0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current status and future directions in artificial intelligence for nuclear cardiology

&
Received 29 Apr 2024, Accepted 12 Jul 2024, Accepted author version posted online: 13 Jul 2024
Accepted author version

REFERENCES

  • Elias P, Jain SS, Poterucha T, et al. Artificial intelligence for cardiovascular care—part 1: advances. J Am Coll Cardiol. 2024;83(24):2472–2486. doi: 10.1016/j.jacc.2024.03.400
  • Dey D, Slomka PJ, Leeson P, et al. Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019 Mar 26;73(11):1317–1335. 10.1016/j.jacc.2018.12.054
  • Ramon AJ, Yang Y, Pretorius PH, et al. Initial Investigation of Low-Dose SPECT-MPI via Deep Learning. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC); 201810-17 Nov. 2018.
  • Toumi M, Yongyi Y, Pretorius PH, et al. Edge-preserving, CNN based, denoising in low dose SPECT myocardial perfusion imaging. Proc.SPIE; 2024.
  • Aghakhan Olia N, Kamali-Asl A, Hariri Tabrizi S, et al. Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance. Eur J Nucl Med Mol Imaging. 2022 Apr;49(5):1508–22.
  • Liu J, Yang Y, Wernick MN, et al. Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising. J Nucl Cardiol. 2022;29(5):2340–2349. doi: 10.1007/s12350-021-02676-w
  • Yu Z, Rahman MA, Laforest R, et al. Need for objective task-based evaluation of deep learning-based denoising methods: a study in the context of myocardial perfusion SPECT. Med Phys. 2023;50(7):4122–4137. doi: 10.1002/mp.16407
  • Rahman A, Yu Z, Siegel B, et al. A task-specific deep-learning-based denoising approach for myocardial perfusion SPECT. Vol. 12467. SPIE; 2023.
  • Wang B, Liu H FBP-Net for direct reconstruction of dynamic PET images. Phys Med Biol. 2020 Nov 20;65(23). 235008 10.1088/1361-6560/abc09d
  • Shiri I, AmirMozafari Sabet K, Arabi H, et al. Standard SPECT myocardial perfusion estimation from half-time acquisitions using deep convolutional residual neural networks. J Nucl Cardiol. 2021 Dec;28(6):2761–2779. 10.1007/s12350-020-02119-y
  • Chen X, Zhou B, Xie H, et al. DuDoSS: deep-learning-based dual-domain sinogram synthesis from sparsely sampled projections of cardiac SPECT. Med Phys. 2023;50(1):89–103. doi: 10.1002/mp.15958
  • Sun J, Jiang H, Du Y, et al. Deep learning-based denoising in projection-domain and reconstruction-domain for low-dose myocardial perfusion SPECT. J Nucl Cardiol. 20232023/06/01;30(3):970–85.
  • Dorbala S, Di Carli MF, Delbeke D, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med. 2013 Aug;54(8):1485–1507.10.2967/jnumed.112.105155
  • Arsanjani R, Xu Y, Hayes SW, et al. Comparison of Fully Automated Computer Analysis and Visual Scoring for Detection of Coronary Artery Disease from Myocardial Perfusion SPECT in a Large Population. J Nucl Med. 2013:jnumed.112.108969.
  • Goetze S, Wahl RL Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol. 2007 Apr;14(2):200–206. 10.1016/j.nuclcard.2006.12.325
  • Schaefferkoetter J, Shah V, Hayden C, et al. Deep learning for improving PET/CT attenuation correction by elastic registration of anatomical data. Eur J Nucl Med Mol Imaging. 2023;50(8):2292–2304. doi: 10.1007/s00259-023-06181-9
  • Chen X, Zhou B, Xie H, et al. DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT. Med Image Anal. 2023;88:102840. 10.1016/j.media.2023.102840
  • Zhang D, Pretorius PH, Lin K, et al. A novel deep-learning-based approach for automatic reorientation of 3D cardiac SPECT images. Eur J Nucl Med Mol Imaging. 2021 Oct;48(11):3457–68.
