426
Views
0
CrossRef citations to date
0
Altmetric
Review

Myocarditis and autoimmunity

Pages 437-451 | Received 28 Jan 2023, Accepted 26 May 2023, Published online: 02 Jun 2023

References

  • Matsumori A. Viral myocarditis from animal models to human diseases. In: Berhardt L, editor. Advances in medicine and biology. NY (NY USA): Nova Medicine & Health; 2022. p. 40–74.
  • Ammirati E, Frigerio M, Adler ED, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy. Circ Heart Fail. 2020;13:e007405.
  • Tschope C, Ammirati E, Bozkurt B, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021;18:169–193.
  • Maisch B. Cardio-immunology of myocarditis: focus on immune mechanisms and treatment options. Front Cardiovasc Med. 2019 Apr 12;6:48. doi: 10.3389/fcvm.2019.00048.
  • Cooper LT, Sliwa KA, Matsumori A, et al. The global burden of myocarditis: part 1: a systematic literature review for the global burden of diseases, injuries, and risk factors 2010 study. Glob Heart. 2014;9:121–129.
  • Matsumori A, Furukawa Y, Hasegawa K, et al. Epidemiologic and clinical characteristics of cardiomyopathies in Japan: results from nationwide surveys. Circ J. 2002;66:323–336.
  • Mackay IR, Leskovsek NV, Rose NR. Cell damage and autoimmunity: a critical appraisal. J Autoimmun. 2008;30:5–11.
  • Bracamonte-Baran W, Čiháková D. Cardiac autoimmunity: myocarditis. Adv Exp Med Biol. 2017;1003:187–221.
  • Caforio AL, Pankuweit S, Arbustini E, et al.; European Society of Cardiology Working Group on Myocardial and Pericardial Diseases[. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2013;34:2636–2648. doi:10.1093/eurheartj/eht210
  • Pollack A, Kontorovich AR, Fuster V, et al. Viral myocarditis—diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12:670–680.
  • Matzinger P. Autoimmunity: are we asking the right question? Front Immunol. 2022;13:864633.
  • Donermeyer DL, Beisel KW, Allen PM, et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest. 1996;97:2057–2062.
  • Pummerer CL, Luze K, Grässl G, et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest. 1996;97:2057–2062.
  • Li HS, Ligons DL, Rose NR. Genetic complexity of autoimmune myocarditis. Autoimmun Rev. 2008;7:168–173.
  • Fairweather D, Rose NR. Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods. 2007;41:118–122.
  • Huber SA, Gauntt CJ, Sakkinen P. Enteroviruses and myocarditis: viral pathogenesis through replication, cytokine induction, and immunopathogenicity. Adv Virus Res. 1998;51:35–80.
  • Fuse K, Chan G, Liu Y, et al. Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of Coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation. 2005;112:2276–2285.
  • Wolfgram LJ, Beisel KW, Herskowitz A, et al. Variations in the susceptibility to Coxsackievirus B3-induced myocarditis among different strains of mice. J Immunol. 1986;136:1846–1852.
  • Fairweather D, Frisancho-Kiss S, Rose NR. Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol. 2005;15:17–27.
  • Matsumori A, Kawai C. An experimental model for congestive heart failure after encephalomyocarditis virus myocarditis in mice. Circulation. 1982;65:1230–1235.
  • Matsumori A, Kawai C. An animal model of congestive (dilated) cardiomyopathy: dilatation and hypertrophy of the heart in the chronic stage in DBA/2 mice with myocarditis caused by encephalomyocarditis virus. Circulation. 1982;66:355–360.
  • Matsumori A, Kishimoto C, Kawai C, et al. Right ventricular aneurysms complicating encephalomyocarditis virus myocarditis in mice. Jpn Cir J. 1983;47:1322–1324.
  • Tomioka N, Kishimoto C, Matsumori A, et al. Mural thrombus in experimental viral myocarditis in mice: relation between thrombosis and congestive heart failure. Cardiovasc Res. 1986;20:665–671.
  • Matsumori A. Global alert and response network for hepatitis C virus-derived heart diseases: a call to action. CVD Prev Control. 2009;4:109–118.
  • Rose NR. Viral myocarditis. Curr Opin Rheumatol. 2016;28:383–389.
