260
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomarkers to monitor the prognosis, disease severity, and treatment efficacy in coronary artery disease

, , , , ORCID Icon & ORCID Icon
Pages 675-692 | Received 09 Jun 2023, Accepted 26 Sep 2023, Published online: 06 Oct 2023

References

  • Cassar A, Holmes DR Jr., Rihal CS, et al. Chronic coronary artery disease: diagnosis and management. Mayo Clin Proc. 2009 Dec;84(12):1130–1146. doi: 10.4065/mcp.2009.0391
  • Ralapanawa U, Sivakanesan R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a narrative review. J Epidemiol Glob Health. 2021 Jun;11(2):169–177. doi: 10.2991/jegh.k.201217.001
  • Zeb I, Abbas N, Nasir K, et al. Coronary computed tomography as a cost-effective test strategy for coronary artery disease assessment - a systematic review. Atherosclerosis. 2014 Jun;234(2):426–435. doi: 10.1016/j.atherosclerosis.2014.02.011
  • Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006 May 16;113(19):2335–2362.
  • Thupakula S, Nimmala SSR, Ravula H, et al. Emerging biomarkers for the detection of cardiovascular diseases. Egypt Heart J. 2022 Oct 20;74(1):77. doi: 10.1186/s43044-022-00317-2
  • Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003 Oct;170(2):191–203. doi: 10.1016/S0021-9150(03)00097-2
  • Mulvihill NT, Foley JB, Murphy R, et al. Evidence of prolonged inflammation in unstable angina and non-Q wave myocardial infarction. J Am Coll Cardiol. 2000 Oct;36(4):1210–1216. doi: 10.1016/S0735-1097(00)00824-X
  • Doo YC, Han SJ, Park WJ, et al. Associations between C-reactive protein and circulating cell adhesion molecules in patients with unstable angina undergoing coronary intervention and their clinical implication. Clin Cardiol. 2005 Jan;28(1):47–51. doi: 10.1002/clc.4960280112
  • Blankenberg S, Rupprecht HJ, Bickel C, et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation. 2001 Sep 18;104(12):1336–1342. doi: 10.1161/hc3701.095949
  • Mulvihill NT, Foley JB, Murphy RT, et al. Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules. Heart. 2001 Jun;85(6):623–627. doi: 10.1136/heart.85.6.623
  • Hillis GS, Terregino C, Taggart P, et al. Elevated soluble P-selectin levels are associated with an increased risk of early adverse events in patients with presumed myocardial ischemia. Am Heart J. 2002 Feb;143(2):235–241. doi: 10.1067/mhj.2002.120303
  • Okemefuna AI, Nan R, Miller A, et al. Complement factor H binds at two independent sites to C-reactive protein in acute phase concentrations. J Biol Chem. 2010 Jan 8;285(2):1053–1065. doi: 10.1074/jbc.M109.044529
  • Otake H, Shite J, Shinke T, et al. Relation between plasma adiponectin, high-sensitivity C-reactive protein, and coronary plaque components in patients with acute coronary syndrome. Am J Cardiol. 2008 Jan 1;101(1):1–7. doi: 10.1016/j.amjcard.2007.07.041
  • Badimon L, Pena E, Arderiu G, et al. C-Reactive protein in Atherothrombosis and angiogenesis. Front Immunol. 2018;9:430. doi: 10.3389/fimmu.2018.00430
  • Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004 Apr 1;350(14):1387–1397. doi: 10.1056/NEJMoa032804
  • Zebrack JS, Muhlestein JB, Horne BD, et al. C-reactive protein and angiographic coronary artery disease: independent and additive predictors of risk in subjects with angina. J Am Coll Cardiol. 2002 Feb 20;39(4):632–637. doi: 10.1016/S0735-1097(01)01804-6
  • Arroyo-Espliguero R, Viana-Llamas MC, Silva-Obregon A, et al. The role of C-reactive protein in patient risk stratification and treatment. Eur Cardiol. 2021 Feb;16:e28.
  • Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002 Nov 14;347(20):1557–1565. doi: 10.1056/NEJMoa021993
  • Ho JS, Cannaday JJ, Barlow CE, et al. Utility of high-sensitivity C-reactive protein versus coronary artery calcium for the detection of obstructive stenoses in stable patients. Am J Cardiol. 2013 Feb 1;111(3):328–332. doi: 10.1016/j.amjcard.2012.10.009
  • Lievens D, Zernecke A, Seijkens T, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood. 2010 Nov 18;116(20):4317–4327. doi: 10.1182/blood-2010-01-261206
  • Leroyer AS, Rautou PE, Silvestre JS, et al. CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol. 2008 Oct 14;52(16):1302–1311. doi: 10.1016/j.jacc.2008.07.032
  • Yuan M, Fu H, Ren L, et al. Soluble CD40 ligand promotes macrophage foam cell formation in the etiology of atherosclerosis. Cardiology. 2015;131(1):1–12. doi: 10.1159/000374105
  • Bruemmer D, Riggers U, Holzmeister J, et al. Expression of CD40 in vascular smooth muscle cells and macrophages is associated with early development of human atherosclerotic lesions. Am J Cardiol. 2001 Jan 1;87(1):21–27. doi: 10.1016/S0002-9149(00)01266-2
  • Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res. 2001 Dec 7;89(12):1092–1103. doi: 10.1161/hh2401.101272