  • Zhu F, Wang G, Zhao C, et al. Automatic reorientation by deep learning to generate short-axis SPECT myocardial perfusion images. J Nucl Cardiol. 2023 Oct;30(5):1825–1835. 10.1007/s12350-023-03226-2
  • Lassen ML, Kwiecinski J, Dey D, et al. Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary (18)F-NaF PET. Eur J Nucl Med Mol Imaging. 2019 Nov;46(12):2610–20.
  • Li T, Zhang M, Qi W, et al. Motion correction of respiratory-gated PET images using deep learning based image registration framework. Phys Med Biol. 2020 Jul 30;65(15):155003. 10.1088/1361-6560/ab8688
  • Chen Y, Pretorius PH, Lindsay C, et al. Respiratory signal estimation for cardiac perfusion SPECT using deep learning. Med Phys. 2024;51(2):1217–31.
  • Guo R, Xue S, Hu J, et al. Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction. Nat Commun. 2022 Oct 6;13(1):5882.10.1038/s41467-022-33562-9
  • Zhou B, Tsai YJ, Chen X, et al. MDPET: a unified motion correction and denoising adversarial network for low-dose gated PET. IEEE Trans Med Imaging. 2021;40(11):3154–3164. doi: 10.1109/TMI.2021.3076191
  • Shi L, Lu Y, Dvornek N, et al. Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning. IEEE Trans Med Imaging. 2021 Dec;40(12):3293–3304.10.1109/TMI.2021.3082578
  • Miller RJH, Slomka PJ. Artificial intelligence-based attenuation correction; closer to clinical reality? J Nucl Cardiol. 2022;29(5):2251–2253. doi: 10.1007/s12350-021-02724-5
  • Chen X, Zhou B, Shi L, et al. CT-free attenuation correction for dedicated cardiac SPECT using a 3D dual squeeze-and-excitation residual dense network. J Nucl Cardiol. 2022 Oct;29(5):2235–2250. 10.1007/s12350-021-02672-0
  • Nguyen TT, Chi TN, Hoang MD, et al. 3D Unet Generative Adversarial Network for Attenuation Correction of SPECT Images. IEEE Advance Signal Processing. 2020; 93–97.
  • Gong K, Yang J, Larson PEZ, et al. MR-based Attenuation Correction for Brain PET Using 3D Cycle-Consistent Adversarial Network. IEEE Trans Radiat Plasma Med Sci. 2021 Mar;5(2):185–92.
  • Chen X, Zhou B, Xie H, et al. Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT. Eur J Nucl Med Mol Imaging. 2022;49(9):3046–3060. doi: 10.1007/s00259-022-05718-8
  • Shi L, Onofrey JA, Liu H, et al. Deep learning-based attenuation map generation for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2020 Sep;47(10):2383–2395.10.1007/s00259-020-04746-6
  • Liu H, Wu J, Shi L, et al. Post-reconstruction attenuation correction for SPECT myocardium perfusion imaging facilitated by deep learning-based attenuation map generation. J Nucl Cardiol. 2022 Dec;29(6):2881–2892. 10.1007/s12350-021-02817-1
  • Chen X, Hendrik Pretorius P, Zhou B, et al. Cross-vender, cross-tracer, and cross-protocol deep transfer learning for attenuation map generation of cardiac SPECT. J Nucl Cardiol. 2022 Dec;29(6):3379–3391. 10.1007/s12350-022-02978-7
  • Kawakubo M, Nagao M, Kaimoto Y, et al. Deep learning approach using SPECT-to-PET translation for attenuation correction in CT-less myocardial perfusion SPECT imaging. Annals Nucl Med. 20242024/03/01;38(3):199–209.