  • Matsumori A, Kawai C, Sawada S. Encephalomyocarditis virus myocarditis in inbred strains of mice-chronic stage. Jpn Circ J. 1982;46:1192–1196.
  • Higuchi H, Hara M, Yamamoto K, et al. Mast cells play a critical role in the pathogenesis of viral myocarditis. Circulation. 2008;118:363–372.
  • Fireman E, Kivity S, Shahar I, et al. Secretion of stem cell factor by alveolar fibroblasts in interstitial lung diseases. Immunol Lett. 1999;67:229–236.
  • Matsumori A, Yamamoto K, Shimada M. Cetirizine a histamine H1 receptor antagonist improves viral myocarditis. J Inflamm. 2010;7:39.
  • Kindermann I, Barth C, Mahfoud F, et al. Update on myocarditis. J Am Coll Cardiol. 2012;59:779–792.
  • Feldman AM, McNamara D. Myocarditis. N Engl J Med. 2000;343:1388–1398.
  • Mahfoud F, Ukena C, Kandolf R, et al. Blood pressure and heart rate predict outcome in patients acutely admitted with suspected myocarditis without previous heart failure. J Hypertens. 2012;30:1217–1224.
  • Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord. 2016;17:485–498.
  • Fairweather D, Kaya Z, Shellam GR, et al. From infection to autoimmunity. J Autoimmun. 2001;16:175–186.
  • Caforio AL, Mahon NJ, McKenna WJ. Cardiac autoantibodies to myosin and other heart-specific autoantigens in myocarditis and dilated cardiomyopathy. Autoimmunity. 2001;34:199–204.
  • Massilamany C, Gangaplara A, Steffen D, et al. Identification of novel mimicry epitopes for cardiac myosin heavy chain-alpha that induce autoimmune myocarditis in A/J mice. Cell Immunol. 2011;271:438–449.
  • Li Y, Heuse JS, Cunningham C, et al. Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J Immunol. 2006;177:8234–8240.
  • Moudgilm KD, Sercarz EE. Crypticity of self antigenic determinants is the cornerstone of a theory of autoimmunity. Discov Med. 2005;5:378–382.
  • Sanghera C, Wong LM, Panahi M, et al. Cardiac phenotype in mouse models of systemic autoimmunity. Dis Model Mech. 2019;12:dmm036947.
  • Abou-Raya A, Abou-Raya S. Inflammation: a pivotal link between autoimmune diseases and atherosclerosis. Autoimmun Rev. 2006;5:331–337.
  • Knockaert DC. Cardiac involvement in systemic inflammatory diseases. Eur Heart J. 2007;28:1797–1804.
  • Koshy M, Berger D, Crow MK. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J Clin Invest. 1996;98:826–837.
  • Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039.
  • Manger K, Manger B, Repp R, et al. Definition of risk factors for death, end stage renal disease, and thromboembolic events in a monocentric cohort of 338 patients with systemic lupus erythematosus. Ann Rheum Dis. 2002;61:1065–1070.
  • Schoenfeld SR, Kasturi S, Costenbader KH. The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Semin Arthritis Rheum. 2013;43:77–95.
  • Estel GJ, González LA, Zhang J, et al. Predictors of cardiovascular damage in patients with systemic lupus erythematosus: data from LUMINA (LXVIII), a multiethnic US cohort. Rheumatology. 2009;48:817–822.
  • Urowitz MB, Gladman D, Ibañez DB, et al. Atherosclerotic vascular events in a multinational inception cohort of systemic lupus erythematosus. Arthritis Care Res. 2010;62:881–887.
  • Jain D, Halushka MK. Cardiac pathology of systemic lupus erythematosus. J Clin Pathol. 2009;62:584–592.
  • Peretto G, Sala S, De Luca G, et al. Impact of systemic immune-mediated diseases on clinical features and prognosis of patients with biopsy-proved myocarditis. Int J Cardiol. 2019 Apr 1;280:110–116.
  • Bruni C, Buch MH, Furst DE, et al. Primary systemic sclerosis heart involvement: a systematic literature review and preliminary data-driven, consensus-based WSF/HFA definition. J Scleroderma Relat Disord. 2022;7:24–32.