  • Garlichs CD, Eskafi S, Raaz D, et al. Patients with acute coronary syndromes express enhanced CD40 ligand/CD154 on platelets. Heart. 2001 Dec;86(6):649–655. doi: 10.1136/heart.86.6.649
  • Pamukcu B, Lip GY, Snezhitskiy V, et al. The CD40-CD40L system in cardiovascular disease. Ann Med. 2011 Aug;43(5):331–340. doi: 10.3109/07853890.2010.546362
  • Varo N, de Lemos JA, Libby P, et al. Soluble CD40L: risk prediction after acute coronary syndromes. Circulation. 2003 Sep 2;108(9):1049–1052. doi: 10.1161/01.CIR.0000088521.04017.13
  • Jefferis BJ, Whincup PH, Welsh P, et al. Prospective study of circulating soluble CD40 ligand concentrations and the incidence of cardiovascular disease in a nested prospective case-control study of older men and women. J Thromb Haemost. 2011 Aug;9(8):1452–1459. doi: 10.1111/j.1538-7836.2011.04415.x
  • Filep JG, El Kebir D. Serum amyloid a as a marker and mediator of acute coronary syndromes. Future Cardiol. 2008 Sep;4(5):495–504. doi: 10.2217/14796678.4.5.495
  • Kosuge M, Ebina T, Ishikawa T, et al. Serum amyloid a is a better predictor of clinical outcomes than C-reactive protein in non-ST-segment elevation acute coronary syndromes. Circ J. 2007 Feb;71(2):186–190. doi: 10.1253/circj.71.186
  • Katayama T, Nakashima H, Takagi C, et al. Prognostic value of serum amyloid a protein in patients with acute myocardial infarction. Circ J. 2005 Oct;69(10):1186–1191. doi: 10.1253/circj.69.1186
  • Johnson BD, Kip KE, Marroquin OC, et al. Serum amyloid a as a predictor of coronary artery disease and cardiovascular outcome in women: the National heart, lung, and blood Institute-Sponsored women’s ischemia syndrome evaluation (WISE). Circulation. 2004 Feb 17;109(6):726–732. doi: 10.1161/01.CIR.0000115516.54550.B1
  • Morrow DA, Rifai N, Antman EM, et al. Serum amyloid a predicts early mortality in acute coronary syndromes: a TIMI 11A substudy. J Am Coll Cardiol. 2000 Feb;35(2):358–362. doi: 10.1016/S0735-1097(99)00574-4
  • Leopold JA, Loscalzo J. Oxidative mechanisms and atherothrombotic cardiovascular disease. Drug Discov Today Ther Strateg. 2008 Mar;5(1):5–13. doi: 10.1016/j.ddstr.2008.02.001
  • Murase T, Kume N, Kataoka H, et al. Identification of soluble forms of lectin-like oxidized LDL receptor-1. Arterioscler Thromb Vasc Biol. 2000 Mar;20(3):715–720. doi: 10.1161/01.ATV.20.3.715
  • Lubrano V, Del Turco S, Nicolini G, et al. Circulating levels of lectin-like oxidized low-density lipoprotein receptor-1 are associated with inflammatory markers. Lipids. 2008 Oct;43(10):945–950. doi: 10.1007/s11745-008-3227-9
  • Inoue N, Sawamura T. Lectin-like oxidized LDL receptor-1 as extracellular chaperone receptor: its versatile functions and human diseases. Methods. 2007 Nov;43(3):218–222. doi: 10.1016/j.ymeth.2007.06.003
  • Hayashida K, Kume N, Murase T, et al. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation. 2005 Aug 9;112(6):812–818. doi: 10.1161/CIRCULATIONAHA.104.468397
  • Sheikh MSA. Circulatory soluble LOX-1 is a novel predictor for coronary artery disease patients. Cardiovasc J Afr. 2022 Oct 11;33:1–5.
  • Lubrano V, Balzan S. Consolidated and emerging inflammatory markers in coronary artery disease. World J Exp Med. 2015 Feb 20;5(1):21–32. doi: 10.5493/wjem.v5.i1.21
  • Saxena A, Russo I, Frangogiannis NG. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl Res. 2016 Jan;167(1):152–166. doi: 10.1016/j.trsl.2015.07.002
  • Galea J, Armstrong J, Gadsdon P, et al. Interleukin-1β in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 1996;16(8):1000–1006. doi: 10.1161/01.ATV.16.8.1000
  • Levi M, Keller TT, van Gorp E, et al. Infection and inflammation and the coagulation system. Cardiovasc Res. 2003;60(1):26–39. doi: 10.1016/S0008-6363(02)00857-X
  • Abbate A, Toldo S, Marchetti C, et al. Interleukin-1 and the Inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020 Apr 24;126(9):1260–1280. doi: 10.1161/CIRCRESAHA.120.315937
  • Jiang X, Wang F, Wang Y, et al. Inflammasome-Driven interleukin-1alpha and interleukin-1beta production in atherosclerotic plaques relates to hyperlipidemia and plaque complexity. JACC Basic Transl Sci. 2019 Jun;4(3):304–317. doi: 10.1016/j.jacbts.2019.02.007
  • Simon AD, Yazdani S, Wang W, et al. Circulating levels of IL-1beta, a prothrombotic cytokine, are elevated in unstable angina versus stable angina. J Thromb Thrombolysis. 2000 Apr;9(3):217–222. doi: 10.1023/A:1018758409934
  • Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003 Apr 1;23(4):656–660. doi: 10.1161/01.ATV.0000064374.15232.C3
  • Himmerich H, Fulda S, Linseisen J, et al. TNF-alpha, soluble TNF receptor and interleukin-6 plasma levels in the general population. Eur Cytokine Netw. 2006 Sep;17(3):196–201.
