112
Views
0
CrossRef citations to date
0
Altmetric
Review

Congenital heart disease: addressing the need for novel lower-risk percutaneous interventional strategies

ORCID Icon, &
Pages 329-336 | Received 12 Mar 2023, Accepted 26 Apr 2023, Published online: 02 May 2023

References

  • Ferrari L, Leahy I, Staffa SJ, et al. The pediatric-specific american society of anesthesiologists physical status score: a multicenter study. Anesth Analg. 2021;132(3):807–817.
  • Jenkins KJ, Gauvreau K, Newburger JW, et al. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123(1):110–118.
  • Lacour-Gayet F, Clarke D, Jacobs J, et al. The Aristotle score: a complexity-adjusted method to evaluate surgical results. Eur J Cardiothorac Surg. 2004;25(6):911–924. DOI:10.1016/j.ejcts.2004.03.027
  • Al-Radi OO, Harrell FE, Caldarone CA, et al. Case complexity scores in congenital heart surgery: a comparative study of the Aristotle Basic Complexity score and the Risk Adjustment in Congenital Heart Surgery (RACHS-1) system. J Thorac Cardiovasc Surg. 2007;133(4):865–875. DOI:10.1016/j.jtcvs.2006.05.071
  • Jacobs ML, Jacobs JP, Jenkins KJ, et al. Stratification of complexity: the risk adjustment for congenital heart surgery-1 method and the aristotle complexity score – past, present, and future. Cardiol Young. 2008;18(S2):163–168.
  • O’Brien SM, Clarke DR, Jacobs JP, et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J Thorac Cardiovasc Surg. 2009;138(5):1139–1153. DOI:10.1016/j.jtcvs.2009.03.071
  • Brown KL, Crowe S, Franklin R, et al. Trends in 30-day mortality rate and case mix for paediatric cardiac surgery in the UK between 2000 and 2010. Open Heart. 2015;2(1):e000157. DOI:10.1136/openhrt-2014-000157
  • Crowe S, Brown KL, Pagel C, et al. Development of a diagnosis- and procedure-based risk model for 30-day outcome after pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2013;145(5):1270–1278. DOI:10.1016/j.jtcvs.2012.06.023
  • Mehta R, Lee K-J, Chaturvedi R, et al. Complications of pediatric cardiac catheterization: a review in the current era. Catheterization Cardiovasc Interventions. 2008;72(2):278–285.
  • Cassidy SC, Schmidt KG, Van Hare GF, et al. Complications of pediatric cardiac catheterization: a 3-year study. J Am Coll Cardiol. 1992;19(6):1285–1293.
  • STANGER PH, TARNOFF H, HOFFMAN JI, et al. Complications of cardiac catheterization of neonates, infants, and children: a three-year study. Circulation. 1974 Sep;50(3):595–608.
  • Vitiello R, McCrindle BW, Nykanen D, et al. Complications associated with pediatric cardiac catheterization. J Am Coll Cardiol. 1998;32(5):1433–1440.
  • Huang YC, Lai YC, Lai Y-C. Li PC Importance of prevention and early intervention of adverse events in pediatric cardiac catheterization: a review of three years of experience. Pediatr Neonatol. 2009 Dec;50(6):280–286.
  • Tokel K, Gümüş A, Ayabakan C, et al. Complications of cardiac catheterization in children with congenital heart disease. Turk J Pediatr. 2018;60(6):675.
  • Lin CH, Hegde S, Marshall AC, et al. Incidence and management of life-threatening adverse events during cardiac catheterization for congenital heart disease. Pediatr Cardiol. 2014;35(1):140–148. DOI:10.1007/s00246-013-0752-y
  • Rhodes JA, Blaufox AD, Sommer RJ. Impact of low body weight on frequency of pediatric cardiac catheterization complications. Am J Cardiol. 2000 Dec;1(11):1275–1278.
  • Zeevi B, Berant M, Fogelman R, et al. Acute complications in the current era of therapeutic cardiac catheterization for congenital heart disease. Cardiol Young. 1999;9(3):266–272.