  • Chopra S, Singh SS, Sood A, et al. Comparison of positional artifacts in myocardial perfusion imaging in supine and semi-reclining position using dedicated D-SPECT cardiac camera: validation using CT based attenuation correction. J Nucl Cardiol. 2023 Oct;30(5):1782–1793. 10.1007/s12350-023-03210-w
  • Singh A, Kwiecinski J, Cadet S, et al. Automated nonlinear registration of coronary PET to CT angiography using pseudo-CT generated from PET with generative adversarial networks. J Nucl Cardiol. 2023 Apr;30(2):604–615. 10.1007/s12350-022-03010-8
  • Slomka PJ, Moody JB, Miller RJH, et al. Quantitative clinical nuclear cardiology, part 2: Evolving/emerging applications. J Nucl Med. 2021 Feb;62(2):168–176.10.2967/jnumed.120.242537
  • Hagio T, Poitrasson-Riviere A, Moody JB, et al. “Virtual” attenuation correction: improving stress myocardial perfusion SPECT imaging using deep learning. Eur J Nucl Med Mol Imaging. 2022 Jul;49(9):3140–3149. doi: 10.1007/s00259-022-05735-7
  • Hagio T, Moody JB, Poitrasson-Riviere A, et al. Multi-center, multi-vendor validation of deep learning-based attenuation correction in SPECT MPI: data from the international flurpiridaz-301 trial. Eur J Nucl Med Mol Imaging. 2023 Mar;50(4):1028–1033.10.1007/s00259-022-06045-8
  • Shanbhag AD, Miller RJH, Pieszko K, et al. Deep Learning-Based Attenuation Correction Improves Diagnostic Accuracy of Cardiac SPECT. J Nucl Med. 2023 Mar;64(3):472–8.
  • Trpkov C, Savtchenko A, Liang Z, et al. Visually estimated coronary artery calcium score improves SPECT-MPI risk stratification. Int J Cardiol Heart Vasc. 2021 Aug;35:100827. 10.1016/j.ijcha.2021.100827
  • Wolterink JM, Leiner T, de Vos BD, et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Imag Anal. 2016 Dec;34:123–36.
  • Takx RA, de Jong PA, Leiner T, et al. Automated coronary artery calcification scoring in non-gated chest CT: agreement and reliability. PLoS One. 2014;9(3):e91239.
  • Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nat Commun. 2021 Jan 29;12(1):715.
  • Isgum I, de Vos BD, Wolterink JM, et al. Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT. J Nucl Cardiol. 2018 Dec;25(6):2133–2142. 10.1007/s12350-017-0866-3
  • Pieszko K, Shanbhag AD, Lemley M, et al. Reproducibility of quantitative coronary calcium scoring from PET/CT attenuation maps: comparison to ECG-gated CT scans. Eur J Nucl Med Mol Imaging. 2022 Oct;49(12):4122–4132.10.1007/s00259-022-05866-x
  • Miller RJH, Pieszko K, Shanbhag A, et al. Deep Learning Coronary Artery Calcium Scores from SPECT/CT Attenuation Maps Improve Prediction of Major Adverse Cardiac Events. J Nucl Med. 2023 Apr;64(4):652–658.10.2967/jnumed.122.264423
  • Pieszko K, Shanbhag A, Killekar A, et al. Deep Learning of Coronary Calcium Scores From PET/CT Attenuation Maps Accurately Predicts Adverse Cardiovascular Events. JACC Cardiovasc Imaging. 2023 May;16(5):675–687.10.1016/j.jcmg.2022.06.006
  • Dobrolinska MM, Jukema RA, van Velzen SGM, et al. The prognostic value of visual and automatic coronary calcium scoring from low-dose computed tomography-[15O]-water positron emission tomography. Eur Heart J Cardiovasc Imaging. 2024; epub ahead of print. doi: 10.1093/ehjci/jeae081
  • Hijazi W, Feng Y, Southern DA, et al. Impact of Myocardial Perfusion and Coronary Calcium on Medical Management for Coronary Artery Disease. Eur Heart J Cardiovasc Imaging. 2023 Oct 27.
  • Sprem J, de Vos BD, Lessmann N, et al. Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images. PLoS One. 2018;13(12):e0209318. doi: 10.1371/journal.pone.0209318
  • Wong CX, Abed HS, Molaee P, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011 Apr 26;57(17):1745–1751. 10.1016/j.jacc.2010.11.045
  • Iacobellis G, Pistilli D, Gucciardo M, et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005 Mar 21;29(6):251–255.10.1016/j.cyto.2004.11.002
  • Ding J, Kritchevsky SB, Harris TB, et al. The association of pericardial fat with calcified coronary plaque. Obesity. 2008 Aug;16(8):1914–1919.10.1038/oby.2008.278
  • Rosito GA, Massaro JM, Hoffmann U, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008 Feb 5;117(5):605–613.10.1161/CIRCULATIONAHA.107.743062
  • Mahabadi AA, Massaro JM, Rosito GA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009 Apr;30(7):850–6.
