0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Long-term outcomes following bioresorbable vascular scaffolds

, , , , , , , , , , & show all
Received 29 Nov 2023, Accepted 28 Jun 2024, Accepted author version posted online: 25 Jul 2024
Accepted author version

REFERENCES

  • Schatz RA, Baim DS, Leon M, et al. Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation. 1991;83(1):148–161. doi: 10.1161/01.CIR.83.1.148
  • Schwartz RS, Edelman ER, Carter A, et al. Drug-eluting stents in preclinical studies: recommended evaluation from a consensus group. Circulation. 2002;106(14):1867–1873. doi: 10.1161/01.CIR.0000033485.20594.6F
  • Dangas GD, Claessen BE, Caixeta A, et al. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010;56(23):1897–1907. doi:10.1016/j.jacc.2010.07.028
  • Palmerini T, Benedetto U, Biondi-Zoccai G, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65(23):2496–2507. doi: 10.1016/j.jacc.2015.04.017
  • Wang X, Chen X, Sun W, et al. Very late stent thrombosis in drug-eluting stents new observations and clinical implications. Cardiol Rev. 2019;27(6):279–285. doi: 10.1097/CRD.0000000000000283
  • Jinnouchi H, Torii S, Sakamoto A, et al. Fully bioresorbable vascular scaffolds: lessons learned and future directions. Nat Rev Cardiol. 2019;16(5):286–304. doi:10.1038/s41569-018-0124-7
  • Nishio S, Kosuga K, Igaki K et al. Long-Term (>10 Years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation, 125(19), 2343–2353 (2012 ). * Long-term outcome of Igaki-Tamai scaffold at >10 years.
  • Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907. doi: 10.1016/S0140-6736(08)60415-8
  • Ninomiya. K, Garg. S, Abizaid. A et al. The PCR-EAPCI Textbook - Percutaneous interventional cardiovascular medicine. In: Bioresorbable scaffolds. Textbook, TP-E, Europa Group: Toulouse, France. Online book; 2022.
  • Sakamoto A, Jinnouchi H, Torii S, Virmani R, Finn AV. Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View. Bioengineering (Basel). 2018;5(3):71. doi:10.3390/bioengineering5030071
  • Onuma Y, Grundeken MJ, Nakatani S et al. Serial 5-Year Evaluation of Side Branches Jailed by Bioresorbable Vascular Scaffolds Using 3-Dimensional Optical Coherence Tomography: Insights From the ABSORB Cohort B Trial (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions). Circ Cardiovasc Interv, 10(9), e004393 (2017).
  • Spuentrup E, Ruebben A, Mahnken A, et al. Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent. Circulation. 2005;111(8):1019–1026. doi: 10.1161/01.CIR.0000156462.97532.8F
  • Ormiston JA, Serruys PW. Bioabsorbable coronary stents. Circ Cardiovasc Interv, 2(3), 255–260 (2009).
  • Nazif TM, Kalra S, Ali ZA, et al.. Percutaneous Coronary Intervention With Bioresorbable Scaffolds in a Young Child. JAMA Cardiol. 2017;2(4):430–434. doi: 10.1001/jamacardio.2016.4954
  • Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373(9667):897–910. doi: 10.1016/S0140-6736(09)60325-1
  • Onuma Y, Dudek D, Thuesen L, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort a trial. JACC: Cardiovasc Interv. 2013;6(10):999–1009. doi: 10.1016/j.jcin.2013.05.017
  • Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–2491. doi: 10.1016/S0140-6736(16)32050-5
  • Onuma Y, Chevalier B, Ono M, et al. Bioresorbable scaffolds versus everolimus-eluting metallic stents: five-year clinical outcomes of the randomised ABSORB II trial. EuroIntervention. 2020;16(11):e938–e941. doi: 10.4244/EIJ-D-20-00024
  • Kereiakes DJ, Ellis SG, Popma JJ et al. Evaluation of a fully bioresorbable vascular scaffold in patients with coronary artery disease: design of and rationale for the ABSORB III randomized trial. Am Heart J, 170(4), 641–651 e643 (2015).
