872
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of serial cardiac biomarkers in prognostication and risk prediction of chronic heart failure: additional scientific insights with hemodynamic feedback

&
Pages 97-109 | Received 18 Nov 2022, Accepted 03 Feb 2023, Published online: 15 Feb 2023

References

  • Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovascular Research. 2022 Feb; p. 12.
  • Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016 Jun;13(6):368–378.
  • Cook C, Cole G, Asaria P, et al. The annual global economic burden of heart failure. Int J Cardiol. 2014 Feb 15;171(3):368–376.
  • Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: executive Summary: a Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 May 3;145(18):E876–E894.
  • Fonarow GC, Stevenson LW, Peacock WF, et al. Admission B-type natriuretic peptide levels in acute decompensated heart failure predict in-hospital mortality: an analysis of 48,629 hospitalizations in ADHERE. J Card Fail. 2005 Aug;11(6):S167–S167.
  • Doust JA, Pietrzak E, Dobson A, et al. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. Br Med J. 2005 Mar 19;330(7492):625–627.
  • Masson S, Latini R, Anand IS, et al. Direct comparison of B-Type natriuretic peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomatic heart failure: the valsartan heart failure (Val-HeFT) data. Clin Chem. 2006 Aug;52(8):1528–1538.
  • Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. New Engl J Med. 2004 Feb 12;350(7):655–663.
  • Aimo A, Januzzi JL Jr., Vergaro G, et al. Prognostic Value of High-Sensitivity Troponin T in Chronic Heart Failure: an Individual Patient Data Meta-Analysis. Circulation. 2018 Jan 16;137(3):286–297.
  • Aimo A, Vergaro G, Passino C, et al. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: a Meta-Analysis. JACC Heart Fail. 2017 Apr;5(4):280–286.
  • Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007 Sep 11;50(11):1054–1060.
  • French B, Wang L, Ky B, et al. Prognostic Value of Galectin-3 for Adverse Outcomes in Chronic Heart Failure. J Card Fail. 2016 Apr;22(4):256–262.
  • Imran TF, Shin HJ, Mathenge N, et al. Meta-Analysis of the Usefulness of Plasma Galectin-3 to Predict the Risk of Mortality in Patients With Heart Failure and in the General Population. Am J Cardiol. 2017 Jan 1;119(1):57–64.
  • Stevenson LW, Zile M, Bennett TD, et al. Chronic ambulatory intracardiac pressures and future heart failure events. Circ Heart Fail. 2010 Sep;3(5):580–587.
  • Brugts JJ, Radhoe SP, Aydin D, et al. Clinical Update of the Latest Evidence for CardioMEMS Pulmonary Artery Pressure Monitoring in Patients with Chronic Heart Failure: a Promising System for Remote Heart Failure Care. Sensors (Basel), Vol. 21. 2021. p. 7.
  • Metra M, Cotter G, Gheorghiade M, et al. The role of the kidney in heart failure. Eur Heart J. 2012 Sep;33(17):2135–+.
  • Mele D, Nardozza M, Ferrari R. Left ventricular ejection fraction and heart failure: an indissoluble marriage? Eur J Heart Fail. 2018 Mar;20(3):427–430.
  • Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017 Jan;14(1):30–38.
  • Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. 2016 Jan 1;130(2):57–77.
  • Metra M, Teerlink JR. Heart failure. Lancet. 2017 Oct 28;390(10106):1981–1995.
  • Francis GS, Benedict C, Johnstone DE, et al. Comparison of Neuroendocrine Activation in Patients with Left-Ventricular Dysfunction with and without Congestive-Heart-Failure - a Substudy of the Studies of Left-Ventricular Dysfunction (Solvd). Circulation. 1990 Nov;82(5):1724–1729.
  • Gardner RS, Ozalp F, Murday AJ, et al. N-terminal pro-brain natriuretic peptide - A new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J. 2003 Oct;24(19):1735–1743.
  • Hartmann F, Packer M, Coats AJS, et al. NT-proBNP in severe chronic heart failure: rationale, design and preliminary results of the COPERNICUS NT-proBNP substudy. Eur J Heart Fail. 2004 Mar 15;6(3):343–350.
  • Groenning BA, Raymond I, Hildebrandt PR, et al. Diagnostic and prognostic evaluation of left ventricular systolic heart failure by plasma N-terminal pro-brain natriuretic peptide concentrations in a large sample of the general population. Heart. 2004 Mar 1;90(3):297–303.