  • Mahabadi AA, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol. 2013 Apr 2;61(13):1388–1395. 10.1016/j.jacc.2012.11.062
  • Commandeur F, Goeller M, Betancur J, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT. IEEE Trans Med Imaging. 2018 Aug;37(8):1835–1846. doi: 10.1109/TMI.2018.2804799
  • Commandeur F, Goeller M, Razipour A, et al. Fully Automated CT Quantification of Epicardial Adipose Tissue by Deep Learning: A Multicenter Study. Radiol Artif Intell. 2019 Nov 27;1(6):e190045.
  • Miller R, Shanbhag A, Killekar A, et al. AI-derived Epicardial Fat Measurements Improve Cardiovascular Risk Prediction from Myocardial Perfusion Imaging. npj Digital Medicine. 2024 Feb 3;7(1):24. 10.1038/s41746-024-01020-z npj Digital Medicine
  • Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990 May 31;322(22):1561–1566.10.1056/NEJM199005313222203
  • Wasserthal J, Breit HC, Meyer MT, et al. TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol Artif Intell. 2023 Sep;5(5):e230024.
  • MIller R, Shanbhag A, Killekar A, et al. AI-defined cardiac anatomy Improves Risk Stratification of Hybrid Perfusion Imaging JACC Cardiovasc Imaging. 2024; epub ahead of print. JACC: Cardiovascular Imaging 17 7 780–791 10.1016/j.jcmg.2024.01.006
  • Miller RJH, Killekar A, Shanbhag A, et al. Predicting mortality from AI cardiac volumes mass and coronary calcium on chest computed tomography. Nature Comm. 2024;15(1):2747.
  • Miller RJH, Hauser MT, Sharir T, et al. Machine learning to predict abnormal myocardial perfusion from pre-test features. J Nucl Cardiol. 2022 Oct;29(5):2393–2403. 10.1007/s12350-022-03012-6
  • Megna R, Petretta M, Assante R, et al. A Comparison among Different Machine Learning Pretest Approaches to Predict Stress-Induced Ischemia at PET/CT Myocardial Perfusion Imaging. Comput Math Methods Med. 2021:3551756.
  • Lin A, Diemen PAv, Motwani M, et al. Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve–Defined Ischemia and Impaired Myocardial Blood Flow. Circ Cardiovasc Imaging. 2022;15(10):e014369.
  • Eisenberg E, Miller RJH, Hu LH, et al. Diagnostic safety of a machine learning-based automatic patient selection algorithm for stress-only myocardial perfusion SPECT. J Nucl Cardiol. 2022 Oct;29(5):2295–2307. 10.1007/s12350-021-02698-4
  • van Dalen JA, Koenders SS, Metselaar RJ, et al. Machine learning based model to diagnose obstructive coronary artery disease using calcium scoring, PET imaging, and clinical data. J Nucl Cardiol. 2023 Aug;30(4):1504–13.
  • Amini M, Pursamimi M, Hajianfar G, et al. Machine learning-based diagnosis and risk classification of coronary artery disease using myocardial perfusion imaging SPECT: A radiomics study. Sci Rep. 2023 Sep 10;13(1):14920. 10.1038/s41598-023-42142-w
  • Sabouri M, Hajianfar G, Hosseini Z, et al. Myocardial Perfusion SPECT Imaging Radiomic Features and Machine Learning Algorithms for Cardiac Contractile Pattern Recognition. J Digit Imaging. 2023 Apr;36(2):497–509.