  • Kereiakes DJ, Ellis SG, Metzger DC, et al. Clinical outcomes before and after complete everolimus-eluting bioresorbable scaffold resorption: five-year follow-up from the ABSORB III trial. Circulation. 2019;140(23):1895–1903. doi: 10.1161/CIRCULATIONAHA.119.042584
  • Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–3342. doi: 10.1093/eurheartj/ehv435
  • Onuma Y, Sotomi Y, Shiomi H, et al. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EuroIntervention. 2016;12(9):1090–1101. doi: 10.4244/EIJY16M09_01
  • Onuma Y, Honda Y, Asano T, et al. Randomized comparison between everolimus-eluting bioresorbable scaffold and metallic stent: multimodality imaging through 3 years. JACC: Cardiovasc Interv. 2020;13(1):116–127. doi: 10.1016/j.jcin.2019.09.047
  • Kozuma K, Tanabe K, Hamazaki Y et al. Long-Term Outcomes of Absorb Bioresorbable Vascular Scaffold vs. Everolimus-Eluting Metallic Stent - A Randomized Comparison Through 5 Years in Japan. Circ J, 84(5), 733–741 (2020).
  • Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol. 2015;66(21):2298–2309. doi: 10.1016/j.jacc.2015.09.054
  • Xu B, Yang Y, Han Y, et al. Comparison of everolimus-eluting bioresorbable vascular scaffolds and metallic stents: three-year clinical outcomes from the ABSORB China randomised trial. EuroIntervention. 2018;14(5):e554–e561. doi: 10.4244/EIJ-D-17-00796
  • Gao R. 5-Year Clinical Outcomes From Randomized Comparison of Everolimus-Eluting Bioresorbable Vascular Scaffolds Versus Everolimus-Eluting Metallic Stents in Patients With Coronary Artery Disease From ABSORB China Trial. In: TCT 2019. Gao, R (San Francisco, CA, 2019)
  • Stone GW, Ellis SG, Gori T, et al. Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet. 2018;392(10157):1530–1540. doi: 10.1016/S0140-6736(18)32283-9
  • Stone GW, Kimura T, Gao R, et al.. Time-Varying Outcomes With the Absorb Bioresorbable Vascular Scaffold During 5-Year Follow-up: A Systematic Meta-analysis and Individual Patient Data Pooled Study. JAMA Cardiol. 2019;4(12):1261–1269. doi: 10.1001/jamacardio.2019.4101.
  • Stone GW, Kereiakes DJ, Gori T, et al. 5-year outcomes after bioresorbable coronary scaffolds implanted with improved technique. J Am Coll Cardiol. 2023;82(3):183–195. doi: 10.1016/j.jacc.2023.05.003
  • Woudstra P, Grundeken MJ, Kraak RP et al. Amsterdam Investigator-initiateD Absorb strategy all-comers trial (AIDA trial): a clinical evaluation comparing the efficacy and performance of ABSORB everolimus-eluting bioresorbable vascular scaffold strategy vs the XIENCE family (XIENCE PRIME or XIENCE Xpedition) everolimus-eluting coronary stent strategy in the treatment of coronary lesions in consecutive all-comers: rationale and study design. Am Heart J, 167(2), 133–140 (2014).
  • Tijssen RYG, Kraak RP, Hofma SH, et al. Complete two-year follow-up with formal non-inferiority testing on primary outcomes of the AIDA trial comparing the absorb bioresorbable scaffold with the XIENCE drug-eluting metallic stent in routine PCI. EuroIntervention. 2018;14(4):e426–e433. doi: 10.4244/EIJ-D-18-00335
  • Kerkmeijer LSM, Tijssen RYG, Hofma SH, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent in routine PCI: three-year clinical outcomes from the AIDA trial. EuroIntervention. 2019;15(7):603–606. doi: 10.4244/EIJ-D-19-00325
  • Kerkmeijer LSM, Renkens MPL, Tijssen RYG, et al. Long-term clinical outcomes of everolimus-eluting bioresorbable scaffolds versus everolimus-eluting stents: final five-year results of the AIDA randomised clinical trial. EuroIntervention. 2022;17(16):1340–1347. doi: 10.4244/EIJ-D-21-00419
  • Smits PC, Chang CC, Chevalier B, et al. Bioresorbable vascular scaffold versus metallic drug-eluting stent in patients at high risk of restenosis: the COMPARE-ABSORB randomised clinical trial. EuroIntervention. 2020;16(8):645–653. doi: 10.4244/EIJ-D-19-01079
  • Stone GW, Maehara A, Ali ZA, et al. Percutaneous coronary intervention for vulnerable coronary atherosclerotic plaque. J Am Coll Cardiol. 2020;76(20):2289–2301. doi: 10.1016/j.jacc.2020.09.547
  • Arroyo D, Togni M, Puricel S et al. Comparison of everolimus-eluting and biolimus-eluting coronary stents with everolimus-eluting bioresorbable scaffold: study protocol of the randomized controlled EVERBIO II trial. Trials, 15, 9 (2014).