  • Savarese G, Musella F, D’Amore C, et al. Changes of Natriuretic Peptides Predict Hospital Admissions in Patients With Chronic Heart Failure A Meta-Analysis. Jacc-Heart Fail. 2014 Apr;2(2):148–158
  • Bettencourt P, Azevedo A, Pimenta J, et al. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004 Oct 12;110(15):2168–2174.
  • Mohebi R, Murphy S, Jackson L, et al. Biomarker prognostication across Universal Definition of Heart Failure stages. ESC Heart Fail. 2022 Dec;9(6):3876–3887.
  • Bracun V, van Essen B, Voors AA, et al. Insulin-like growth factor binding protein 7 (IGFBP7), a link between heart failure and senescence. Esc Heart Failure. 2022 Sep; p. 11.
  • Piatek K, Feuerstein A, Zach V, et al. Nitric oxide metabolites: associations with cardiovascular biomarkers and clinical parameters in patients with HFpEF. ESC Heart Fail. 2022 Dec;9(6):3961–3972.
  • Konev AA, Kharitonov AV, Rozov FN, et al. CT-IGFBP-4 as a novel prognostic biomarker in acute heart failure. ESC Heart Fail. 2020 Apr;7(2):434–444.
  • Zile MR, Claggett BL, Prescott MF, et al. Prognostic Implications of Changes in N-Terminal Pro-B-Type Natriuretic Peptide in Patients With Heart Failure. J Am Coll Cardiol. 2016 Dec 6;68(22):2425–2436.
  • Anand IS, Fisher LD, Chiang YT, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003 Mar 11;107(9):1278–1283.
  • Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002 May 21;105(20):2392–2397.
  • Seronde MF, Gayat E, Logeart D, et al. Comparison of the diagnostic and prognostic values of B-type and atrial-type natriuretic peptides in acute heart failure. Int J Cardiol. 2013 Oct 9;168(4):3404–3411.
  • von Haehling S, Jankowska EA, Morgenthaler NG, et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure. J Am Coll Cardiol. 2007 Nov 13;50(20):1973–1980.
  • Moertl D, Berger R, Struck J, et al. Comparison of Midregional Pro-Atrial and B-Type Natriuretic Peptides in Chronic Heart Failure Influencing Factors, Detection of Left Ventricular Systolic Dysfunction, and Prediction of Death. J Am Coll Cardiol. 2009 May 12;53(19):1783–1790.
  • von Haehling S, Filippatos GS, Papassotiriou J, et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010 May;12(5):484–491.
  • Adlbrecht C, Hulsmann M, Strunk G, et al. Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. Eur J Heart Fail. 2009 Apr;11(4):361–366.
  • Feng ZK, Akinrimisi OP, Gornbein JA, et al. Combination Biomarkers for Risk Stratification in Patients With Chronic Heart Failure Biomarkers Prognostication in HF. J Card Fail. 2021 Dec;27(12):1321–1327.
  • Peet C, Ivetic A, Bromage DI, et al. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res. 2020 May 1;116(6):1101–1112.
  • Chapman AR, Adamson PD, Mills NL. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart. 2017 Jan;103(1):10–18.
  • Bel MS, Soldevila JG, Llanos JO. Biological markers of myocardial necrosis. Rev Esp Cardiol. 2003 Jul;56(7):703–720.
  • McEvoy JW, Chen Y, Ndumele CE, et al. Six-Year Change in High-Sensitivity Cardiac Troponin T and Risk of Subsequent Coronary Heart Disease, Heart Failure, and Death. JAMA Cardiol. 2016 Aug 1;1(5):519–528.
  • Gravning J, Askevold ET, Nymo SH, et al. Prognostic effect of high-sensitive troponin T assessment in elderly patients with chronic heart failure: results from the Corona trial. Circ Heart Fail. 2014 Jan;7(1):96–103.
  • Myhre PL, O’Meara E, Claggett BL, et al. Cardiac Troponin I and Risk of Cardiac Events in Patients With Heart Failure and Preserved Ejection Fraction. Circ Heart Fail. 2018;Nov;11(11):e005312.
  • Yan I, Borschel CS, Neumann JT, et al. High-Sensitivity Cardiac Troponin I Levels and Prediction of Heart Failure: results From the BiomarCaRE Consortium. JACC Heart Fail. 2020 May;8(5):401–411.
  • deFilippi CR, de Lemos JA, Christenson RH, et al. Association of Serial Measures of Cardiac Troponin T Using a Sensitive Assay With Incident Heart Failure and Cardiovascular Mortality in Older Adults. Jama-J Am Med Assoc. 2010 Dec 8;304(22):2494–2502.