  • Lubrano V, Cocci F, Battaglia D, et al. Usefulness of high-sensitivity IL-6 measurement for clinical characterization of patients with coronary artery disease. J Clin Lab Anal. 2005;19(3):110–114. doi: 10.1002/jcla.20061
  • Cesari M, Penninx BW, Newman AB, et al. Inflammatory markers and cardiovascular disease (the health, aging and body composition [health ABC] study). Am J Cardiol. 2003;92(5):522–528. doi: 10.1016/S0002-9149(03)00718-5
  • Lindmark E, Diderholm E, Wallentin L, et al. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001 Nov 7;286(17):2107–2113. doi: 10.1001/jama.286.17.2107
  • Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000 Apr 18;101(15):1767–1772. doi: 10.1161/01.CIR.101.15.1767
  • Su D, Li Z, Li X, et al. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediators Inflamm. 2013;2013:726178. doi: 10.1155/2013/726178
  • Ho JE, Mahajan A, Chen MH, et al. Clinical and genetic correlates of growth differentiation factor 15 in the community. Clin Chem. 2012 Nov;58(11):1582–1591. doi: 10.1373/clinchem.2012.190322
  • Hagstrom E, Held C, Stewart RA, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. Clin Chem. 2017 Jan;63(1):325–333. doi: 10.1373/clinchem.2016.260570
  • May BM, Pimentel M, Zimerman LI, et al. GDF-15 as a biomarker in cardiovascular disease. Arq Bras Cardiol. 2021 Mar;116(3):494–500. doi: 10.36660/abc.20200426
  • Li M, Duan L, Cai YL, et al. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc Diabetol. 2020 Aug 3;19(1):120. doi: 10.1186/s12933-020-01092-7
  • Kato ET, Morrow DA, Guo J, et al. Growth differentiation factor 15 and cardiovascular risk: individual patient meta-analysis. Eur Heart J. 2023 Jan 21;44(4):293–300. doi: 10.1093/eurheartj/ehac577
  • Ikeda U, Matsui K, Murakami Y, et al. Monocyte chemoattractant protein‐1 and coronary artery disease. Clin Cardiol. 2002;25(4):143–147. doi: 10.1002/clc.4960250403
  • Garlichs CD, John S, Schmeisser A, et al. Upregulation of CD40 and CD40 ligand (CD154) in patients with moderate hypercholesterolemia. Circulation. 2001 Nov 13;104(20):2395–2400. doi: 10.1161/hc4501.099312
  • Parissis JT, Venetsanou KF, Kalantzi MV, et al. Serum profiles of granulocyte-macrophage colony-stimulating factor and C-C chemokines in hypertensive patients with or without significant hyperlipidemia. Am J Cardiol. 2000 Mar 15;85(6):777–9, A9. doi: 10.1016/S0002-9149(99)00862-0
  • Papayianni A, Alexopoulos E, Giamalis P, et al. Circulating levels of ICAM-1, VCAM-1, and MCP-1 are increased in haemodialysis patients: association with inflammation, dyslipidaemia, and vascular events. Nephrol Dial Transplant. 2002 Mar;17(3):435–441. doi: 10.1093/ndt/17.3.435
  • Störk S, Baumann K, von Schacky C, et al. The effect of 17β-estradiol on MCP-1 serum levels in postmenopausal women. Cardiovasc Res. 2002;53(3):642–649. doi: 10.1016/S0008-6363(01)00461-8
  • Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res. 2004;95(9):858–866. doi: 10.1161/01.RES.0000146672.10582.17
  • de Lemos JA, Morrow DA, Sabatine MS, et al. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation. 2003 Feb 11;107(5):690–695. doi: 10.1161/01.CIR.0000049742.68848.99
  • Nian M, Lee P, Khaper N, et al. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004 Jun 25;94(12):1543–1553. doi: 10.1161/01.RES.0000130526.20854.fa
  • Rao VH, Rai V, Stoupa S, et al. Tumor necrosis factor-alpha regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis. Atherosclerosis. 2016 May;248:160–169.
  • Rolski F, Blyszczuk P. Complexity of TNF-α signaling in heart disease. J Clin Med. 2020 Oct 12;9(10):3267. doi: 10.3390/jcm9103267
  • Ridker PM, Rifai N, Pfeffer M, et al. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000 May 9;101(18):2149–2153. doi: 10.1161/01.CIR.101.18.2149
  • Ueland T, Yndestad A, Oie E, et al. Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation. 2005 May 17;111(19):2461–2468. doi: 10.1161/01.CIR.0000165119.62099.14
  • Mosheimer BA, Kaneider NC, Feistritzer C, et al. Expression and function of RANK in human monocyte chemotaxis. Arthritis Rheum. 2004 Jul;50(7):2309–2316. doi: 10.1002/art.20352
  • Kindle L, Rothe L, Kriss M, et al. Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts. J Bone Miner Res. 2006 Feb;21(2):193–206. doi: 10.1359/JBMR.051027
  • Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997 Apr 18;89(2):309–319. doi: 10.1016/S0092-8674(00)80209-3
  • Sandberg WJ, Yndestad A, Oie E, et al. Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):857–863. doi: 10.1161/01.ATV.0000204334.48195.6a
  • Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008 Jun 3;117(22):2938–2948. doi: 10.1161/CIRCULATIONAHA.107.743161
  • Peri G, Introna M, Corradi D, et al. PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation. 2000 Aug 8;102(6):636–641. doi: 10.1161/01.CIR.102.6.636
  • Latini R, Maggioni AP, Peri G, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2004 Oct 19;110(16):2349–2354. doi: 10.1161/01.CIR.0000145167.30987.2E
  • Ristagno G, Fumagalli F, Bottazzi B, et al. Pentraxin 3 in cardiovascular disease. Front Immunol. 2019;10:823. doi: 10.3389/fimmu.2019.00823
  • Wang Z, Sato A, Akiyama D, et al. Clinical value of plasma pentraxin 3 levels for predicting cardiac troponin elevation after percutaneous coronary intervention. Life Sci. 2014 Jan 24;95(1):40–44. doi: 10.1016/j.lfs.2013.11.021
  • Ustundag M, Orak M, Guloglu C, et al. Comparative diagnostic accuracy of serum levels of neutrophil activating peptide-2 and pentraxin-3 versus troponin-I in acute coronary syndrome. Anadolu Kardiyol Derg. 2011 Nov;11(7):588–594. doi: 10.5152/akd.2011.160
  • Zlibut A, Bocsan IC, Agoston-Coldea L. Pentraxin-3 and endothelial dysfunction. Adv Clin Chem. 2019;91:163–179.
  • Casula M, Montecucco F, Bonaventura A, et al. Update on the role of pentraxin 3 in atherosclerosis and cardiovascular diseases. Vascul Pharmacol. 2017 Dec;99:1–12.