  • Puricel S, Arroyo D, Corpataux N, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol. 2015;65(8):791–801. doi: 10.1016/j.jacc.2014.12.017
  • Arroyo D, Gendre G, Schukraft S, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds: two-year clinical outcomes of the EVERBIO II trial. Int J Cardiol. 2017;243:121–125. doi: 10.1016/j.ijcard.2017.05.053
  • Schukraft S, Arroyo D, Togni M, et al. Five-year angiographic, OCT and clinical outcomes of a randomized comparison of everolimus and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. Catheter Cardiovasc Interv. 2022;99(3):523–532. doi: 10.1002/ccd.29837
  • Ali ZA, Serruys PW, Kimura T, et al. 2-year outcomes with the absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. Lancet. 2017;390(10096):760–772. doi: 10.1016/S0140-6736(17)31470-8
  • Elias J, van Dongen IM, Kraak RP, et al. Mid-term and long-term safety and efficacy of bioresorbable vascular scaffolds versus metallic everolimus-eluting stents in coronary artery disease: a weighted meta-analysis of seven randomised controlled trials including 5577 patients. Neth Heart J. 2017;25(7–8):429–438. doi: 10.1007/s12471-017-1008-x
  • Zhang XL, Zhu QQ, Kang LN, et al. Mid- and Long-term outcome comparisons of Everolimus-eluting bioresorbable scaffolds versus Everolimus-eluting metallic stents: a systematic review and meta-analysis. Ann Intern Med. 2017;167(9):642–654. doi:10.7326/M17-1101
  • Brugaletta S, Heo JH, Garcia-Garcia HM et al. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur Heart J, 33(11), 1325–1333 (2012).
  • Dudek D, Rzeszutko Ł, Onuma Y, et al. Vasomotor response to nitroglycerine over 5 years follow-up after Everolimus-eluting bioresorbable scaffold implantation. JACC: Cardiovasc Interv. 2017;10(8):786–795. doi: 10.1016/j.jcin.2016.12.020
  • Moscarella E, Tanaka A, Ielasi A, et al. Bioresorbable vascular scaffold versus everolimus-eluting stents or drug eluting balloon for the treatment of coronary in-stent restenosis: 1-year follow-up of a propensity score matching comparison (the BIORESOLVE-ISR study). Catheter Cardiovasc Interv. 2018;92(4):668–677. doi: 10.1002/ccd.27473
  • Katagiri Y, Serruys PW, Asano T, et al. How does the failure of absorb apply to the other bioresorbable scaffolds? An expert review of first-in-man and pivotal trials. EuroIntervention. 2019;15(1):116–123. doi: 10.4244/EIJ-D-18-00607
  • Katagiri Y, Onuma Y, Asano T, et al. Relation between bioresorbable scaffold sizing using QCA-Dmax and long-term clinical outcomes in 1,232 patients from three study cohorts (ABSORB cohort B, ABSORB EXTEND, and ABSORB II). EuroIntervention. 2018;14(9):e1057–e1066. doi: 10.4244/EIJ-D-18-00301
  • Ortega-Paz L, Capodanno D, Gori T, et al. Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score. EuroIntervention. 2017;12(17):2110–2117. doi: 10.4244/EIJ-D-16-00974
  • Serruys PW, Onuma Y, Ormiston JA, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation. 2010;122(22):2301–2312. doi: 10.1161/CIRCULATIONAHA.110.970772
  • Yamaji K, Ueki Y, Souteyrand G, et al. Mechanisms of very late bioresorbable scaffold thrombosis: the INVEST registry. J Am Coll Cardiol. 2017;70(19):2330–2344. doi: 10.1016/j.jacc.2017.09.014
  • Campos CM, Muramatsu T, Iqbal J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci. 2013;14(12):24492–24500. doi: 10.3390/ijms141224492
  • Waksman R, Lipinski MJ, Acampado E, et al. Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus absorb in a porcine arteriovenous shunt Model. Circ Cardiovasc Interv. 2017;10(8):e004762. doi: 10.1161/CIRCINTERVENTIONS.116.004762
  • Chen Y, Dou J, Yu H, et al. Degradable magnesium-based alloys for biomedical applications: the role of critical alloying elements. J Biomater Appl. 2019;33(10):1348–1372. doi:10.1177/0885328219834656
  • Baker WL. Treating arrhythmias with adjunctive magnesium: identifying future research directions. Eur Heart J Cardiovasc Pharmacother, 3(2), 108–117 (2017).