  • Cohn JN, Ferrari R, Sharpe N, et al. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000 Mar 1;35(3):569–582.
  • Burchfield JS, Xie M, Hill JA. Pathological Ventricular Remodeling: mechanisms: part 1 of 2. Circulation. 2013 Jul 23;128(4):388–400.
  • Mueller T, Jaffe AS. Soluble ST2–analytical considerations. Am J Cardiol. 2015 Apr 2;115(7 Suppl):8B–21B.
  • Emdin M, Aimo A, Vergaro G, et al. sST2 Predicts Outcome in Chronic Heart Failure Beyond NT-proBNP and High-Sensitivity Troponin T. J Am Coll Cardiol. 2018 Nov 6;72(19):2309–2320.
  • Pacho C, Domingo M, Nunez R, et al. Predictive biomarkers for death and rehospitalization in comorbid frail elderly heart failure patients. BMC Geriatr. 2018 May 9;18(1):109.
  • Gaggin HK, Szymonifka J, Bhardwaj A, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014 2;Feb(1):65–72.
  • Wesseling M, Jhc DP, de Jager SCA. Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player. ESC Heart Fail. 2020 Aug;7(4):1488–1501.
  • Fernandez ABM, Ferrero-Gregori A, Garcia-Osuna A, et al. Growth differentiation factor 15 as mortality predictor in heart failure patients with non-reduced ejection fraction. ESC Heart Fail. 2020 Oct;7(5):2223–2229.
  • Luo JW, Duan WH, Song L, et al. A Meta-Analysis of Growth Differentiation Factor-15 and Prognosis in Chronic Heart Failure. Front Cardiovasc Med.2021 Nov;5:8.
  • de Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep. 2010 Mar;7(1):1–8.
  • de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011 Feb;43(1):60–68.
  • Meijers WC, Januzzi JL, deFilippi C, et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: a pooled analysis of 3 clinical trials. Am Heart J. 2014 Jun;167(6):853–U117.
  • Wu C, Lv Z, Li X, et al. Galectin-3 in Predicting Mortality of Heart Failure: a Systematic Review and Meta-Analysis. Heart Surg Forum. 2021 Mar 30;24(2):E327–E332.
  • Barutaut M, Fournier P, Peacock WF, et al. sST2 adds to the prognostic value of Gal-3 and BNP in chronic heart failure. Acta Cardiol. 2020 Dec;75(8):739–747.
  • Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015 Jun 14;36(23):1437–+.
  • Smith GL, Lichtman JH, Bracken MB, et al. Renal impairment and outcomes in heart failure - Systematic review and meta-analysis. J Am Coll Cardiol. 2006 May 16;47(10):1987–1996.
  • Angelidis C, Deftereos S, Giannopoulos G, et al. Cystatin C: an Emerging Biomarker in Cardiovascular Disease. Curr Top Med Chem. 2013 Jan;13(2):164–179.
  • van der Laan SW, Fall T, Soumare A, et al. Cystatin C and Cardiovascular Disease A Mendelian Randomization Study. J Am Coll Cardiol. 2016 Aug 30;68(9):934–945.
  • Dupont M, Wu YP, Hazen SL, et al. Cystatin C Identifies Patients With Stable Chronic Heart Failure at Increased Risk for Adverse Cardiovascular Events. Circ-Heart Fail. 2012 Sep;5(5):602–609
  • Wang CH, Han S, Tong F, et al. Predictive Value of the Serum Cystatin C/Prealbumin Ratio in Combination With NT-proBNP Levels for Long-Term Prognosis in Chronic Heart Failure Patients: a Retrospective Cohort Study. Front Cardiovasc Med. Vol. 14. 2021 Jul; p. 8.
  • Bayes-Genis A, Morant-Talamante N, Neprilysin LJ. Natriuretic Peptide Regulation in Heart Failure. Curr Heart Fail Rep. 2016 Aug;13(4):151–157.
  • Bayes-Genis A, Barallat J, Galan A, et al. Soluble Neprilysin Is Predictive of Cardiovascular Death and Heart Failure Hospitalization in Heart Failure Patients. J Am Coll Cardiol. 2015 Feb 24;65(7):657–665.
  • Gommans DHF, Revuelta-Lopez E, Lupon J, et al. Soluble Neprilysin and Corin Concentrations in Relation to Clinical Outcome in Chronic Heart Failure. Jacc-Heart Fail. 2021 Feb;9(2):85–95
  • Damman K, van Veldhuisen DJ, Navis G, et al. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. Eur J Heart Fail. 2008;Oct;10(10):997–1000.