  • Seidel F, Holtgrewe M, Al-Wakeel-Marquard N, et al. Pathogenic variants associated with dilated cardiomyopathy predict outcome in pediatric myocarditis. Circ Genom Precis Med. 2021;14:e003250.
  • Lota AS, MR H, Theotokis P, et al. Genetic architecture of acute myocarditis and the overlap with inherited cardiomyopathy. Circulation 2022;146:p. 1123–1134.
  • Schultheiss HP, Fairweather D, Caforio ALP, et al. Dilated cardiomyopathies. Nat Rev Dis Primers. 2019;5:32.
  • Basso C. Myocarditis. N Engl J Med. 2022;387:1488–1500.
  • Matsumori A, Yutani C, Ikeda Y, et al. Hepatitis C virus from the hearts of the patients with myocarditis and cardiomyopathy. Lab Invest. 2000;80:1137–1142.
  • Matsumori A. Hepatitis C virus and cardiomyopathy. Circ Res. 2005;9:144–147.
  • Haykal M, Matsumori A, Saleh A, et al. Diagnosis and treatment of HCV heart diseases. Expert Rev Cardiovasc Ther. 2021;19:493–499.
  • Matsumori A. Cardiovascular diseases as major extrahepatic manifestations of hepatitis C virus infection: leukocytes, not hepatocytes, are the targets of hepatitis C virus infection. Interv Cardiol. 2022;14:477–485.
  • Matsumori A, Shimada M, Obata T. Leukocytes are the major target of hepatitis C virus infection: possible mechanism of multiorgan involvement including the heart. CVD Prev Control. 2010;5:51–58.
  • Matsumori A, Ohashi N, Ito H. Genes of the major histocompatibility complex class II influence the phenotype of cardiomyopathies associated with hepatitis C virus infection. In: Matsumori A ed. Cardiomyopathies and Heart Failure. Vol. 248. Boston (MA USA): Developments in Cardiovascular Medicine; Springer; 2003. p. 515–521.
  • Shichi D, Matsumori A, Naruse T, et al. HLA-DPbeta chain may confer the susceptibility to hepatitis C virus-associated hypertrophic cardiomyopathy. Int J Immunogenet. 2008;35:37–43.
  • Shichi D, Kikkawa EF, Ota M, et al. The haplotype block, NFKBIL1-ATP6V1G2-BAT1-MICB-MICA, within the class III-class I boundary region of the human major histocompatibility complex may control susceptibility to hepatitis C virus-associated dilated cardiomyopathy. Tissue Antigens. 2005;66:200–208.
  • Mobasheri L, Nasirpour MH, Masoumi E, et al. SARS-CoV-2 triggering autoimmune diseases. Cytokine. 2022;154:155873.
  • Mahroum N, Elsalti A, Alwani A, et al. The mosaic of autoimmunity-Finally discussing in person. The 13th international congress on autoimmunity 2022 (AUTO13) Athens. Autoimmun Rev. 2022;21:103166.
  • Cabral-Marques O, Halpert G, Schimke LF, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13:1220.
  • Krittanawong C, Kumar A, Hahn J, et al. Cardiovascular risk and complications associated with COVID-19. Am J Cardiovasc Dis. 2020;10:479–489.
  • Hendren NS, Drazner MH, Bozkurt B, et al. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020;141:1903–1914.
  • Roshdy A, Zaher S, Fayed H, et al. COVID-19 and the heart: a systematic review of cardiac autopsies. Front Cardiovasc Med. 2020;7:626975.
  • Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41:3827–3835.
  • Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22:911–915.
  • Chung MK, Zidar DA, Bristow MR, et al. COVID-19 and cardiovascular disease. From bench to bedside. Circ Res. 2021;128:1214–1236.
  • Matsumori A, Mason JW. The new FLC biomarker for a novel treatment of myocarditis, COVID-19 disease and other inflammatory disorders. Intern Cardiovasc Forum J. in press.
  • Komiyama M, Hasegawa K, Matsumori A. Dilated cardiomyopathy risk in patients with coronavirus disease 2019: how to identify and characterise it early? Eur Cardiol Rev. 2020;15:e49.
  • Matsumori A, Auda ME, Bruno KA, et al. Cardiovascular factors associated with COVID-19 from an international registry of primarily Japanese patients. Diagnostics. 2022;12:2350.