  • Bergersen L, Marshall A, Gauvreau K, et al. Adverse event rates in congenital cardiac catheterization - A multi-center experience. In: Catheterization and Cardiovascular Interventions. 2010;75(3):389–400. DOI:10.1002/ccd.22266
  • Bergersen L, Gauvreau K, Foerster SR, et al. Catheterization for Congenital Heart Disease Adjustment for Risk Method (CHARM). JACC Cardiovasc Interv. 2011;4(9):1037–1046. DOI:10.1016/j.jcin.2011.05.021.
  • Jayaram N, Beekman RH, Benson L, et al. Adjusting for risk associated with pediatric and congenital cardiac catheterization. Circulation. 2015;132(20):1863–1870. DOI:10.1161/CIRCULATIONAHA.114.014694
  • Nykanen DG, Forbes TJ, Du W, et al. CRISP: catheterization risk score for pediatrics: a report from the congenital cardiac interventional study consortium (CCISC). Catheterization Cardiovasc Interventions. 2016;87(2):302–309. DOI:10.1002/ccd.26300.
  • Hill KD, Du W, Fleming GA, et al. Validation and refinement of the catheterization RISk score for pediatrics (CRISP score): an analysis from the congenital cardiac interventional study consortium. Catheterization Cardiovasc Interventions. 2019;93(1):97–104. DOI:10.1002/ccd.27837
  • O’Callaghan B, Shepherd E, Taliotis D, et al. Validating a risk assessment tool in United Kingdom and Irish paediatric cardiac catheterisation practice. Cardiol Young. 2022;32(9):1407–1414. DOI:10.1017/S1047951121004170
  • Giorgione V, Parazzini F, Fesslova V, et al. Congenital heart defects in IVF/ICSI pregnancy: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51(1):33–42. DOI:10.1002/uog.18932
  • Reig AS, Seli E. The association between assisted reproductive technologies and low birth weight. Curr Opin Obstet Gynecol. 2019 Jun;31(3):183–187.
  • Kalfa D, Krishnamurthy G, Duchon J, et al. Outcomes of cardiac surgery in patients weighing <2.5 kg: affect of patient-dependent and -independent variables. J Thorac Cardiovasc Surg. 2014;148(6):2499–506.e1. DOI:10.1016/j.jtcvs.2014.07.031
  • Krishnamurthy G. Cardiopulmonary bypass in premature and low birth weight neonates - implications for postoperative care from a neonatologist/intensivist perspective. Semin Thorac Cardiovasc Surg Pediatr Card Surg Ann. 2019;22:2–9.
  • Curzon CL, Milford-Beland S, Li JS, et al. Cardiac surgery in infants with low birth weight is associated with increased mortality: analysis of the society of thoracic surgeons congenital heart database. J Thorac Cardiovasc Surg. 2008;135(3):546–551. DOI:10.1016/j.jtcvs.2007.09.068
  • William Gaynor WTM J, Cohen MI, Ittenbach RF, et al. Risk factors for mortality after the Norwood procedure. Eur J Cardiothorac Surg. 2002;22(1):82–89.
  • Ades AM, Dominguez TE, Nicolson SC, et al. Morbidity and mortality after surgery for congenital cardiac disease in the infant born with low weight. Cardiol Young. 2010;20(1):8–17. DOI:10.1017/S1047951109991909
  • Alarcon Manchego P, Cheung M, Zannino D, et al. Audit of cardiac surgery outcomes for low birth weight and premature infants. Semin Thorac Cardiovasc Surg. 2018;30(1):71–78.
  • Pawade AW, Laussen P, Karl TR, et al. Cardiopulmonary bypass in neonates weighing less than 2.5 kg: analysis of the risk factors for early and late mortality. J Card Surg. 1993 Jan;8(1):1–8.
  • Aykanat A, Yavuz T, Özalkaya E, et al. Long-term prostaglandin e1 infusion for newborns with critical congenital heart disease. Pediatr Cardiol. 2016;37(1):131–134.