  • Rolph MS, Zimmer S, Bottazzi B, et al. Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2002 May 1;22(5):e10–4. doi: 10.1161/01.ATV.0000015595.95497.2F
  • Knoflach M, Kiechl S, Mantovani A, et al. Pentraxin-3 as a marker of advanced atherosclerosis results from the Bruneck, ARMY and ARFY studies. PLoS One. 2012;7(2):e31474. doi: 10.1371/journal.pone.0031474
  • Soeki T, Niki T, Kusunose K, et al. Elevated concentrations of pentraxin 3 are associated with coronary plaque vulnerability. J Cardiol. 2011 Sep;58(2):151–157. doi: 10.1016/j.jjcc.2011.04.005
  • Nauseef WM. Biosynthesis of human myeloperoxidase. Arch Biochem Biophys. 2018;642:1–9. doi: 10.1016/j.abb.2018.02.001
  • Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25(6):1102–1111. doi: 10.1161/01.ATV.0000163262.83456.6d
  • Ndrepepa G. Myeloperoxidase - a bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019 Jun;493:36–51. doi: 10.1016/j.cca.2019.02.022
  • Schaub N, Reichlin T, Meune C, et al. Markers of plaque instability in the early diagnosis and risk stratification of acute myocardial infarction. Clin Chem. 2012 Jan;58(1):246–256. doi: 10.1373/clinchem.2011.172940
  • Yunoki K, Naruko T, Inaba M, et al. Gender-specific correlation between plasma myeloperoxidase levels and serum high-density lipoprotein-associated paraoxonase-1 levels in patients with stable and unstable coronary artery disease. Atherosclerosis. 2013 Dec;231(2):308–314. doi: 10.1016/j.atherosclerosis.2013.08.037
  • Tang WH, Wu Y, Nicholls SJ, et al. Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease. Clin Chem. 2011 Jan;57(1):33–39. doi: 10.1373/clinchem.2010.152827
  • Zhang R, Brennan ML, Fu X, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001 Nov 7;286(17):2136–2142. doi: 10.1001/jama.286.17.2136
  • Hasanpour Z, Javanmard SH, Gharaaty M, et al. Association between serum myeloperoxidase levels and coronary artery disease in patients without diabetes, hypertension, obesity, and hyperlipidemia. Adv Biomed Res. 2016;5:103. doi: 10.4103/2277-9175.183663
  • Ionita MG, Vink A, Dijke IE, et al. High levels of myeloid-related protein 14 in human atherosclerotic plaques correlate with the characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol. 2009 Aug;29(8):1220–1227. doi: 10.1161/ATVBAHA.109.190314
  • Rai V, Agrawal DK. The role of damage- and pathogen-associated molecular patterns in inflammation-mediated vulnerability of atherosclerotic plaques. Can J Physiol Pharmacol. 2017 Oct;95(10):1245–1253. doi: 10.1139/cjpp-2016-0664
  • Schiopu A, Cotoi OS. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm. 2013;2013:828354. doi: 10.1155/2013/828354
  • Cotoi OS, Duner P, Ko N, et al. Plasma S100A8/A9 correlates with blood neutrophil counts, traditional risk factors, and cardiovascular disease in middle-aged healthy individuals. Arterioscler Thromb Vasc Biol. 2014 Jan;34(1):202–210. doi: 10.1161/ATVBAHA.113.302432
  • MacColl E, Khalil RA. Matrix metalloproteinases as regulators of vein structure and function: implications in chronic venous disease. J Pharmacol Exp Ther. 2015 Dec;355(3):410–428. doi: 10.1124/jpet.115.227330
  • Singh D, Rai V, Agrawal DK. Non-coding RNAs in regulating plaque progression and remodeling of extracellular matrix in atherosclerosis. Int J Mol Sci. 2022 Nov 8;23(22):13731. doi: 10.3390/ijms232213731
  • Rao VH, Rai V, Stoupa S, et al. Blockade of ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Am J Physiol Heart Circ Physiol. 2015 Sep 15;309(6):H1075–86. doi: 10.1152/ajpheart.00378.2015
  • Kalampogias A, Siasos G, Oikonomou E, et al. Basic mechanisms in atherosclerosis: the role of calcium. Med Chem. 2016;12(2):103–113. doi: 10.2174/1573406411666150928111446
  • Ezhov M, Safarova M, Afanasieva O, et al. Matrix metalloproteinase 9 as a predictor of coronary atherosclerotic plaque instability in stable coronary heart disease patients with elevated lipoprotein(a) levels. Biomolecules. 2019 Mar 29;9(4). doi: 10.3390/biom9040129
  • Lenti M, Falcinelli E, Pompili M, et al. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events. Thromb Haemost. 2014 Jun;111(6):1089–1101. doi: 10.1160/TH13-07-0588
  • Wang J, Tan GJ, Han LN, et al. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol. 2017 Feb;14(2):135–150. doi: 10.11909/j.issn.1671-5411.2017.02.008
  • Orbe J, Montero I, Rodriguez JA, et al. Independent association of matrix metalloproteinase-10, cardiovascular risk factors and subclinical atherosclerosis. J Thromb Haemost. 2007 Jan;5(1):91–97. doi: 10.1111/j.1538-7836.2006.02276.x
  • Ariens RA. Elevated fibrinogen causes thrombosis. Blood. 2011 May 5;117(18):4687–4688. doi: 10.1182/blood-2011-03-340422
  • Undas A, Szuldrzynski K, Stepien E, et al. Reduced clot permeability and susceptibility to lysis in patients with acute coronary syndrome: effects of inflammation and oxidative stress. Atherosclerosis. 2008 Feb;196(2):551–557. doi: 10.1016/j.atherosclerosis.2007.05.028
  • Leander K, Blomback M, Wallen H, et al. Impaired fibrinolytic capacity and increased fibrin formation associate with myocardial infarction. Thromb Haemost. 2012 Jun;107(6):1092–1099. doi: 10.1160/TH11-11-0760
  • Neergaard-Petersen S, Larsen SB, Grove EL, et al. Imbalance between fibrin clot formation and fibrinolysis predicts cardiovascular events in patients with stable coronary artery disease. Thromb Haemost. 2020 Jan;120(1):75–82. doi: 10.1055/s-0039-1700873
  • Coppola G, Rizzo M, Abrignani MG, et al. Fibrinogen as a predictor of mortality after acute myocardial infarction: a forty-two-month follow-up study. Ital Heart J. 2005 Apr;6(4):315–322.
  • Maresca G, Di Blasio A, Marchioli R, et al. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol. 1999 Jun;19(6):1368–1377. doi: 10.1161/01.ATV.19.6.1368
  • Emerging Risk Factors C, Danesh J, Erqou S, et al. The emerging risk factors collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol 2007;22(12):839–869.
