. Am J Nephrol. 2017;46(4):298–314.
  • Kotfis K, Lechowicz K, Drożdżal S, et al. COVID-19-the potential beneficial therapeutic effects of spironolactone during SARS-CoV-2 Infection. Pharmaceuticals (Basel). 2021;14(1):71.
  • O’Sullivan JS, Lyne A, Vaughan CJ. COVID-19-induced postural orthostatic tachycardia syndrome treated with ivabradine. BMJ Case Reports CP. 2021;14(6):e243585.
  • Cho J, Lee YJ, Kim JH, et al. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Rep. 2020;10(1):16200
  • Cakir BK, Bayraktar-Ekincioglu A, Demirkan K. Benefit versus toxicity risk of digoxin in patients with COVID-19. Eur J Hosp Pharm. 2021;0:1.
  • Koufakis T, Pavlidis AN, Metallidis S, et al. Sodium-glucose co-transporter 2 inhibitors in COVID-19: meeting at the crossroads between heart, diabetes and infectious diseases. Int J Clin Pharm. 2021;43(3):764–767.
  • Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–1424.
  • Spertus JA, Birmingham MC, Nassif M, et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med. 2022;28(4):809–813
  • Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–1446.
  • Daniele G, Xiong J, Solis-Herrera C, et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care [Internet]. 2016; [cited 2022 Jun 28] 39 Available from https://pubmed.ncbi.nlm.nih.gov/27561923/
  • Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1).
  • Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 2018;44(6):457–464.
  • Kim SR, Lee SG, Kim SH, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;11(1):2127.
  • Maayah ZH, Ferdaoussi M, Takahara S, et al. Empagliflozin suppresses inflammation and protects against acute septic renal injury. Inflammopharmacol. 2021;29(1):269–279.
  • Ghanim H, Abuaysheh S, Hejna J, et al. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020;105(4):dgaa057.
  • Ohara K, Masuda T, Morinari M, et al. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol Metab Syndr. 2020;12(1):37.
  • Cardoso R, Graffunder FP, Ternes CMP, et al. SGLT2 inhibitors decrease cardiovascular death and heart failure hospitalizations in patients with heart failure: a systematic review and meta-analysis. EClinicalMedicine. 2021;36:100933.
  • Kosiborod MN, Esterline R, Furtado RHM, et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021;9(9):586–594.
  • Vitale RJ, Valtis YK, McDonnell ME, et al. Euglycemic diabetic ketoacidosis with COVID-19 infection in patients with type 2 diabetes taking SGLT2 Inhibitors. AACE Clin Case Rep. 2021;7(1):10–13.
  • Huang S, Zhao S, Luo H, et al. The role of extracorporeal membrane oxygenation in critically ill patients with COVID-19: a narrative review. BMC Pulm Med. 2021;21(1):116.
  • Makdisi G, wen WI. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015;7(7):E166–76.
  • Hoyler MM, Flynn B, Iannacone EM, et al. Clinical management of venoarterial extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth. 2020;34:2776–2792.
  • Badulak J, Antonini MV, Stead CM, et al. Extracorporeal Membrane Oxygenation for COVID-19: updated 2021 Guidelines from the Extracorporeal Life Support Organization. ASAIO J. 2021;67(5):485–495.
  • Krieger J, Badulak J. The use of ecmo in patients with cardiopulmonary failure due to COVID-19. Internet. American College of Cardiology;cited 2022 Jul 2 Internet https://www.acc.org/latest-in-cardiology/articles/2020/08/03/12/44/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2farticles%2f2020%2f08%2f03%2f12%2f44%2fthe-use-of-ecmo-in-patients-with-cardiopulmonary-failure-due-to-covid-19.
  • MacLaren G, Fisher D, Brodie D. Preparing for the most critically ill patients with covid-19: the potential role of extracorporeal membrane oxygenation. JAMA. 2020;323(13):1245–1246.
  • Ramanathan K, Antognini D, Combes A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020;8(5):518–526
  • Zochios V, Brodie D, Charlesworth M, et al. Delivering extracorporeal membrane oxygenation for patients with COVID-19: what, who, when and how? Anaesthesia. 2020;75(8):997–1001.
  • Kimball PM, Flattery M, McDougan F, et al. Cellular immunity impaired among patients on left ventricular assist device for 6 months. Ann Thorac Surg. 2008;85(5):1656–1661.
  • Zakrzewski J, Coyle L, Aicher T, et al. Impact of COVID-19 on Patients Supported with a Left Ventricular Assist Device. ASAIO J. 2021;67(11):1189–1195.
  • Birati EY, Najjar SS, Tedford RJ, et al. Characteristics and outcomes of COVID-19 in patients on left ventricular assist device support. Circ Heart Fail. 2021;14(4):e007957.
  • Perico L, Benigni A, Casiraghi F, et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46–64.
  • Hilal T, Mudd J, DeLoughery TG. Hemostatic complications associated with ventricular assist devices. Res Pract Thromb Haemost. 2019;3(4):589–598.
  • Y Birati E, Jessup M. Left ventricular assist devices in the management of heart failure. Card Fail Rev. 2015;1(1):25–30.
  • Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020;17(9):1439–1444.
  • Adabag S, Zimmerman P, Black A, et al. Implantable cardioverter‐defibrillator shocks during COVID‐19 outbreak. J Am Heart Assoc. 2021;10(11):e019708.
  • Ducceschi V, de Divitiis M, Bianchi V, et al. Effects of COVID-19 lockdown on arrhythmias in patients with implantable cardioverter-defibrillators in southern Italy. J Arrhythm. 2022;38(3):439–445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.