  • Dorobantu DM, Pandey R, Sharabiani MT, et al. Indications and results of systemic to pulmonary shunts: results from a national database. Eur J Cardiothorac Surg. 2016;49(6):1553–1563. DOI:10.1093/ejcts/ezv435
  • Gibbs JL, Rothman MT, Rees MR, et al. Stenting of the arterial duct: a new approach to palliation for pulmonary atresia. Heart. 1992;67(3):240–245.
  • Bentham JR, Zava NK, Harrison WJ, et al. Duct stenting versus modified blalock-taussig shunt in neonates with duct-dependent pulmonary blood flow. Circulation. 2018;137(6):581–588. DOI:10.1161/CIRCULATIONAHA.117.028972
  • Glatz AC, Petit CJ, Goldstein BH, et al. Comparison between patent ductus arteriosus stent and modified blalock-taussig shunt as palliation for infants with ductal-dependent pulmonary blood flow. Circulation. 2018;137(6):589–601. DOI:10.1161/CIRCULATIONAHA.117.029987
  • Mallula K, Vaughn G, El-Said H, et al. Comparison of ductal stenting versus surgical shunts for palliation of patients with pulmonary atresia and intact ventricular septum. Catheterization Cardiovasc Interventions. 2015;85(7):1196–1202.
  • Petrucci O, O’Brien SM, Jacobs ML, et al. Risk factors for mortality and morbidity after the neonatal blalock-taussig shunt procedure. Ann Thorac Surg. 2011;92(2):642–652.
  • Nasef MA, Shahbah DA, Batlivala SP, et al. Short‐ and medium‐term outcomes for patent ductus arteriosus stenting in neonates ≤2.5 kg with duct‐dependent pulmonary circulation. Catheterization Cardiovasc Interventions. 2022;100(4):596–605. DOI:10.1002/ccd.30351.
  • Ravndal MEA, Christensen AH, Døhlen G, et al. Paediatric cardiac catheterisation in Norway: rates and types of complications in new terms. Cardiol Young. 2017;27(7):1329–1335.
  • Costello JM, Kim F, Polin R, et al. Double jeopardy: prematurity and congenital heart disease-what’s known and why it’s important. World J Pediatr Congenit Heart Surg. 2022;13(1):65–71.
  • Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116(6):e833–8.
  • Costello JM, Polito A, Brown DW, et al. Birth before 39 weeks’ gestation is associated with worse outcomes in neonates with heart disease. Pediatrics. 2010;126(2):277–284. DOI:10.1542/peds.2009-3640
  • Costello JM, Pasquali SK, Jacobs JP, et al. Gestational age at birth and outcomes after neonatal cardiac surgery. Circulation. 2014;129(24):2511–2517. DOI:10.1161/CIRCULATIONAHA.113.005864
  • Cnota JF, Gupta R, Michelfelder EC, et al. Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks. J Pediatr. 2011;159(5):761–765.
  • Steurer MA, Baer RJ, Keller RL, et al. Gestational age and outcomes in critical congenital heart disease. Pediatrics. 2017;140(4).
  • Alkashkari W, Albugami S, Hijazi ZM. Current practice in atrial septal defect occlusion in children and adults. Expert Rev Cardiovasc Ther. 2020;18(6):315–329.
  • Weisz DE, More K, McNamara PJ, et al. PDA ligation and health outcomes: a meta-analysis. Pediatrics. 2014;133(4):e1024–46.
  • Baruteau AE, Hascoet S, Baruteau J, et al. Transcatheter closure of patent ductus arteriosus: past, present and future. Arch Cardiovasc Dis. 2014;107(2):122–132. DOI:10.1016/j.acvd.2014.01.008
  • Backes CR, Bridge JA, Armstrong AK, et al. Percutaneous Patent Ductus Arteriosus (PDA) closure during infancy: a meta-analysis. Pediatrics. 2017 Feb;139(2). DOI:10.1542/peds.2016-2927.