  • Sumaya W, Wallentin L, James SK, et al. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: a PLATO substudy. Eur Heart J. 2018 Apr 1;39(13):1078–1085. doi: 10.1093/eurheartj/ehy013
  • Sumaya W, Wallentin L, James SK, et al. Impaired fibrinolysis predicts adverse outcome in acute coronary syndrome patients with diabetes: a PLATO sub-study. Thromb Haemost. 2020 Mar;120(3):412–422. doi: 10.1055/s-0039-1701011
  • Erben RG. Physiological actions of Fibroblast growth factor-23. Front Endocrinol. 2018;9:267. doi: 10.3389/fendo.2018.00267
  • Zheng S, Wang C, Yan H, et al. Fibroblast growth factor-23 as a biomarker of adverse outcomes in patients with coronary artery disease: a meta-analysis. Biomarkers. 2022 Jun;27(4):299–305. doi: 10.1080/1354750X.2022.2046857
  • Hu X, Ma X, Pan X, et al. Fibroblast growth factor 23 is associated with the presence of coronary artery disease and the number of stenotic vessels. Clin Exp Pharmacol Physiol. 2015 Nov;42(11):1152–1157. doi: 10.1111/1440-1681.12467
  • Xiao Y, Peng C, Huang W, et al. Circulating fibroblast growth factor 23 is associated with angiographic severity and extent of coronary artery disease. PLoS One. 2013;8(8):e72545. doi: 10.1371/journal.pone.0072545
  • Udell JA, Morrow DA, Jarolim P, et al. Fibroblast growth factor-23, cardiovascular prognosis, and benefit of angiotensin-converting enzyme inhibition in stable ischemic heart disease. J Am Coll Cardiol. 2014 Jun 10;63(22):2421–2428. doi: 10.1016/j.jacc.2014.03.026
  • Parker BD, Schurgers LJ, Brandenburg VM, et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med. 2010 May 18;152(10):640–648. doi: 10.7326/0003-4819-152-10-201005180-00004
  • Wassenaar TM, Juncos VA, Zimmermann K. Interactions between the gut microbiome, lung conditions, and coronary heart disease and how probiotics affect these. Int J Mol Sci. 2021 Sep 8;22(18):9700. doi: 10.3390/ijms22189700
  • Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-Oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc. 2016 Feb 22;5(2). doi: 10.1161/JAHA.115.002767
  • Geng J, Yang C, Wang B, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother. 2018 Jan;97:941–947.
  • Bonaca MP, Scirica BM, Sabatine MS, et al. Prospective evaluation of pregnancy-associated plasma protein-a and outcomes in patients with acute coronary syndromes. J Am Coll Cardiol. 2012 Jul 24;60(4):332–338. doi: 10.1016/j.jacc.2012.04.023
  • Mahto S, Sharma SB, Dwivedi S, et al. Biomarkers for early detection of risk in female patients with coronary artery disease: pilot study. J Assoc Physicians India. 2013 May;61(5):317–319.
  • Iversen KK, Dalsgaard M, Teisner AS, et al. Pregnancy-associated plasma protein-A, a marker for outcome in patients suspected for acute coronary syndrome. Clin Biochem. 2010 Jul;43(10–11):851–857. doi: 10.1016/j.clinbiochem.2010.03.018
  • Lund J, Qin QP, Ilva T, et al. Circulating pregnancy-associated plasma protein a predicts outcome in patients with acute coronary syndrome but no troponin I elevation. Circulation. 2003 Oct 21;108(16):1924–1926. doi: 10.1161/01.CIR.0000096054.18485.07
  • Heeschen C, Dimmeler S, Hamm CW, et al. Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes: comparison with markers of systemic inflammation, platelet activation, and myocardial necrosis. J Am Coll Cardiol. 2005 Jan 18;45(2):229–237. doi: 10.1016/j.jacc.2004.09.060
  • Iversen KK, Teisner B, Winkel P, et al. Pregnancy associated plasma protein-A as a marker for myocardial infarction and death in patients with stable coronary artery disease: a prognostic study within the CLARICOR trial. Atherosclerosis. 2011 Jan;214(1):203–208. doi: 10.1016/j.atherosclerosis.2010.10.025
  • Consuegra-Sanchez L, Petrovic I, Cosin-Sales J, et al. Prognostic value of circulating pregnancy-associated plasma protein-A (PAPP-A) and proform of eosinophil major basic protein (pro-MBP) levels in patients with chronic stable angina pectoris. Clin Chim Acta. 2008 May;391(1–2):18–23. doi: 10.1016/j.cca.2008.01.012
  • Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiol Pol. 2016;74(10):1037–1147. doi: 10.5603/KP.2016.0141
  • Maisel A, Mueller C, Adams K Jr., et al. State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail. 2008 Sep;10(9):824–839. doi: 10.1016/j.ejheart.2008.07.014
  • Wolber T, Maeder M, Rickli H, et al. N-terminal pro-brain natriuretic peptide used for the prediction of coronary artery stenosis. Eur J Clin Invest. 2007 Jan;37(1):18–25. doi: 10.1111/j.1365-2362.2007.01731.x
  • Omland T, Sabatine MS, Jablonski KA, et al. Prognostic value of B-Type natriuretic peptides in patients with stable coronary artery disease: the PEACE trial. J Am Coll Cardiol. 2007 Jul 17;50(3):205–214. doi: 10.1016/j.jacc.2007.03.038
  • Al-Mumin A, Al-Hindy H-A, Mousa MJ. Combined assessments of multi-panel biomarkers for diagnostic performance in coronary artery disease: case-control analysis. Syst Rev Pharm. 2020;11(6):11.
  • McCarthy CP, McEvoy JW, Januzzi JL Jr. Biomarkers in stable coronary artery disease. Am Heart J. 2018 Feb;196:82–96. doi: 10.1016/j.ahj.2017.10.016
  • Weber M, Dill T, Arnold R, et al. N-terminal B-type natriuretic peptide predicts extent of coronary artery disease and ischemia in patients with stable angina pectoris. Am Heart J. 2004 Oct;148(4):612–620. doi: 10.1016/j.ahj.2004.04.021
  • Shah RV, Januzzi JL Jr. ST2: a novel remodeling biomarker in acute and chronic heart failure. Curr Heart Fail Rep. 2010 Mar;7(1):9–14. doi: 10.1007/s11897-010-0005-9
  • Coglianese EE, Larson MG, Vasan RS, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012 Dec;58(12):1673–1681. doi: 10.1373/clinchem.2012.192153
  • Demyanets S, Speidl WS, Tentzeris I, et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One. 2014;9(4):e95055. doi: 10.1371/journal.pone.0095055
  • Dieplinger B, Egger M, Haltmayer M, et al. Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: results from the Ludwigshafen risk and cardiovascular health study. Clin Chem. 2014 Mar;60(3):530–540. doi: 10.1373/clinchem.2013.209858
  • McKie PM, Heublein DM, Scott CG, et al. Defining high-sensitivity cardiac troponin concentrations in the community. Clin Chem. 2013 Jul;59(7):1099–1107. doi: 10.1373/clinchem.2012.198614
  • Tanglay Y, Twerenbold R, Lee G, et al. Incremental value of a single high-sensitivity cardiac troponin I measurement to rule out myocardial ischemia. Am J Med. 2015 Jun;128(6):638–646. doi: 10.1016/j.amjmed.2015.01.009
  • Oemrawsingh RM, Cheng JM, Garcia-Garcia HM, et al. High-sensitivity troponin T in relation to coronary plaque characteristics in patients with stable coronary artery disease; results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016 Apr;247:135–141.