  • Haude M, Ince H, Toelg R, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold (DREAMS 2G) in patients with de novo coronary lesions: three-year clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. EuroIntervention. 2020;15(15):e1375–e1382. doi: 10.4244/EIJ-D-18-01000
  • Haude M, Ince H, Kische S et al. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention, 13(4), 432–439 (2017).
  • Verheye S, Wlodarczak A, Montorsi P, et al. BIOSOLVE-IV-registry: safety and performance of the magmaris scaffold: 12-month outcomes of the first cohort of 1,075 patients. Catheter Cardiovasc Interv. 2021;98(1):E1–E8. doi: 10.1002/ccd.29260
  • Verheye S, Wlodarczak A, Montorsi P, et al. Twelve-month outcomes of 400 patients treated with a resorbable metal scaffold: insights from the BIOSOLVE-IV registry. EuroIntervention. 2020;15(15):e1383–e1386. doi: 10.4244/EIJ-D-18-01058
  • Wlodarczak A, Montorsi P, Torzewski J, et al. One- and two-year clinical outcomes of treatment with resorbable magnesium scaffolds for coronary artery disease: the prospective, international, multicentre BIOSOLVE-IV registry. EuroIntervention. 2023;19(3):232–239. doi: 10.4244/EIJ-D-22-01069
  • Gomez-Lara J, Ortega-Paz L, Brugaletta S, et al. Bioresorbable scaffolds versus permanent sirolimus-eluting stents in patients with ST-segment elevation myocardial infarction: vascular healing outcomes from the MAGSTEMI trial. EuroIntervention. 2020;16(11):e913–e921. doi: 10.4244/EIJ-D-20-00198
  • Ortega-Paz L, Brugaletta S, Gomez-Lara J, et al. Magnesium-based resorbable scaffold vs permanent metallic sirolimus-eluting stent in patients with ST-segment elevation myocardial infarction: 3-year results of the MAGSTEMI randomised controlled trial. EuroIntervention. 2022;18(5):e389–e396. doi: 10.4244/EIJ-D-21-00651
  • Hideo-Kajita A, Garcia-Garcia HM, Kolm P et al. Comparison of clinical outcomes between Magmaris and Orsiro drug eluting stent at 12 months: Pooled patient level analysis from BIOSOLVE II-III and BIOFLOW II trials. Int J Cardiol, 300, 60–65 (2020).
  • Rola P, Wlodarczak A, Wlodarczak S et al. Magnesium Bioresorbable Scaffold (BRS) Magmaris vs Biodegradable Polymer DES Ultimaster in NSTE-ACS Population-12-Month Clinical Outcome. J Interv Cardiol, 2022, 5223317 (2022).
  • Rola P, Wlodarczak A, Lanocha M, et al. Outcomes of the two generations of bioresorbable scaffolds (magmaris vs. Absorb) in acute coronary syndrome in routine clinical practice. Cardiol J. 2022;30(6):870–880. doi: 10.5603/CJ.a2022.0047
  • Boeder NF, Dorr O, Koepp T, et al. Acute mechanical performance of Magmaris vs. DESolve bioresorbable scaffolds in a real-world scenario. Front Cardiovasc Med. 2021;8:696287. doi: 10.3389/fcvm.2021.696287
  • Rola P, Wlodarczak S, Doroszko A, Lesiak M, Wlodarczak A. The bioresorbable magnesium scaffold (Magmaris)-State of the art: From basic concept to clinical application. Catheter Cardiovasc Interv, 100(6), 1051–1058 (2022).
  • Bossard M, Madanchi M, Avdijaj D et al. Long-Term Outcomes After Implantation of Magnesium-Based Bioresorbable Scaffolds-Insights From an All-Comer Registry. Front Cardiovasc Med, 9, 856930 (2022).