  • Dimas VV, Takao C, Ing FF, et al. Outcomes of transcatheter occlusion of patent ductus arteriosus in infants weighing. JACC: Cardiovasc Interv. 2010;3(12):1295–1299. DOI:10.1016/j.jcin.2010.08.022
  • Abadir S, Boudjemline Y, Rey C, et al. Significant persistent ductus arteriosus in infants less or equal to 6 kg: percutaneous closure or surgery? Arch Cardiovasc Dis. 2009;102(6–7):533–540. DOI:10.1016/j.acvd.2009.04.004
  • Francis E, Singhi AK, Lakshmivenkateshaiah S, et al. Transcatheter occlusion of patent ductus arteriosus in pre-term infants. JACC: Cardiovasc Interv. 2010;3(5):550–555.
  • Abu Hazeem AA, Gillespie MJ, Thun H, et al. Percutaneous closure of patent ductus arteriosus in small infants with significant lung disease may offer faster recovery of respiratory function when compared to surgical ligation. Catheterization Cardiovasc Interventions. 2013;n/a–n/a.
  • Chen ZW, Luo YK, Lin CG, et al. Comparison of long-term clinical outcome between transcatheter Amplatzer occlusion and surgical closure of isolated patent ductus arteriosus. Chin Med J (Engl). 2009 May;20(122(10):1123–1127.
  • Bentham J, Meur S, Hudsmith L, et al. Echocardiographically guided catheter closure of arterial ducts in small preterm infants on the neonatal intensive care unit. Catheterization Cardiovasc Interventions. 2011;77(3):409–415.
  • Baspinar O, Sahin DA, Sulu A, et al. Transcatheter closure of patent ductus arteriosus in under 6 kg and premature infants. J Interv Cardiol. 2015;28(2):180–189. DOI:10.1111/joic.12196
  • Bass JL, Wilson N. Transcatheter occlusion of the patent ductus arteriosus in infants: experimental testing of a new Amplatzer device. Catheterization Cardiovasc Interventions. 2014;83(2):250–255.
  • Sungur M, Karakurt C, Ozbarlas N, et al. Closure of patent ductus arteriosus in children, small infants, and premature babies with Amplatzer duct occluder II additional sizes: multicenter study. Catheterization Cardiovasc Interventions. 2013;82(2):245–252.
  • Kenny D, Morgan GJ, Bentham JR, et al. Early clinical experience with a modified amplatzer ductal occluder for transcatheter arterial duct occlusion in infants and small children. Catheterization Cardiovasc Interventions. 2013;n/a–n/a.
  • Sathanandam SK, Gutfinger D, O’Brien L, et al. Amplatzer Piccolo Occluder clinical trial for percutaneous closure of the patent ductus arteriosus in patients ≥700 grams. Catheterization Cardiovasc Interventions. 2020;96(6):1266–1276. DOI:10.1002/ccd.28973.
  • Qureshi AM, Caldarone CA, Wilder TJ. Transcatheter approaches to palliation for tetralogy of fallot. Semin Thorac Cardiovasc Surg Pediatr Card Surg Ann. 2022;25:48–57.
  • Linnane N, Nasef MA, McMahon CJ, et al. Right ventricular outflow tract stenting in symptomatic infants without the use of a long delivery sheath. Catheter Cardiovasc Interv. 2021;98(2):E275–81. DOI:10.1002/ccd.29708
  • Quandt D, Ramchandani B, Penford G, et al. Right ventricular outflow tract stent versus BT shunt palliation in Tetralogy of Fallot. Heart. 2017;103(24):1985–1991. DOI:10.1136/heartjnl-2016-310620
  • Sandoval JP, Chaturvedi RR, Benson L, et al. Right ventricular outflow tract stenting in tetralogy of fallot infants with risk factors for early primary repair. Circ Cardiovasc Interventions. 2016;9(12):e003979. DOI:10.1161/CIRCINTERVENTIONS.116.003979
  • Backes CH, Cua C, Kreutzer J, et al. Low weight as an independent risk factor for adverse events during cardiac catheterization of infants. Catheter Cardiovasc Interv. 2013;82(5):786–794. DOI:10.1002/ccd.24726
  • Linnane N, Walsh KP, McGuinness J, et al. Evolution of approach to right ventricular outflow tract stenting in infants ≤ 2Kgs. J Struct Heart Dis. 2018;4(2):50–55.