  • Yamazaki K, Iijima R, Nakamura M, et al. High-sensitivity cardiac troponin T level is associated with angiographic complexity of coronary artery disease: a cross-sectional study. Heart Vessels. 2016 Jun;31(6):890–896. doi: 10.1007/s00380-015-0689-6
  • Ndrepepa G, Braun S, Schulz S, et al. High-sensitivity troponin T level and angiographic severity of coronary artery disease. Am J Cardiol. 2011 Sep 1;108(5):639–643. doi: 10.1016/j.amjcard.2011.04.012
  • Beatty AL, Ku IA, Christenson RH, et al. High-sensitivity cardiac troponin T levels and secondary events in outpatients with coronary heart disease from the heart and soul study. JAMA Intern Med. 2013 May 13;173(9):763–769. doi: 10.1001/jamainternmed.2013.116
  • Omland T, de Lemos JA, Sabatine MS, et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009 Dec 24;361(26):2538–2547. doi: 10.1056/NEJMoa0805299
  • Everett BM, Brooks MM, Vlachos HE, et al. Troponin and cardiac events in stable ischemic heart disease and diabetes. N Engl J Med. 2015 Aug 13;373(7):610–620. doi: 10.1056/NEJMoa1415921
  • Mori K, Emoto M, Inaba M. Fetuin-A: a multifunctional protein. Recent Pat Endocr Metab Immune Drug Discov. 2011 May;5(2):124–146. doi: 10.2174/187221411799015372
  • Swallow CJ, Partridge EA, Macmillan JC, et al. alpha2HS-glycoprotein, an antagonist of transforming growth factor beta in vivo, inhibits intestinal tumor progression. Cancer Res. 2004 Sep 15;64(18):6402–6409. doi: 10.1158/0008-5472.CAN-04-1117
  • Jersmann HP, Dransfield I, Hart SP. Fetuin/alpha2-HS glycoprotein enhances phagocytosis of apoptotic cells and macropinocytosis by human macrophages. Clin Sci (Lond). 2003 Sep;105(3):273–278. doi: 10.1042/CS20030126
  • Heiss A, DuChesne A, Denecke B, et al. Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J Biol Chem. 2003 Apr 11;278(15):13333–13341. doi: 10.1074/jbc.M210868200
  • Sun Q, Jimenez MC, Townsend MK, et al. Plasma levels of fetuin-A and risk of coronary heart disease in US women: the nurses’ health study. J Am Heart Assoc. 2014 Jun 24;3(3):e000939. doi: 10.1161/JAHA.114.000939
  • Xie WM, Ran LS, Jiang J, et al. Association between fetuin-A and prognosis of CAD: a systematic review and meta-analysis. Eur J Clin Invest. 2019 May;49(5):e13091. doi: 10.1111/eci.13091
  • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRnas in patients with coronary artery disease. Circ Res. 2010 Sep 3;107(5):677–684. doi: 10.1161/CIRCRESAHA.109.215566
  • Parahuleva MS, Lipps C, Parviz B, et al. MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Sci Rep. 2018 May 18;8(1):7823. doi: 10.1038/s41598-018-25690-4
  • Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016 Feb 19;118(4):703–720. doi: 10.1161/CIRCRESAHA.115.306300
  • Ali Sheikh MS, Alduraywish A, Almaeen A, et al. Therapeutic value of miRnas in coronary artery disease. Oxid Med Cell Longev. 2021;2021:8853748. doi: 10.1155/2021/8853748
  • Kowara M, Cudnoch-Jedrzejewska A, Opolski G, et al. MicroRNA regulation of extracellular matrix components in the process of atherosclerotic plaque destabilization. Clin Exp Pharmacol Physiol. 2017 Jul;44(7):711–718. doi: 10.1111/1440-1681.12772
  • Ai J, Zhang R, Li Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010 Jan 1;391(1):73–77. doi: 10.1016/j.bbrc.2009.11.005
  • Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010 Mar;31(6):659–666. doi: 10.1093/eurheartj/ehq013
  • Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem. 2010 Jul;56(7):1183–1185. doi: 10.1373/clinchem.2010.144121
  • Abdallah HY, Hassan R, Fareed A, et al. Identification of a circulating microRnas biomarker panel for non-invasive diagnosis of coronary artery disease: case-control study. BMC Cardiovasc Disord. 2022 Jun 24;22(1):286. doi: 10.1186/s12872-022-02711-9
  • Ward JA, Esa N, Pidikiti R, et al. Circulating cell and plasma microRNA profiles differ between non-ST-Segment and ST-Segment-elevation myocardial infarction. Fam Med Med Sci Res. 2013 Oct 1;2(2):108. doi: 10.4172/2327-4972.1000108
  • Fazmin IT, Achercouk Z, Edling CE, et al. Circulating microRNA as a biomarker for coronary artery disease. Biomolecules. 2020 Sep 23;10(10). doi: 10.3390/biom10101354
  • Melak T, Baynes HW. Circulating microRnas as possible biomarkers for coronary artery disease: a narrative review. EJIFCC. 2019 Jun;30(2):179–194.