  • Saleh A, Matsumori A, Abdelrazek S, et al. Myocardial involvement in coronavirus disease 19. Herz. 2020;45:719–725.
  • Matsumori A, Shimada M, Jie X, et al. Effects of free immunoglobulin light chains on viral myocarditis. Circ Res. 2010;106:1533–1540.
  • Matsumori A, Shimada T, Nakatani E, et al. Immunoglobulin free light chains as an inflammatory biomarker of heart failure with myocarditis. Clin Immunol. 2020;217:108455.
  • Sagar S, Liu PP, Cooper LT Jr, et al. Myocarditis. Lancet. 2012;379:738–747.
  • Manka R, Karolyi M, Polacin M, et al. Myocardial edema in COVID-19 on cardiac MRI. J Heart Lung Transplant. 2020;39:730–732.
  • Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1265–1273.
  • Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17:1463–1471.
  • Bertini M, Ferrari R, Guardigli G, et al. Electrocardiographic features of 431 consecutive, critically ill COVID-19 patients: an insight into the mechanisms of cardiac involvement. Europace. 2020;22:1848–1854.
  • Lanza GA, De Vita A, Ravenna SE, et al. Electrocardiographic findings at presentation and clinical outcome in patients with SARS-CoV-2 infection. Europace. 2021;23:123–129.
  • Bergamaschi L, D’Angelo EC, Paolisso P, et al. The value of ECG changes in risk stratification of COVID-19 patients. Ann Noninvasive Electrocardiol. 2021;26:e12815.
  • Scully EP, Schumock G, Fu M, et al. Sex and gender differences in testing, hospital admission, clinical presentation, and drivers of severe outcomes from COVID-19. Open Forum Infect Dis. 2021;8:ofab448.
  • Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26:1636–1643.
  • Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor deficient mice. Science. 2001;291:319–322.
  • Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003;9:1477–1483.
  • Matsumori A, Shimada T, Hattori H, et al. Autoantibodies against cardiac troponin I in patients presenting with myocarditis. CVD Prev Control. 2011;6:41–46.
  • Rubio-Infante N, Ramirez-Flores YA, Castillo EC, et al. A systematic review of the mechanisms involved in immune checkpoint inhibitors cardiotoxicity and challenges to improve clinical safety. Front Cell Dev Biol. 2022;10:851032.
  • Haanen JBAG, Robert C. Immune checkpoint inhibitors. Prog Tumor Res. 2015;42:55–66.
  • Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–1755.
  • Thangavelu G, Smolarchuk C, Anderson CC. Co-inhibitory molecules: controlling the effectors or controlling the controllers? Self Nonself. 2010;1:77–88.
  • Groarke JD, Cheng S, Moslehi J. Cancer-drug discovery and cardiovascular surveillance. N Engl J Med. 2013;369:1779–1781.
  • Poto R, Troiani T, Criscuolo G, et al. Holistic approach to immune checkpoint inhibitor-related adverse events. Front Immunol. 2022;13:804597.
  • Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71:1755–1764.
  • Hu JR, Florido R, Lipson EJ, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc Res. 2019;115:854–868.
  • Vasbinder A, Chen Y, Procureur A, et al. Biomarker trends, Incidence, and outcomes of immune checkpoint inhibitor-induced myocarditis. JACC CardioOncol. 2022;4:689–700.
  • Salem JE, Manouchehri A, Moey M, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19:579–589.
  • Bonaca MP, Olenchock BA, Salem JE, et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation. 2019;140:80–91.
  • Axelrod ML, Meijers WC, Screever EM, et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature. 2022;611:818–826.
  • Mahroum N, Lavine N, Ohayon A, et al. COVID-19 vaccination and the rate of immune and autoimmune adverse events following immunization: insights from a narrative literature review. Front Immunol. 2022;13:872683.
  • Mei R, Raschi E, Forces E, et al. Myocarditis and pericarditis after immunization: gaining insights through the vaccine adverse event reporting system. Int JCardiol. 2018;273:183–186.
  • Engler RJ, Nelson MR, Collins LC Jr, et al. A prospective study of the incidence of myocarditis/pericarditis and new onset cardiac symptoms following smallpox and influenza vaccination. PLoS ONE. 2015;10:e0118283.
  • Arness MK, Eckart RE, Love SS, et al. Myopericarditis following smallpox vaccination. Am J Epidemiol. 2004;160:642–651.