  • Villacorta H, Santos RA, Marroig MA, et al. Prognostic value of plasma neutrophil gelatinase-associated lipocalin in patients with heart failure. Rev Port Cardiol. 2015 Jul-Aug;34(7–8):473–478.
  • Bolignano D, Basile G, Parisi P, et al. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation Res. 2009 Feb;12(1):7–14.
  • Mann DL. The Emerging Role of Innate Immunity in the Heart and Vascular System For Whom the Cell Tolls. Circ Res. 2011 Apr 29;108(9):1133–U201.
  • Adamo L, Rocha-Resende C, Prabhu SD, et al. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020 May;17(5):269–285.
  • Gowda SGB, Gowda D, Hou F, et al. Temporal lipid profiling in the progression from acute to chronic heart failure in mice and ischemic human hearts. Atherosclerosis. 2022;363:30–41.
  • Vizzardi E, Nodari S, D’Aloia A, et al. CA 125 tumoral marker plasma levels relate to systolic and diastolic ventricular function and to the clinical status of patients with chronic heart failure. Echocardiography. 2008 Oct;25(9):955–960.
  • D’Aloia A, Faggiano P, Aurigemma G, et al. Serum levels of carbohydrate antigen 125 in patients with chronic heart failure: relation to clinical severity, hemodynamic and Doppler echocardiographic abnormalities, and short-term prognosis. J Am Coll Cardiol. 2003 May 21;41(10):1805–1811.
  • Nagele H, Bahlo M, Klapdor R, et al. CA 125 and its relation to cardiac function. Am Heart J. 1999 Jun;137(6):1044–1049.
  • Anand IS, Latini R, Florea VG, et al. C-reactive protein in heart failure - Prognostic value and the effect of valsartan. Circulation. 2005 Sep 6;112(10):1428–1434.
  • Pellicori P, Zhang J, Cuthbert J, et al. High-sensitivity C-reactive protein in chronic heart failure: patient characteristics, phenotypes, and mode of death. Cardiovasc Res. 2020 Jan 1;116(1):91–100.
  • Traxler D, Zimmermann M, Simader E, et al. The inflammatory markers sST2, HSP27 and hsCRP as a prognostic biomarker panel in chronic heart failure patients. Clin Chim Acta. 2020;510:507–514.
  • Gonzalez GE, Rhaleb NE, D’Ambrosio MA, et al. Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension. J Hypertens. 2015 Jan;33(1):144–152.
  • Fontes JA, Rose NR, Cihakova D. The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine. 2015 Jul;74(1):62–68.
  • Tsutamoto T, Hisanaga T, Wada A, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol. 1998 Feb;31(2):391–398.
  • TorreAmione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). Journal of the American College of Cardiology. 1996 Apr;27(5):1201–1206.
  • Kubota T, Miyagishima M, Alvarez RJ, et al. Expression of proinflammatory cytokines in the failing human heart: comparison of recent-onset and end-stage congestive heart failure. J Heart Lung Transpl. 2000 Sep;19(9):819–824.
  • MacGowan GA, Mann DL, Kormos RL, et al. Circulating interleukin-6 in severe heart failure. Am J Cardiol. 1997 Apr 15;79(8):1128.
  • Gwechenberger M, Hulsmann M, Berger R, et al. Interleukin-6 and B-type natriuretic peptide are independent predictors for worsening of heart failure in patients with progressive congestive heart failure. J Heart Lung Transpl. 2004 Jul;23(7):839–844.
  • Held C, White HD, Stewart RAH, et al. Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: experiences From the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc. 2017;6(10):Oct.
  • Chia YC, Kieneker LM, van Hassel G, et al. Interleukin 6 and Development of Heart Failure With Preserved Ejection Fraction in the General Population. J Am Heart Assoc. 2021;10:11.
  • Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Fail. 2019 Aug;21(8):965–973.
  • Eidizadeh A, Schnelle M, Leha A, et al. Biomarker profiles in heart failure with preserved vs. reduced ejection fraction: results from the DIAST-CHF study. ESC Heart Fail. 2022 Oct 2;10(1).
  • van der Pol A, van Gilst WH, Voors AA, et al. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019 Apr;21(4):425–435.
  • Frangogiannis NG. The Extracellular Matrix in Ischemic and Nonischemic Heart Failure. Circ Res. 2019 Jun 21;125(1):117–146.