  • Felker GM, Allen LA, Pocock SJ, et al. Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM program and the Duke Databank. J Am Coll Cardiol. 2007 Jul 3;50(1):40–47. doi: 10.1016/j.jacc.2007.02.067
  • Tonelli M, Sacks F, Arnold M, et al. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008 Jan 15;117(2):163–168. doi: 10.1161/CIRCULATIONAHA.107.727545
  • Das De S, Krishna S, Jethwa A. Iron status and its association with coronary heart disease: systematic review and meta-analysis of prospective studies. Atherosclerosis. 2015 Feb;238(2):296–303. doi: 10.1016/j.atherosclerosis.2014.12.018
  • Grammer TB, Kleber ME, Silbernagel G, et al. Hemoglobin, iron metabolism and angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health Study). Atherosclerosis. 2014 Oct;236(2):292–300. doi: 10.1016/j.atherosclerosis.2014.07.002
  • Xiu WJ, Zheng YY, Wu TT, et al. Hemoglobin-to-red-cell distribution width ratio is a novel predictor of long-term patient outcomes after percutaneous coronary intervention: a retrospective cohort study. Front Cardiovasc Med. 2022;9:726025. doi: 10.3389/fcvm.2022.726025
  • Friedman JS, Lopez MF, Fleming MD, et al. SOD2-deficiency anemia: protein oxidation and altered protein expression reveal targets of damage, stress response, and antioxidant responsiveness. Blood. 2004 Oct 15;104(8):2565–2573. doi: 10.1182/blood-2003-11-3858
  • Lippi G, Targher G, Montagnana M, et al. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med. 2009 Apr;133(4):628–632. doi: 10.5858/133.4.628
  • Morrow DA, Rifai N, Antman EM, et al. C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. Thrombolysis in myocardial infarction. J Am Coll Cardiol. 1998 Jun;31(7):1460–1465. doi: 10.1016/S0735-1097(98)00136-3
  • Janszky I, Ericson M, Mittleman MA, et al. Heart rate variability in long-term risk assessment in middle-aged women with coronary heart disease: the Stockholm Female Coronary Risk Study. J Intern Med. 2004 Jan;255(1):13–21. doi: 10.1046/j.0954-6820.2003.01250.x
  • Huikuri HV. Heart rate variability in coronary artery disease. J Intern Med. 1995 Apr;237(4):349–357. doi: 10.1111/j.1365-2796.1995.tb01186.x
  • Tiwari R, Kumar R, Malik S, et al. Analysis of heart rate variability and implication of different factors on heart rate variability. Curr Cardiol Rev. 2021;17(5):e160721189770. doi: 10.2174/1573403X16999201231203854
  • de Geus EJC, Gianaros PJ, Brindle RC, et al. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology. 2019 Feb;56(2):e13287. doi: 10.1111/psyp.13287
  • Tsuji H, Venditti FJ Jr., Manders ES, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994 Aug;90(2):878–883. doi: 10.1161/01.CIR.90.2.878
  • Hillebrand S, Gast KB, de Mutsert R, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace. 2013 May;15(5):742–749. doi: 10.1093/europace/eus341
  • Pozzati A, Pancaldi LG, Di Pasquale G, et al. Transient sympathovagal imbalance triggers “ischemic” sudden death in patients undergoing electrocardiographic holter monitoring. J Am Coll Cardiol. 1996 Mar 15;27(4):847–852. doi: 10.1016/0735-1097(96)00033-2
  • Vuoti AO, Tulppo MP, Ukkola OH, et al. Prognostic value of heart rate variability in patients with coronary artery disease in the current treatment era. PLoS One. 2021;16(7):e0254107. doi: 10.1371/journal.pone.0254107
  • Whang W, Bigger JT Jr. Comparison of the prognostic value of RR-interval variability after acute myocardial infarction in patients with versus those without diabetes mellitus. Am J Cardiol. 2003 Aug 1;92(3):247–251. doi: 10.1016/S0002-9149(03)00618-0
  • Zhou Y, Zhu X, Cui H, et al. The role of the VEGF family in coronary heart disease. Front Cardiovasc Med. 2021;8:738325. doi: 10.3389/fcvm.2021.738325
  • Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010 May;24(5):1467–1478. doi: 10.1096/fj.09-143180
  • Figueira L, Gonzalez JC. Effect of resveratrol on seric vascular endothelial growth factor concentrations during atherosclerosis. Clin Investig Arterioscler. 2018 Sep;30(5):209–216. doi: 10.1016/j.artere.2018.08.002
  • Yu ZM, Deng XT, Qi RM, et al. Mechanism of chronic stress-induced reduced atherosclerotic medial area and increased plaque instability in rabbit models of chronic stress. Chin Med J (Engl). 2018 Jan 20;131(2):161–170. doi: 10.4103/0366-6999.222322
  • Meng R, Pei Z, Chen B, et al. Age-related change of serum angiogenic factor levels in patients with coronary artery disease. Acta Cardiol. 2009 Dec;64(6):735–740. doi: 10.2143/AC.64.6.2044736
  • Kucukardali Y, Aydogdu S, Ozmen N, et al. The relationship between severity of coronary artery disease and plasma level of vascular endothelial growth factor. Cardiovasc Revasc Med. 2008 Apr;9(2):66–70. doi: 10.1016/j.carrev.2007.11.005
  • Mitsos S, Katsanos K, Koletsis E, et al. Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials. Angiogenesis. 2012 Mar;15(1):1–22. doi: 10.1007/s10456-011-9240-2
  • Grines CL, Watkins MW, Mahmarian JJ, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol. 2003 Oct 15;42(8):1339–1347. doi: 10.1016/S0735-1097(03)00988-4
  • Kayali Y, Ozder A. Glycosylated hemoglobin A1c predicts coronary artery disease in non-diabetic patients. J Clin Lab Anal. 2021 Feb;35(2):e23612. doi: 10.1002/jcla.23612
  • Ewid M, Sherif H, Billah SMB, et al. Glycated hemoglobin predicts coronary artery disease in non-diabetic adults. BMC Cardiovasc Disord. 2019 Dec 21;19(1):309. doi: 10.1186/s12872-019-01302-5
  • Hong LF, Li XL, Guo YL, et al. Glycosylated hemoglobin A1c as a marker predicting the severity of coronary artery disease and early outcome in patients with stable angina. Lipids Health Dis. 2014 May 29;13:89. doi: 10.1186/1476-511X-13-89
  • Liu L, Ye J, Ying M, et al. The U-Shape relationship between glycated hemoglobin level and long-term all-cause mortality among patients with coronary artery disease. Front Cardiovasc Med. 2021;8:632704. doi: 10.3389/fcvm.2021.632704
  • Pai JK, Cahill LE, Hu FB, et al. Hemoglobin a1c is associated with increased risk of incident coronary heart disease among apparently healthy, nondiabetic men and women. J Am Heart Assoc. 2013 Mar 22;2(2):e000077. doi: 10.1161/JAHA.112.000077
  • Rosenson RS, Hurt-Camejo E. Phospholipase A2 enzymes and the risk of atherosclerosis. Eur Heart J. 2012 Dec;33(23):2899–2909. doi: 10.1093/eurheartj/ehs148
  • Madjid M, Ali M, Willerson JT. Lipoprotein-associated phospholipase A2 as a novel risk marker for cardiovascular disease: a systematic review of the literature. Tex Heart Inst J. 2010;37(1):25–39.