  • Kim YJ, Bae JI, Ryoo SM, et al. Acute fulminant myocarditis following influenza vaccination requiring extracorporeal membrane oxygenation. Acute Crit Care. 2019;34:65–69.
  • Nagano N, Yano T, Fujita Y, et al. Hemodynamic collapse after influenza vaccination: a vaccine-induced fulminant myocarditis? Can J Cardiol. 2020;36:.e1554.5–.e1554.7.
  • Larson KF, Ammirati E, Adler ED, et al. Myocarditis after BNT162b2 and mRNA-1273 vaccination. Circulation. 2021;144:506–508.
  • Vidula MK, Ambrose M, Glassberg H, et al. Myocarditis and other cardiovascular complications of the mRNA-based COVID-19 vaccines. Cureus. 2021;13:e15576.
  • Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. 2021;6:1202–1206.
  • Gargano JW, Wallace M, Hadler SC, et al. Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the advisory committee on immunization practices—United States, June 2021. Morb Mortal Wkly Rep. 2021;70:977–982.
  • Fazlollahi A, Zahmatyar M, Noori M, et al. Cardiac complications following mRNA COVID-19 vaccines: a systematic review of case reports and case series. Rev Med Virol. 2022;32:e2318.
  • Behers BJ, Patrick GA, Jones JM, et al. Myocarditis following COVID-19 vaccination: a systematic review of case reports. Yale J Biol Med. 2022;95:237–247.
  • Lai FTT, Chan EWW, Huang L, et al. Prognosis of myocarditis developing after mRNA COVID-19 vaccination compared with viral myocarditis. J Am Coll Cardiol. 2022;80:2255–2265.
  • Yonker LM, Swank Z, Bartsch YC, et al. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation. 2023;147:867–876.
  • Matsumori A. Management of atrial fibrillation using immunoglobulin free light chains, novel biomarkers of inflammation. Cardiol Rev. 2022;17:e22.
  • Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, et al. Heart inflammation. Immune cell roles and roads to the heart. Am J Pathol. 2019;189:1482–1494.
  • Ajoolabady A, Nattel S, Lip GY, et al. Inflammasome signaling in atrial fibrillation: jACC state-of-the-art review. J Am Coll Cardiol. 2022;79:2349–2366.
  • Varghese B, Feldman DI, Chew C. Inflammation, atrial fibrillation, and the potential role for colchicine therapy. Heart Rhythm O2. 2021;2:298–303.
  • Matsumori A, Shimada T, Shimada M, et al. Immunoglobulin free light chains. Inflammatory biomarkers of atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13:e009017.
  • Chen MC, Chang JP, Liu WH, et al. Increased inflammatory cell infiltration in the atrial myocardium of patients with atrial fibrillation. Am J Cardiol. 2008;102:861–865.
  • Wu N, Xu B, Liu Y, et al. Elevated plasma levels of Th17-related cytokines are associated with increased risk of atrial fibrillation. Sci Rep. 2016;6:26543.
  • Smorodinova N, Blaha M, Melenovsky V, et al. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS ONE. 2017;12:e0172691.
  • Sulzgruber P, Koller L, Winter MP, et al. The impact of CD4(þ)CD28(null) T-lymphocytes on atrial fibrillation and mortality in patients with chronic heart failure. Thromb Haemost. 2017;117:349–356.
  • Yamashita T, Sekiguchi A, Iwasaki YK, et al. Recruitment of immune cells across atrial endocardium in human atrial fibrillation. Circ J. 2010;74:262–270.
  • Suresh A, Martens P, Tang WHW. Biomarkers for myocarditis and inflammatory cardiomyopathy. Curr Heart Fail Rep. 2022;19:346–355.
  • Mavrogeni SI, Fotis L, Voulgari PV, et al. Cardiovascular involvement in autoimmune diseases. Front Cardiovasc Med. 2022 Jul 25;9:982559. doi: 10.3389/fcvm.2022.982559.
  • Myers JM, Cooper LT, Kem DC, et al. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight. 2016;1:e85851.
  • Nindl V, Maier R, Ratering D, et al. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol. 2012;42:2311–2321.
  • Baldeviano GC, Barin JG, Talor MV, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106:1646–1655.