  • Spier N, Nekolla S, Rupprecht C, et al. Classification of Polar Maps from Cardiac Perfusion Imaging with Graph-Convolutional Neural Networks. Sci Rep. 2019 May 20;9(1):7569.10.1038/s41598-019-43951-8
  • Liu H, Wu J, Miller EJ, et al. Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning. Eur J Nucl Med Mol Imaging. 2021;48(9):2793–2800. doi: 10.1007/s00259-021-05202-9
  • Yeung MW, Benjamins JW, Knol RJJ, et al. Multi-task Deep Learning of Myocardial Blood Flow and Cardiovascular Risk Traits from PET Myocardial Perfusion Imaging. J Nucl Cardiol. 2022 Dec;29(6):3300–3310. 10.1007/s12350-022-02920-x
  • Berman D, Hunter C, Hossain A, et al. Machine and deep learning models for accurate detection of ischemia and scar with myocardial blood flow positron emission tomography imaging. J Nucl Cardiol. 2024 Feb;32:101797. 10.1016/j.nuclcard.2024.101797
  • Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging. 2018 Nov;11(11):1654–1663. doi: 10.1016/j.jcmg.2018.01.020
  • Betancur J, Hu LH, Commandeur F, et al. Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study. J Nucl Med. 2019 May;60(5):664–670.10.2967/jnumed.118.213538
  • Ko C-L, Lin S-S, Huang C-W, et al. Polar map-free 3D deep learning algorithm to predict obstructive coronary artery disease with myocardial perfusion CZT-SPECT. Eur J Nucl Med Mol Imaging. 20232023/01/01;50(2):376–86.
  • Miller RJH, Singh A, Otaki Y, et al. Mitigating bias in deep learning for diagnosis of coronary artery disease from myocardial perfusion SPECT images. Eur J Nucl Med Mol Imaging. 2023 Jan;50(2):387–397.10.1007/s00259-022-05972-w
  • Togo R, Hirata K, Manabe O, et al. Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps. Comp Biol Med. 2019 Jan;104:81–6.
  • Delbarre M-A, Girardon F, Roquette L, et al.. Deep Learning on Bone Scintigraphy to Detect Abnormal Cardiac Uptake at Risk of Cardiac Amyloidosis. JACC: Cardiovascular Imaging. 2023;16(8):1085–1095. doi: 10.1016/j.jcmg.2023.01.014
  • Slomka PJ, Miller RJH. Can Deep Learning Detect Incidental Abnormal Cardiac Uptake Related to Amyloidosis on Routine Bone Scintigraphy?. JACC: Cardiovascular Imaging. 2023;16(8):1096–1098. doi: 10.1016/j.jcmg.2023.01.018
  • Bradshaw TJ, McCradden MD, Jha AK, et al. Artificial intelligence algorithms need to Be explainable—or do they? J Nucl Med. 2023;64(6):976–977. doi: 10.2967/jnumed.122.264949
  • Selvaraju RR, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. IEEE Proc Comp Vis; 2017.
  • Otaki Y, Singh A, Kavanagh P, et al. Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC Cardiovasc Imaging. 2022 Jun;15(6):1091–102.
  • Miller RJH, Kuronuma K, Singh A, et al. Explainable deep learning improves Physician interpretation of myocardial perfusion imaging. J Nucl Med. 2022 Nov;63(11):1768–1774. doi: 10.2967/jnumed.121.263686
  • Hu LH, Miller RJH, Sharir T, et al. Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. Eur Heart J Cardiovasc Imaging. 2021 May 10;22(6):705–714.10.1093/ehjci/jeaa134
  • Nohara Y, Matsumoto K, Soejima H, et al. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput Methods Programs Biomed. 2022 Feb;214:106584. 10.1016/j.cmpb.2021.106584
  • Han D, Rozanski A, Gransar H, et al. Comparison of diabetes to other prognostic predictors among patients referred for cardiac stress testing: A contemporary analysis from the REFINE SPECT Registry. J Nucl Cardiol. 2022 Dec;29(6):3003–3014. 10.1007/s12350-021-02810-8
  • Miller RJH, Hu LH, Gransar H, et al. Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. Eur Heart J Cardiovasc Imaging. 2020 May 1;21(5):567–575.10.1093/ehjci/jez172
  • Miller RJH, Sharir T, Otaki Y, et al. Quantitation of Poststress Change in Ventricular Morphology Improves Risk Stratification. J Nucl Med. 2021 Nov;62(11):1582–1590.10.2967/jnumed.120.260141
  • Betancur J, Otaki Y, Motwani M, et al. Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning. JACC Cardiovasc Imaging. 2018 Jul;11(7):1000–1009.10.1016/j.jcmg.2017.07.024
  • Rios R, Miller RJH, Hu LH, et al. Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovasc Res. 2022 Jul 20;118(9):2152–2164.10.1093/cvr/cvab236
  • Rios R, Miller RJH, Manral N, et al. Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry. Comput Biol Med. 2022 Jun;145:105449. 10.1016/j.compbiomed.2022.105449
  • Feher A, Pieszko K, Miller R, et al. Integration of coronary artery calcium scoring from CT attenuation scans by machine learning improves prediction of adverse cardiovascular events in patients undergoing SPECT/CT myocardial perfusion imaging. J Nucl Cardiol. 2023 Apr;30(2):590–603. 10.1007/s12350-022-03099-x
  • Juarez-Orozco LE, Martinez-Manzanera O, van der Zant FM, et al. Deep Learning in Quantitative PET Myocardial Perfusion Imaging: A Study on Cardiovascular Event Prediction. JACC Cardiovasc Imaging. 2020 Jan;13(1 Pt 1):180–2.