  • Al Nooryani A, Aboushokka W, AlBaba B et al. Long-Term Performance of the Magmaris Drug-Eluting Bioresorbable Metallic Scaffold in All-Comers Patients’ Population. J Clin Med, 11(13), 3726 (2022).
  • Wlodarczak A, Lanocha M, Lesiak M, et al. Long-term clinical follow-up of the resorbable magnesium scaffolds in acute coronary syndrome patients. Kardiol Pol. 2021;79(7–8):827–832. doi: 10.33963/KP.a2021.0035
  • Gutierrez-Barrios A, Gheorghe LL, Camacho Freire S, et al. Long-term clinical, angiographic, and optical coherence tomography findings of Mg-based bioresorbable scaffold in patients with acute coronary syndrome. Catheter Cardiovasc Interv. 2021;98(1):E69–E77. doi: 10.1002/ccd.29557
  • Haude M, Wlodarczak A, van der Schaaf RJ et al. Safety and performance of the third-generation drug-eluting resorbable coronary magnesium scaffold system in the treatment of subjects with de novo coronary artery lesions: 6-month results of the prospective, multicenter BIOMAG-I first-in-human study. EClinicalMedicine, 59, 101940 (2023).
  • Haude M, Wlodarczak A, van der Schaaf RJ et al. A new resorbable magnesium scaffold for de novo coronary lesions (DREAMS 3): one-year results of the BIOMAG-I first-in-human study. EuroIntervention, 19(5), e414–e422 (2023).
  • Y. O. Japan medical device technology - surface modification does improve late recoil of new magnesium alloy-based bioresorbable stent. In: EuroPCR. 2018. (Paris, France, 2018)
  • Sotomi Y, Onuma Y, Collet C, et al. Bioresorbable scaffold: the emerging reality and future directions. Circ Res. 2017;120(8):1341–1352. doi: 10.1161/CIRCRESAHA.117.310275
  • Ormiston JA, Webber B, Ubod B, Darremont O, Webster MW. An independent bench comparison of two bioresorbable drug-eluting coronary scaffolds (Absorb and DESolve) with a durable metallic drug-eluting stent (ML8/Xpedition). EuroIntervention, 11(1), 60–67 (2015).
  • Verheye S, Ormiston JA, Stewart J, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC: Cardiovasc Interv. 2014;7(1):89–99. doi: 10.1016/j.jcin.2013.07.007
  • Chevalier BR. Desolve Nx, Cx, and Amity: A Family of Progressively Thinner-Strut PLLA-Based BRS With Novel Properties. In: TCT 2017. (Denver, CO, 2017)
  • Boeder NF, Dorr O, Bauer T, et al. Impact of strut thickness on acute mechanical performance: a comparison study using optical coherence tomography between DESolve 150 and DESolve 100. Int J Cardiol. 2017;246:74–79. doi: 10.1016/j.ijcard.2017.05.087
  • Blachutzik F, Boeder N, Wiebe J, et al. Post-dilatation after implantation of bioresorbable everolimus- and novolimus-eluting scaffolds: an observational optical coherence tomography study of acute mechanical effects. Clin Res Cardiol. 2017;106(4):271–279. doi: 10.1007/s00392-016-1048-z
  • Chen JH, Wu YZ, Shen L, et al. First-in-man implantation of the XINSORB bioresorbable sirolimus-eluting scaffold in China. Chin Med J (Engl). 2015;128(9):1275–1276. doi: 10.4103/0366-6999.156155
  • Zhang Y, Zhao J, Yang G, et al. Mechanical properties and degradation of drug eluted bioresorbable vascular scaffolds prepared by three-dimensional printing technology. J Biomater Sci Polym Ed. 2019;30(7):547–560. doi: 10.1080/09205063.2019.1586303
  • Wu Y, Shen L, Yin J, et al. Twelve-month angiographic and clinical outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold and a metallic stent in patients with coronary artery disease. Int J Cardiol. 2019;293:61–66. doi: 10.1016/j.ijcard.2019.06.053
  • Wu Y, Yao Z, Yin J, et al.. Three-year clinical outcomes of a sirolimus-eluting bioresorbable scaffold (XINSORB) and a metallic stent to treat coronary artery stenosis. Ann Transl Med. 2020;8(22):1489. doi: 10.21037/atm-20-6739
  • Costa JdR, Abizaid A, Chamie D, Lansky A, Kochman J, Koltowski L. Initial Results of the Fantom 1 Trial: A First-in-Man Evaluation of a Novel, Radiopaque Sirolimus-Eluting Bioresorbable Vascular Scaffold. J Am Coll Cardiol, 67(13), 232 (2016).