  • Zampi JD, Armstrong AK, Hirsch-Romano JC. Hybrid perventricular pulmonary valve perforation and right ventricular outflow stent placement: a case report of a premature, 1.3-kg neonate with tetralogy of Fallot and pulmonary atresia. World J Pediatr Congenit Heart Surg. 2014;5(2):338–341.
  • Ng LY, Al-Alawi K, Breatnach C, et al. Hybrid subxiphoid perventricular approach as an alternative access in neonates and small children undergoing complex congenital heart interventions. Pediatr Cardiol. 2021;42(3):526–532. DOI:10.1007/s00246-020-02510-z
  • Malekzadeh-Milani S, Jalal Z, Tamisier D, et al. Dilatable pulmonary artery band: safety and efficacy of balloon dilatation. Catheterization Cardiovasc Interventions. 2016;88(3):446–451.
  • Takayama H, Sekiguchi A, Chikada M, et al. Mortality of pulmonary artery banding in the current era: recent mortality of PA banding. Ann Thorac Surg. 2002;74(4):1219–1224.
  • Bonnet D, Corno AF, Sidi D, et al. Early clinical results of the telemetric adjustable pulmonary artery banding FloWatch-PAB. Circulation. 2004;110(11_suppl_1):158–163. DOI:10.1161/01.CIR.0000138222.43197.1e
  • Changizi A, Yaghoubi A, Azarasa M, et al. A study on the mortality and complication rates following percutaneously adjustable pulmonary artery banding. J Cardiovasc Thorac Res. 2014;6(4):253–255.
  • Brown S, Boshoff D, Rega F, et al. Dilatable pulmonary artery banding in infants with low birth weight or complex congenital heart disease allows avoidance or postponement of subsequent surgery. Eur J Cardiothorac Surg. 2010;37(2):296–301.
  • El-Said H, Hamzeh R, Lamberti J, et al. Catheter balloon adjustment of the pulmonary artery band: feasibility and safety. Pediatr Cardiol. 2011;32(1):8–16.
  • Tomita H, Fujii T, Kise H, et al. Percutaneous pulmonary artery debanding. J Cardiol. 2021;77(3):307–312. DOI:10.1016/j.jjcc.2020.10.021
  • Morgan GJ, Chen Q, Parry A, et al. Balloon debanding the pulmonary artery: in vitro studies and early clinical experience. Congenit Heart Dis. 2009;4(4):273–277.
  • Mollet A, Stos B, Bonnet D, et al. Development of a device for transcatheter pulmonary artery banding: evaluation in animals. Eur Heart J. 2006;27(24):3065–3072.
  • Yayoi Nakahata HT, Kimura S, Ando H, et al. Masahiro Ishii1. Percutaneous bilateral pulmonary artery banding using a re-expandable covered stent: preliminary animal study. Kitasato Med J. 2011;41:165–169.
  • Gorenflo M, Gewillig M. A flow restrictor implanted percutaneously across a loose pulmonary artery band. Catheterization Cardiovasc Interventions. 2011;77(5):696–699.
  • Khan AH, Hoskoppal D, Kumar TKS, et al. Utility of the Medtronic microvascular plug™ as a transcatheter implantable and explantable pulmonary artery flow restrictor in a swine model. Catheterization Cardiovasc Interventions. 2019;93(7):1320–1328. DOI:10.1002/ccd.28162
  • Nageotte S, Shahanavaz S, Eghtesady P, et al. Total transcatheter stage 1: a word of caution. Pediatr Cardiol. 2021;42(6):1410–1415.
  • Mai CT, Isenburg JL, Canfield MA, et al. National population-based estimates for major birth defects, 2010-2014. Birth Defects Res. 2019;111(18):1420–1435. DOI:10.1002/bdr2.1589
  • Elahi MD, Firmin R, Hickey M. Direct complications of repeat median sternotomy in adults. Asian Cardiovasc Thorac Ann. 2005;13(2):135–138.
  • Bonhoeffer P, Boudjemline Y, Saliba Z, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356(9239):1403–1405. DOI:10.1016/S0140-6736(00)02844-0
  • Alkashkari W, Albugami S, Abbadi M, et al. Transcatheter pulmonary valve replacement in pediatric patients. Expert Rev Med Devices. 2020;17(6):541–554.
