Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 51, 2016 - Issue 5
221
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

A probe into low-temperature stress corrosion cracking of 304L stainless steel by scanning vibrating electrode technique

, &
Pages 358-364 | Received 29 Jul 2015, Accepted 10 Oct 2015, Published online: 06 Apr 2016

References

  • M. Breimesser, S. Ritter, H.-P. Seifert, T. Suter and S. Virtanen: ‘Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load’, Corros. Sci., 2012, 63, 129–139.
  • M. Breimesser, S. Ritter, H.-P. Seifert, S. Virtanen and T. Suter: ‘Application of the electrochemical microcapillary technique to study intergranular stress corrosion cracking of austenitic stainless steel on the micrometre scale’, Corros. Sci., 2012, 55, 126–132.
  • M. Gomez-Duran and D. D. Macdonald: ‘Stress corrosion cracking of sensitized Type 304 stainless steel in thiosulphate solution. II. Dynamics of fracture’, Corros. Sci., 2006, 48, 1608–1622.
  • K. Habib and K. Bouresli: ‘Detection of localized corrosion of stainless steels by optical interferrometry’, Electrochim. Acta, 1999, 44, 4635–4641.
  • H. Wang and E.-H. Han: ‘Simulation of metastable corrosion pit development under mechanical stress’, Electrochim. Acta, 2013, 90, 128–134.
  • V. Raja and T. Shoji: ‘Stress corrosion cracking: Theory and practice’, 2011, Amsterdam, Elsevier.
  • R. Nishimura: ‘Characterization and perspective of stress corrosion cracking of austenitic stainless steels (type 304 and type 316) in acid solutions using constant load method’, Corros. Sci., 2007, 49, 81–91.
  • R.-W. Bosch: ‘Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature’, Corros. Sci., 2005, 47, 125–143.
  • R. Nishimura and Y. Maeda: ‘Stress corrosion cracking of type 304 austenitic stainless steel in sulphuric acid solution including sodium chloride and chromate’, Corros. Sci., 2004, 46, 343–360.
  • G. Du, J. Li, W. Wang, C. Jiang and S. Song: ‘Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques’, Corros. Sci., 2011, 53, 2918–2926.
  • O. M. Alyousif and R. Nishimura: ‘The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions’, Corros. Sci., 2007, 49, 3040–3051.
  • S. Lozano-Perez, T. Yamada, T. Terachi, M. Schröder, C. A. English, G. D. W. Smith, C. R. M. Grovenor and B. L. Eyre: ‘Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content’, Acta Mater., 2009, 57, 5361–5381.
  • B. T. Lu, Z. K. Chen, J. L. Luo, B. M. Patchett and Z. H. Xu: Pitting and stress corrosion cracking behavior in welded austenitic stainless steel’, Electrochim. Acta, 2005, 50, 1391–1403.
  • O. M. Alyousif and R. Nishimura: ‘Stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions’, Corros. Sci., 2008, 50, 2353–2359.
  • C. Garcı´a, F. Martı´n, P. De Tiedra, J. Heredero and M. Aparicio: ‘Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels’, Corros. Sci., 2001, 43, 1519–1539.
  • Y. Sato, T. Atsumi and T. Shoji: ‘Continuous monitoring of back wall stress corrosion cracking growth in sensitized type 304 stainless steel weldment by means of potential drop techniques’, Int. J. Press. Vessel. Pip., 2007, 84, 274–283.
  • D. T. Spencer, M. R. Edwards, M. R. Wenman, C. Tsitsios, G. G. Scatigno and P. R. Chard-Tuckey: ‘The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions’, Corros. Sci., 2014, 88, 76–88.
  • J. Fielder, B. Hobson and M. Pickett: ‘The stress corrosion cracking behaviour of stainless steel at temperatures below 50 °C’, 1998, Luxembourg, European Communities.
  • S. Ghosh and V. Kain: ‘Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel’, Mater. Sci. Eng.: A, 2010, 527, 679–683.
  • J. Oldfield and B. Todd: ‘Room temperature stress corrosion cracking of stainless steels in indoor swimming pool atmospheres’, Br. Corros. J., 1991, 26, 173–182.
  • M. Faller and P. Richner: ‘Material selection of safety-relevant components in indoor swimming pools’, Mater. Corros., 2003, 54, 331–338.
  • J. Galvele, S. de Wexler and I. Gardiazabal: ‘Film rupture mechanism for stress corrosion cracking of AISI 304 in HCl solutions’, Corrosion, 1975, 31, 352–357.