  • Abizaid A, Carrié D, Frey N, et al. 6-month clinical and angiographic outcomes of a Novel Radiopaque Sirolimus-eluting bioresorbable vascular scaffold: the FANTOM II study. JACC: Cardiovasc Interv. 2017;10(18):1832–1838. doi: 10.1016/j.jcin.2017.07.033
  • Chevalier B, Abizaid A, Carrié D, et al. Clinical and angiographic outcomes with a Novel Radiopaque Sirolimus-eluting bioresorbable vascular scaffold. Circ Cardiovasc Interv. 2019;12(6):e007283. doi: 10.1161/CIRCINTERVENTIONS.118.007283
  • Saito Y, Cristea E, Bouras G, et al. Long-term serial functional evaluation after implantation of the fantom sirolimus-eluting bioresorbable coronary scaffold. Catheter Cardiovasc Interv. 2021;97(3):431–436. doi: 10.1002/ccd.28804
  • Lutz M. FANTOM II Trial: Safety & Performance Study of the Fantom Sirolimus-Eluting Bioresorbable Coronary Scaffold – Final: 5 Year Clinical Outcomes. In: TCT 2022. (Boston, MA, 2022)
  • Lutz M. Safety & Performance of the Fantom Sirolimus-Eluting Bioresorbable Coronary Scaffold First Report 5 Year Clinical Outcomes. In: TCT 2021. (2021)
  • Koltowski L, Tomaniak M, Ochijewicz D et al. Second generation, sirolimus-eluting, bioresorbable Tyrocore scaffold implantation in patients with ST-segment elevation myocardial infarction: Baseline OCT and 30-day clinical outcomes - A FANTOM STEMI pilot study. Catheter Cardiovasc Interv, 96(1), E1–e7 (2020).
  • Ferdous MM, Jie Z, Gao L, et al. A first-in-human study of the bioheart sirolimus-eluting bioresorbable vascular scaffold in patients with coronary artery disease: two-year clinical and imaging outcomes. Adv Ther. 2022;39(8):3749–3765. doi: 10.1007/s12325-022-02154-w
  • Seth A, Onuma Y, Costa R, et al. First-in-human evaluation of a novel poly-L-lactide based sirolimus-eluting bioresorbable vascular scaffold for the treatment of de novo native coronary artery lesions: MeRes-1 trial. EuroIntervention. 2017;13(4):415–423. doi: 10.4244/EIJ-D-17-00306
  • Seth A, Onuma Y, Chandra P, et al. Three-year clinical and two-year multimodality imaging outcomes of a thin-strut sirolimus-eluting bioresorbable vascular scaffold: MeRes-1 trial. EuroIntervention. 2019;15(7):607–614. doi: 10.4244/EIJ-D-19-00324
  • Zhang YJ, Wang XZ, Fu G, et al. Clinical and multimodality imaging results at 6 months of a bioresorbable sirolimus-eluting scaffold for patients with single de novo coronary artery lesions: the NeoVas first-in-man trial. EuroIntervention. 2016;12(10):1279–1287. doi: 10.4244/EIJV12I10A209
  • Han Y, Xu B, Fu G, et al. A randomized trial comparing the NeoVas sirolimus-eluting bioresorbable scaffold and Metallic Everolimus-eluting stents. JACC: Cardiovasc Interv. 2018;11(3):260–272. doi: 10.1016/j.jcin.2017.09.037
  • Xu K, Fu G, Xu B, et al. Safety and efficacy of the novel sirolimus-eluting bioresorbable scaffold for the treatment of de novo coronary artery disease: one-year results from a prospective patient-level pooled analysis of NeoVas trials. Catheter Cardiovasc Interv. 2019;93(S1):832–838. doi: 10.1002/ccd.28067
  • Wang X, Li Y, Fu G, et al. Three-year clinical outcomes of the novel sirolimus-eluting bioresorbable scaffold for the treatment of de novo coronary artery disease: a prospective patient-level pooled analysis of NeoVas trials. Catheter Cardiovasc Interv. 2023;101(6):967–972. doi: 10.1002/ccd.30518
  • Byrne RA, Stefanini GG, Capodanno D, et al. Report of an ESC-EAPCI task force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary. Eur Heart J. 2018;39(18):1591–1601. doi: 10.1093/eurheartj/ehx488
  • Gao R-L, Xu B, Sun Z et al. First-in-human evaluation of a novel ultrathin sirolimus-eluting iron bioresorbable scaffold: 3-year outcomes of the IBS-FIM trial. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, EIJ-D-22-00919 (2023).