  • Li WF, Pollard H, Karimi M, et al. Comparison of valvar and right ventricular function following transcatheter and surgical pulmonary valve replacement. Congenit Heart Dis. 2018;13(1):140–146. DOI:10.1111/chd.12544
  • Sharma V, Griffiths ER, Eckhauser AW, et al. Pulmonary valve replacement: a single-institution comparison of surgical and transcatheter valves. Ann Thorac Surg. 2018;106(3):807–813. DOI:10.1016/j.athoracsur.2018.04.002
  • Chatterjee A, Bajaj NS, McMahon WS, et al. Transcatheter pulmonary valve implantation: a comprehensive systematic review and meta‐analyses of observational studies. J Am Heart Assoc. 2017;6(8). DOI:10.1161/JAHA.117.006432.
  • Cheatham JP, Hellenbrand WE, Zahn EM, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the us melody valve investigational device exemption trial. Circulation. 2015;131(22):1960–1970. DOI:10.1161/CIRCULATIONAHA.114.013588
  • Kenny D, Rhodes JF, Fleming GA, et al. 3-Year outcomes of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position from the COMPASSION multicenter clinical trial. JACC: Cardiovasc Interv. 2018;11(19):1920–1929. DOI:10.1016/j.jcin.2018.06.001
  • Duignan S, Ryan A, Burns B, et al. Complex decision making in the pediatric catheterization laboratory: catheterizer, know thyself and the data. Pediatr Cardiol. 2018;39(7):1281–1289.
  • Duignan S, Walsh KP, McMahon CJ. Decision-making in the catheter laboratory: the most important variable in successful outcomes. Pediatr Cardiol. 2020;41(3):459–468.
  • Srinivasan C, Sachdeva R, Morrow WR, et al. Standardized management improves outcomes after the norwood procedure. Congenit Heart Dis. 2009;4(5):329–337. DOI:10.1111/j.1747-0803.2009.00323.x
  • Burstein DS, Jacobs JP, Li JS, et al. Care models and associated outcomes in congenital heart surgery. Pediatrics. 2011;127(6):e1482–9. DOI:10.1542/peds.2010-2796
  • Sunstrom RE, Muralidaran A, Gerrah R, et al. A defined management strategy improves early outcomes after the fontan procedure: the portland protocol. Ann Thorac Surg. 2015;99(1):148–155. DOI:10.1016/j.athoracsur.2014.06.121
  • Price MJ, Hawkins JA, McGough EC, et al. Critical pathways for postoperative care after simple congenital heart surgery. Am J Manag Care. 1999 Feb;5(2):185–192.
  • Porras D, Brown DW, Rathod R, et al. Acute Outcomes after Introduction of a Standardized Clinical Assessment and Management Plan (SCAMP) for Balloon Aortic Valvuloplasty in Congenital Aortic Stenosis. Congenit Heart Dis. 2014;9(4):316–325. DOI:10.1111/chd.12142
  • Justino H. Radiation safety in the cardiac catheterization laboratory is our responsibility. Circ Cardiovasc Interventions. 2020;13(5). DOI:10.1161/CIRCINTERVENTIONS.120.009236
  • Quinn BP, Cevallos P, Armstrong A, et al. Longitudinal improvements in radiation exposure in cardiac catheterization for congenital heart disease. Circ Cardiovasc Interventions. 2020;13(5).
  • Morgan GJ. Echocardiographic guidance for neonatal right ventricular outflow tract stent implantation. Congenit Heart Dis. 2013;8(6):585–588.
  • Velasco Forte MN, Roujol S, Ruijsink B, et al. MRI for guided right and left heart cardiac catheterization: a prospective study in congenital heart disease. J Magn Reson Imaging. 2021;53(5):1446–1457. DOI:10.1002/jmri.27426
  • Moore P. MRI-guided congenital cardiac catheterization and intervention: the future? Catheterization Cardiovasc Interventions. 2005;66(1):1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.