  • G. Bianchi, F. Mazza and S. Torchio: ‘Stress corrosion cracking of austenitic stainless steel in hydrochloric acid media at room temperature’, Corros. Sci., 1973, 13, 165–173.
  • I. Maier, C. Manfredi and J. R. Galvele: ‘The stress corrosion cracking of an austenitic stainless steel in HCl + NaCl solutions at room temperature’, Corros. Sci., 1985, 25, 15–34.
  • R. Carranza and J. R. Galvele: ‘Repassivation kinetics in stress corrosion cracking-I. Type AISI 304 stainless steel in chloride solutions’, Corros. Sci., 1988, 28, 233–249.
  • S. Torchio: ‘Stress corrosion cracking of type AISI 304 stainless steel at room temperature; influence of chloride content and acidity’, Corros. Sci., 1980, 20, 555–561.
  • M. Gomez-Duran and D. D. Macdonald: ‘Stress corrosion cracking of sensitized Type 304 stainless steel in thiosulfate solution: I. Fate of the coupling current’, Corros. Sci., 2003, 45, 1455–1471.
  • M. Kamaya and T. Haruna: ‘Crack initiation model for sensitized 304 stainless steel in high temperature water’, Corros. Sci., 2006, 48, 2442–2456.
  • T. Shibata: ‘Passivity breakdown and stress corrosion cracking of stainless steel’, Corros. Sci., 2007, 49, 20–30.
  • Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi: ‘Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating’, Mater. Sci. Eng.: A, 2006, 417, 334–340.
  • A. Barnes, N. Senior and R. Newman: ‘Revisiting the film-induced cleavage model of SCC’, in ‘Environment-induced Cracking of Materials’, (ed. S. Shipilov, R. Jones, J. M. Olive and R. Rebak), Vol. 1, 47–57; 2008, Amsterdam, Elsevier.
  • J. Galvele: ‘A stress corrosion cracking mechanism based on surface mobility’, Corros. Sci., 1987, 27, 1–33.
  • R. C. Newman and C. Healey: ‘Stability, validity, and sensitivity to input parameters of the slip-dissolution model for stress-corrosion cracking’, Corros. Sci., 2007, 49, 4040–4050.
  • H. K. Birnbaum and P. Sofronis: ‘Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture’, Mater. Sci. Eng.: A, 1994, 176, 191–202.
  • P. Marcus and F. B. Mansfeld: ‘Analytical methods in corrosion science and engineering’, 2005, New York, CRC Press.
  • E. F. Pieretti, S. M. Manhabosco, L. F. Dick, S. Hinder and I. Costa: ‘Localized corrosion evaluation of the ASTM F139 stainless steel marked by laser using scanning vibrating electrode technique, X-ray photoelectron spectroscopy and Mott–Schottky techniques’, Electrochim. Acta, 2014, 124, 150–155.
  • M. J. Franklin, D. C. White and H. S. Isaacs: ‘Pitting corrosion by bacteria on carbon steel, determined by the scanning vibrating electrode technique’, Corros. Sci., 1991, 32, 945–952.
  • A. Alvarez-Pampliega, M. G. Taryba, K. Van den Bergh, J. De Strycker, S. V. Lamaka and H. Terryn: ‘Study of local Na + and Cl− distributions during the cut-edge corrosion of aluminum rich metal-coated steel by scanning vibrating electrode and micro-potentiometric techniques’, Electrochim. Acta, 2013, 102, 319–327.
  • M. Mouanga, F. Andreatta, M. E. Druart, E. Marin, L. Fedrizzi and M. G. Olivier: ‘A localized approach to study the effect of cerium salts as cathodic inhibitor on iron/aluminum galvanic coupling’, Corros. Sci., 2015, 90, 491–502.
  • H. Iken, L. Etcheverry, A. Bergel and R. Basseguy: ‘Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: A new approach to the study of biocorrosion’, Electrochim. Acta, 2008, 54, 60–65.
  • J. Santana, J. González-Guzmán, J. Izquierdo, S. González and R. Souto: ‘Sensing electrochemical activity in polymer-coated metals during the early stages of coating degradation by means of the scanning vibrating electrode technique’, Corros. Sci., 2010, 52, 3924–3931.
  • A. G. Marques and A. M. Simões: ‘EIS and SVET assessment of corrosion resistance of thin Zn-55% Al-rich primers: Effect of immersion and of controlled deformation’, Electrochim. Acta, 2014, 148, 153–163.
  • Z. Liu and X. Li, Y. Cheng: ‘In-situ characterization of the electrochemistry of grain and grain boundary of an X70 steel in a near-neutral pH solution’, Electrochem. Commun., 2010, 12, 936–938.
  • X. Tang and Y. Cheng: ‘Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition’, Electrochim. Acta, 2009, 54, 1499–1505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.