  • Song L, Sun Z, Guan C et al. First-in-man study of a thinner-strut sirolimus-eluting bioresorbable scaffold (FUTURE-I): Three-year clinical and imaging outcomes. Catheter Cardiovasc Interv, 95 Suppl 1, 648–657 (2020).
  • Song L, Xu B, Chen Y, et al. Thinner strut sirolimus-eluting BRS versus EES in patients with coronary artery disease: FUTURE-II trial. JACC: Cardiovasc Interv. 2021;14(13):1450–1462. doi: 10.1016/j.jcin.2021.04.048
  • Presented EG. From Fortitude 150 to Aptitude 115: Clinical update. In: EuroPCR 2017. (Paris, France., 2017)
  • Colombo A. FORTITUDE: Nine-Month Clinical, Angiographic, and OCT Results With an Amorphous PLLA-Based Sirolimus-Eluting Bioresorbable Vascular Scaffold in Patients With Coronary Artery Disease. In: TCT 2016. (Washington, DC, 2016)
  • FG. J. Fortitude, Aptitude, and Magnitude: Progressively Thin-Strut BRS Based on Ultra-High MW Amorphous PLLA. In: TCT 2017. (Denver, CO., 2017)
  • Chieffo A, Khawaja SA, Vesga B, et al. First in human evaluation of a novel sirolimus-eluting ultra-high molecular weight bioresorbable scaffold: 9-, 24-and 36-months imaging and clinical results from the multi-center RENASCENT study. Int J Cardiol. 2020;321:48–53. doi: 10.1016/j.ijcard.2020.08.014
  • Ferrone M, Chieffo A, Khawaja SA, et al. RENASCENT III: first in human evaluation of the novel thin strut MAGNITUDE sirolimus-Eluting Ultra-high molecular weight MAGNITUDE bioresorbable scaffold: 9-month imaging and 2-year clinical results. Circ Cardiovasc Interv. 2021;14(5):e010013. doi: 10.1161/CIRCINTERVENTIONS.120.010013
  • Verheye S, Vrolix M, Montorfano M, et al. Twelve-month clinical and imaging outcomes of the uncaging coronary DynamX bioadaptor system. EuroIntervention. 2020;16(12):e974–e981. doi: 10.4244/EIJ-D-20-00763
  • Verheye S, Morice MC, Zivelonghi C, et al. 24-month clinical follow-up and mechanistic insights from intravascular imaging following coronary implantation of the novel DynamX bioadaptor platform. Cardiovasc Revasc Med. 2023;46:106–112. doi: 10.1016/j.carrev.2022.09.009
  • Kansal MM, Wolska B, Verheye S, et al. Adaptive coronary artery rotational motion through uncaging of a drug-eluting bioadaptor aiming to reduce stress on the coronary artery. Cardiovasc Revasc Med. 2022;39:52–57. doi:10.1016/j.carrev.2021.09.009
  • Saito S, Nef HM, Webster M, Verheye S, Dynam XRCTi. DynamX sirolimus-eluting Bioadaptor versus the zotarolimus-eluting Resolute Onyx stent in patients with de novo coronary artery lesions: Design and rationale of the multi-center, international, randomized BIODAPTOR-RCT. Cardiovasc Revasc Med, 55, 76–82 (2023).
  • Gao RL, Xu B, Sun Z, et al. First-in-human evaluation of a novel ultrathin sirolimus-eluting iron bioresorbable scaffold: 3-year outcomes of the IBS-FIM trial. EuroIntervention. 2023;19(3):222–231. doi: 10.4244/EIJ-D-22-00919
  • Varcoe RL, Parikh SA, DeRubertis BG et al. Evaluation of an Infrapopliteal Drug-Eluting Resorbable Scaffold: Design Methodology for the LIFE-BTK Randomized Controlled Trial. Journal of the Society for Cardiovascular Angiography & Interventions, 2(4) (2023).10.1016/j.jscai.2023.100964

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.