  • Ling Y, Tang S, Cao Y, et al. Relationship between plasma lipoprotein-associated Phospholipase A2 concentrations and apolipoprotein in stable coronary artery disease patients. Dis Markers. 2020;2020:8818358. doi: 10.1155/2020/8818358
  • Sairam SG, Sola S, Barooah A, et al. The role of Lp-PLA(2) and biochemistry parameters as potential biomarkers of coronary artery disease in Asian South-Indians: a case-control study. Cardiovasc Diagn Ther. 2017 Dec;7(6):589–597. doi: 10.21037/cdt.2017.08.13
  • Svarovskaya AV, Teplyakov AT, Gusakova AM, et al. Role of markers of inflammation and endothelial dysfunction in the prognosis of the development of cardiovascular complications in patients with coronary artery disease and metabolic syndrome after coronary stenting. Kardiologiia. 2020 Sep 17;60(8):98–105. doi: 10.18087/cardio.2020.8.n966
  • Zhang F, Guo J, Yang F, et al. Lp-PLA2 evaluates the severity of carotid artery stenosis and predicts the occurrence of cerebrovascular events in high stroke-risk populations. J Clin Lab Anal. 2021 Mar;35(3):e23691. doi: 10.1002/jcla.23691
  • Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and regression. J Atheroscler Thromb. 2018 Apr 1;25(4):294–303. doi: 10.5551/jat.RV17020
  • Adelhoefer S, Uddin SMI, Osei AD, et al. Coronary artery calcium scoring: new insights into clinical interpretation-lessons from the CAC consortium. Radiol Cardiothorac Imaging. 2020 Dec;2(6):e200281. doi: 10.1148/ryct.2020200281
  • Shreibati JB, Baker LC, McConnell MV, et al. Outcomes after coronary artery calcium and other cardiovascular biomarker testing among asymptomatic medicare beneficiaries. Circ Cardiovasc Imaging. 2014 Jul;7(4):655–662. doi: 10.1161/CIRCIMAGING.113.001869
  • Mohammadpour AH, Nazemi S, Mashhadi F, et al. Evaluation of NPP1 as a novel biomarker of coronary artery disease: a Pilot study in human beings. Adv Pharm Bull. 2018 Aug;8(3):489–493. doi: 10.15171/apb.2018.057
  • Diederichsen SZ, Gronhoj MH, Mickley H, et al. CT-Detected growth of coronary artery calcification in asymptomatic middle-aged subjects and association with 15 biomarkers. JACC Cardiovasc Imaging. 2017 Aug;10(8):858–866. doi: 10.1016/j.jcmg.2017.05.010
  • Koenig W, Khuseyinova N. Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol. 2007 Jan;27(1):15–26. doi: 10.1161/01.ATV.0000251503.35795.4f
  • Luo X, Zhao C, Wang S, et al. TNF-alpha is a novel biomarker for predicting plaque rupture in patients with ST-Segment elevation myocardial infarction. J Inflamm Res. 2022;15:1889–1898. doi: 10.2147/JIR.S352509
  • Surma S, Czober T, Lepich T, et al. Selected biomarkers of atherosclerosis-clinical aspects. Acta Angiologica. 2020;26(1):28–39. doi: 10.5603/AA.2020.0005
  • Rosenson RS, Brewer HB, Rader DJ. Lipoproteins as biomarkers and therapeutic targets in the setting of acute coronary syndrome. Circ Res. 2014 Jun 6;114(12):1880–1889. doi: 10.1161/CIRCRESAHA.114.302805
  • Kook H, Jang DH, Kim JH, et al. Identification of plaque ruptures using a novel discriminative model comprising biomarkers in patients with acute coronary syndrome. Sci Rep. 2020 Nov 19;10(1):20228. doi: 10.1038/s41598-020-77413-3
  • Kumric M, Borovac JA, Martinovic D, et al. Circulating biomarkers reflecting destabilization mechanisms of coronary artery plaques: are we looking for the impossible? Biomolecules. 2021 Jun 14;11(6). doi: 10.3390/biom11060881
  • Ben Braiek A, Chahed H, Dumont F, et al. Identification of biomarker panels as predictors of severity in coronary artery disease. J Cell Mol Med. 2021 Feb;25(3):1518–1530. doi: 10.1111/jcmm.16244
  • Carballo-Perich L, Puigoriol-Illamola D, Bashir S, et al. Clinical parameters and epigenetic biomarkers of plaque vulnerability in patients with carotid stenosis. Int J Mol Sci. 2022 May 5;23(9):5149. doi: 10.3390/ijms23095149
  • Kember I, Sanajou S, Kilicarslan B, et al. Evaluation of neopterin levels and kynurenine pathway in patients with acute coronary syndrome. Acute Crit Care. 2023 Aug;38(3):325–332. doi: 10.4266/acc.2023.00024
  • Awuah A, Moore JS, Nesbit MA, et al. A novel algorithm for cardiovascular screening using conjunctival microcirculatory parameters and blood biomarkers. Sci Rep. 2022 Apr 21;12(1):6545. doi: 10.1038/s41598-022-10491-7
  • Karagiannidis E, Moysidis DV, Papazoglou AS, et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovasc Diabetol. 2022 May 7;21(1):70.
  • Deda O, Panteris E, Meikopoulos T, et al. Correlation of serum acylcarnitines with clinical presentation and severity of coronary artery disease. Biomolecules. 2022 Feb 23;12(3). doi: 10.3390/biom12030354
  • Ferrannini E, Manca ML, Ferrannini G, et al. Differential proteomics of cardiovascular risk and coronary artery disease in humans. Front Cardiovasc Med. 2021;8:790289. doi: 10.3389/fcvm.2021.790289
  • Shin M, Mun S, Park SH, et al. Serum biomarker discovery related to pathogenesis in acute coronary syndrome by proteomic approach. Biosci Rep. 2021 Jun 25;41(6). doi: 10.1042/BSR20210344
  • Sachdeva A, Cannon CP, Deedwania PC, et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in get with the guidelines. Am Heart J. 2009 Jan;157(1):111–117 e2. doi: 10.1016/j.ahj.2008.08.010
  • Guo DC, Papke CL, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009 May;84(5):617–627. doi: 10.1016/j.ajhg.2009.04.007
  • Fioranelli M, Bottaccioli AG, Bottaccioli F, et al. Stress and inflammation in coronary artery disease: a review psychoneuroendocrineimmunology-based. Front Immunol. 2018;9:2031. doi: 10.3389/fimmu.2018.02031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.