  • Vdovenko D, Eriksson U. Regulatory role of CD4+ T cells in myocarditis. J Immunol Res. 2018 Jun 21;2018:4396351. doi:10.1155/2018/4396351.
  • Wang J, Han B. Dysregulated CD4+ T cells and microRnas in myocarditis. Front Immunol. 2020;11:539.
  • Kaya Z, Leib C, Katus HA. Autoantibodies in heart failure and cardiac dysfunction. Circ Res. 2012;110:145–158.
  • Vilela EM, Bettencourt-Silva R, da Costa JT, et al. Anti-cardiac troponin antibodies in clinical human disease: a systematic review. Ann Transl Med. 2017;5:307.
  • Doesch AO, Konstandin M, Celik S, et al. Effects of protein a immunoadsorption in patients with advanced chronic dilated cardiomyopathy. J Clin Apheresis. 2009;24:141–149.
  • Doesch AO, Mueller S, Nelles M, et al. Impact of troponin I-autoantibodies in chronic dilated and ischemic cardiomyopathy. Basic Res Cardiol. 2011;106:25–35.
  • Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–3128.
  • Besler C, Lang D, Urban D, et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis: implications for its use as a biomarker. Circ Heart Fail. 2017;10:e003804.
  • FY L, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016;16:676–689.
  • Coronado MJ, Bruno KA, Blauwet LA, et al. Elevated sera sST2 is associated with heart failure in men ≤50 years old with myocarditis. J Am Heart Assoc. 2019;8:e008968.
  • Hampson J, Turner ARS. Polyclonal free light chains: promising new biomarkers in inflammatory disease. Curr Biomark Find. 2014;4:139–149.
  • Dispenzieri A, Katzmann JA, Kyle RA, et al. Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population. Mayo Clin Proc. 2012;87:517–523.
  • Gulli F, Napodano C, Marino M, et al. Serum immunoglobulin free light chain levels in systemic autoimmune rheumatic diseases. Clin Exp Immunol. 2020;199:163–171.
  • Terrier B, Sène D, Saadoun D, et al. Serum-free light chain assessment in hepatitis C virus-related lymphoproliferative disorders. Ann Rheum Dis. 2009;68:89–93.
  • Basile U, Gragnani L, Piluso A, et al. Assessment of free light chains in HCV-positive patients with mixed cryoglobulinaemia vasculitis undergoing rituximab treatment. Liver Int. 2015;35:2100–2107.
  • Matsumori A. Novel biomarkers for diagnosis and management of myocarditis and heart failure: immunoglobulin free light chains. 21st Century Cardiol. 2021;2:114.
  • Blanco-Domínguez R, Sánchez-Díaz R, de la Fuente H, et al. A novel circulating microRNA for the detection of acute myocarditis. N Engl J Med. 2021;384:2014–2027.
  • Nie X, He M, Wang J, et al. Circulating miR-4763-3p is a novel potential biomarker candidate for human adult fulminant myocarditis. Mol Ther Methods Clin Dev. 2020;17:1079–1087.
  • Goldberg L, Tirosh-Wagner T, Vardi A, et al. Circulating microRnas: a potential biomarker for cardiac damage, inflammatory response, and left ventricular function recovery in pediatric viral myocarditis. J Cardiovasc Transl Res. 2018;11:319–328.
  • Cooper LT, Berry GJ, Shabetai R. Idiopathic giant-cell myocarditis—Natural history and treatment. Multicenter giant cell myocarditis study group investigators. N Engl J Med. 1997;336:1860–1866.
  • Jensen LD, Marchant DJ. Emerging pharmacologic targets and treatments for myocarditis. Pharmacol Ther. 2016;161:40–51.
  • McNamara DM, Holubkov R, Starling RC, et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation. 2001;103:2254–2259.
  • Kuhl U, Pauschinger M, Schwimmbeck PL, et al. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation. 2003;107:2793–2798.
  • Zimmermann O, Rodewald C, Radermacher M, et al. Interferon beta-1b therapy in chronic viral dilated cardiomyopathy—Is there a role for specific therapy? J Card Fail. 2010;16:348–356.
  • Ammirati E, Bizzi E, Veronese G, et al. Immunomodulating therapies in acute myocarditis and recurrent/acute pericarditis. Front Med. 2022;9:838564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.