  • Myeloperoxidase NG. - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019 Jun;493:36–51.
  • Tang WHW, Tong W, Troughton RW, et al. Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J Am Coll Cardiol. 2007 Jun 19;49(24):2364–2370.
  • Tang WHW, Brennan ML, Philip K, et al. Plasma myeloperoxidase levels in patients with chronic heart failure. Am J Cardiol. 2006 Sep 15;98(6):796–799.
  • Bouwens E, Schuurman AS, Akkerhuis KM, et al. Associations of serially measured PCSK9, LDLR and MPO with clinical outcome in heart failure. Biomark Med. 2021 Jan;15(4):247–255.
  • Avaliani T, Talakvadze T, Tabagari S. Prognostic Value of Plasma Myeloperoxidase Level’s and Echocardiographic Determinants in Chronic Heart Failure Patients. Georgian Med News. 2019 Mar;288:55–60.
  • Tang WH, Shrestha K, Troughton RW, et al. Integrating plasma high-sensitivity C-reactive protein and myeloperoxidase for risk prediction in chronic systolic heart failure. Congest Heart Fail. 2011 May-Jun;17(3):105–109.
  • Deardorff R, Spinale FG. Cytokines and matrix metalloproteinases as potential biomarkers in chronic heart failure. Biomark Med. 2009 Oct;3(5):513–523.
  • Jordan A, Roldan V, Garcia M, et al. Matrix metalloproteinase-1 and its inhibitor, TIMP-1, in systolic heart failure: relation to functional data and prognosis. J Intern Med. 2007 Sep;262(3):385–392.
  • George J, Patal S, Wexler D, et al. Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J. 2005 Sep;150(3):484–487.
  • Chang YY, Chen AR, Wu XM, et al. Comparison the Prognostic Value of Galectin-3 and Serum Markers of Cardiac Extracellular Matrix Turnover in Patients with Chronic Systolic Heart Failure. Int J Med Sci. 2014;11(11):1098–1106.
  • Liu Y, Wang X, Pan X, et al. Prognostic value of plasma sAXL in patients with heart failure: insights from the DRAGON-HF trial. ESC Heart Fail. 2022 Nov; p. 27.
  • Rincon LM, Rodriguez-Serrano M, Conde E, et al. Serum microRNAs are key predictors of long-term heart failure and cardiovascular death after myocardial infarction. ESC Heart Fail. 2022 Oct;9(5):3367–3379.
  • Roy C, Lejeune S, Slimani A, et al. Fibroblast growth factor 23: a biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction. ESC Heart Fail. 2020 Oct;7(5):2494–2507.
  • van Boven N, Battes LC, Akkerhuis KM, et al. Toward personalized risk assessment in patients with chronic heart failure: detailed temporal patterns of NT-proBNP, troponin T, and CRP in the Bio-SHiFT study. Am Heart J. 2018 Feb;196:36–48.
  • Gurgoze MT, van Vark LC, Baart SJ, et al. Multimarker Analysis of Serially Measured GDF-15, NT-proBNP, ST2, GAL-3, cTnI, Creatinine, and Prognosis in Acute Heart Failure. Circ Heart Fail. 2022 Nov 21;16(1):e009526.
  • Maisel A, Januzzi J, Xue Y, et al. Post-acute care: the role of natriuretic peptides. Congest Heart Fail. 2012;Sep-Oct;18(Suppl 1):S14–6.
  • Felker GM, Hasselblad V, Hernandez AF, et al. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am Heart J. 2009 Sep;158(3):422–430.
  • Troughton RW, Frampton CM, Brunner-La Rocca HP, et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur Heart J. 2014 Jun 14;35(23):1559–1567.
  • Savarese G, Trimarco B, Dellegrottaglie S, et al. Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS One. 2013;8(3):e58287.
  • Shirakabe A, Okazaki H, Matsushita M, et al. Type III procollagen peptide level can indicate liver dysfunction associated with volume overload in acute heart failure. ESC Heart Fail. 2022 Jun;9(3):1832–1843.
  • Boorsma EM, JM TM, Damman K, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nature Reviews Cardiology. 2020 Oct;17(10):641–655
  • Egerstedt A, Czuba T, Bronton K, et al. Bioactive adrenomedullin for assessment of venous congestion in heart failure. ESC Heart Fail. 2022 Oct;9(5):3543–3555.
  • Nunez J, De la Espriella R, Rossignol P, et al. Congestion in heart failure: a circulating biomarker-based perspective. A review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology. Euro J Heart Fail. 2022 Sep 7;24(10).