  • Singh A, Kwiecinski J, Miller RJH, et al. Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images. Circ Cardiovasc Imaging. 2022 Sep;15(9):e014526.10.1161/CIRCIMAGING.122.014526
  • Singh A, Miller RJH, Otaki Y, et al. Direct Risk Assessment From Myocardial Perfusion Imaging Using Explainable Deep Learning. JACC Cardiovasc Imaging. 2023 Feb;16(2):209–220.10.1016/j.jcmg.2022.07.017
  • Pieszko K, Shanbhag AD, Singh A, et al. Time and event-specific deep learning for personalized risk assessment after cardiac perfusion imaging. NPJ Digit Med. 2023 May 1;6(1):78.
  • Miller RJH, Bednarski BP, Pieszko K, et al. Clinical phenotypes among patients with normal cardiac perfusion using unsupervised learning: a retrospective observational study. EBioMedicine. 2024 Jan;99:104930.10.1016/j.ebiom.2023.104930
  • Higaki A, Kawaguchi N, Kurokawa T, et al. Content-based image retrieval for the diagnosis of myocardial perfusion imaging using a deep convolutional autoencoder. J Nucl Cardiol. 2023 Apr;30(2):540–549. 10.1007/s12350-022-03030-4
  • He Z, Zhang X, Zhao C, et al. A method using deep learning to discover new predictors from left-ventricular mechanical dyssynchrony for CRT response. J Nucl Cardioll. 2023;30(1):201–13.
  • Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature. 2023 Aug;620(7972):172–180.10.1038/s41586-023-06291-2
  • Sperry BW, Vamenta MS, Gunta SP, et al. Influence of Body Mass Index on Radiation Exposure Across Imaging Modalities in the Evaluation of Chest Pain. J Am Heart Ass.0(0):e033566.
  • Souza AC, Rosenthal MH, Moura FA, et al. Body Composition, Coronary Microvascular Dysfunction, and Future Risk of Cardiovascular Events Including Heart Failure. JACC Cardiovasc Imaging. 2024;17(2):179–91.
  • Miller RJ, Shanbhag A, Michalowska AM, et al. Deep learning enabled automated quantification of SPECT/CT technetium pyrophosphate for cardiac amyloidosis. J Nucl Med. 2024, epub ahead of print.
  • Huang EP, O’Connor JPB, McShane LM, et al. Criteria for the translation of radiomics into clinically useful tests. Nature Rev Clin Onc. 20232023/02/01;20(2):69–82.
  • He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature. 20232023/04/01;616(7957):520–4.
  • Sandhu AT, Rodriguez F, Ngo S, et al. Incidental coronary artery calcium: opportunistic screening of previous nongated chest computed tomography scans to improve statin rates (NOTIFY-1 project). Circulation. 2023;147(9):703–714. doi: 10.1161/CIRCULATIONAHA.122.062746
  • Hijazi W, Feng Y, Southern DA, et al. Impact of myocardial perfusion and coronary calcium on medical management for coronary artery disease. Eur Heart J Cardiovasc Imaging. 2024 Mar 27;25(4):482–490.10.1093/ehjci/jead288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.