Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 12, 2017 - Issue 2: Themed Issue on Environment Challenges
295
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The effect of titanium on pitting corrosion resistance of welded supermartensitic stainless steel

, , &
Pages 141-148 | Received 28 Mar 2016, Accepted 06 Aug 2016, Published online: 23 Nov 2016

References

  • Heimann W, Ladwewein T, Nirosta G. A systematic evaluation of the micro structure of 13% chromium steels. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 2002, 03–09.
  • Toussaint P, JJ Dufrane. Advances in the making and base materials of supermatensitic stainless steels-SSMS. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 2002, 23–27.
  • Deleu E, Dhooge A, Dufrane JJ. Weldability and hot deformability supermartensitic stainless steel grades by weld simulation testing. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 1999, 232–240.
  • Vodared V, Tvrdy M, Korcak A. Heat treatment of supermartensitic steels. Inzynieria Materialowa. 2001;5:939–941.
  • Ma XP, Wang LJ, Liu CM, et al. Role of Nb in low interstitial 13Cr supermartensitic stainless steel. Mater Sci Eng A. 2011;528:6812–6818. doi: 10.1016/j.msea.2011.05.065
  • Da Silva GF, Tavares SSM, Pardal JM, et al. Influence of heat treatments on toughness and sensitization of a Ti-alloyed supermartensitic stainless steel. J Mater Sci. 2011;46:7737–7744. doi: 10.1007/s10853-011-5753-8
  • Yu-rong L, Dong YE, Qi-Long Y, et al. Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel. J Iron Steel Res Inter. 2011;18:60–66.
  • Ma XP, Wang LJ, Liu CM, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N supermartensitic stainless steel. Mater Sci Eng A. 2012;528:271–279. doi: 10.1016/j.msea.2012.01.093
  • Bojack A, Zhao L, Morris PF, et al. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel. Mater Charact. 2012;71:77–86. doi: 10.1016/j.matchar.2012.06.004
  • Ye D, Li J, Jiang W, et al. Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel. Mate Desing. 2012;41:16–22. doi: 10.1016/j.matdes.2012.04.036
  • Pereda MD, Gervasi CA, Llorente CL, et al. Microelectrochemical corrosion study of super martensitic welds in chloride-containing media. Corros Sci. 2011;53:3934–3941. doi: 10.1016/j.corsci.2011.07.040
  • Anselmo N, May JE, Mariano NA, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater. Mater Sci Eng A. 2006;428:73–79. doi: 10.1016/j.msea.2006.04.107
  • Toussaint P, Dufrane JJ. Advances in the making and base materials of supermatensitic stainless steels-SSMS. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 2002, 23–27.
  • Winden HV, Toussaint P, Coudreuse L. Past, present and future of weldable supermartensitic alloys. Proc. Conf. Supermartensitic Stainless Steels; 2002, 09–12.
  • Ramirez JM. Weldability evaluation of supermartensitic stainless pipe steels. Weld J. 2007;86:125–134.
  • Ladanoval E, Solberg JK, Rogne T. Carbide precipitation in HAZ of multipass welds in titanium containing and titanium free supermartensitic stainless steels part 1 – proposed precipitation mechanisms. Corr Eng Sci Technol. 2006;41(2):141–153.
  • Van Nassau L, Hilkes J. Efficient procedures for welding 11–13% Cr supermartensitic stainless steels with duplex and superduplex steel welding consumables. Proc. Conf. Supermartensitic Stainless Steel, Brussels, Belgium, 1999; 222–231.
  • Heuser H, Jochum C, Perteneder E, et al. GMAW and SAW matching filler metal for supermartensitic stainless steels. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 1999, 150–159.
  • Neubert V, Reuter J, El-Mahalawy N, et al. Effect of welding technique on weld morphology and hardness of supermartensitic 13%Cr steels. Mater Sci Tech. 2004;20:1551–1562. doi: 10.1179/026708304X6068
  • Karlsson L, Bruins W, Gillenius C, et al. Mactching composition supermartensitic stainless steels welding consumables. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 1999, 172–179.
  • Shirzadi AA, Bhadeshia HKDH, Karlsson L, et al. Stainless steel weld metal designed to mitigate residual stresses. Sci Technol Weld Joi. 2004;4:559–565.
  • Bala SP, Sharkawy SW, Dietzel W. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldment. Mater Sci Eng A. 2004;385:6–12. doi: 10.1016/j.msea.2004.03.029
  • Aquino JM, Della Rovere CA, Kuri SE. Localized corrosion susceptibility of supermartensitic stainless steel in welded joints. Corrosion. 2008;64:35–39. doi: 10.5006/1.3278459
  • Coudreuse L, Ligier V, Lojewski C, et al. Environmental induced cracking in supermartensitic stainless steels. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 2002, 163–172.
  • Thibault D, Bocher P, Thomas M. Residual stress and microstructure in welds of 13%Cr–4%Ni martensitic stainless steel. J Mat Proc Technol. 2009;209:2195–2202. doi: 10.1016/j.jmatprotec.2008.05.005
  • Enerhaug J, Steinsmo UM. Factors affecting initiation of pitting corrosion in super martensitic stainless steel weldments. Sci Technol Weld Joi. 2001;6(5):330–338. doi: 10.1179/136217101101538866
  • Xue MCSW. The blue brittleness of 1Cr17Ni2 steel submarine motor shaft. Mater Lett. 2002;57:369–373. doi: 10.1016/S0167-577X(02)00794-2
  • Rodrigues CAD, Bandeira RM, Duarte BB, et al. Effect of phosphorous content on the mechanical, microstructure and corrosion properties of supermartensitic stainless steel. Mater Sci Eng A. 2016;650:75–83. doi: 10.1016/j.msea.2015.10.013
  • Rodrigues CAD, Di Lorenzo PL, Sokolowski A, et al. Titanium and molybdenum content in supermartensitic stainless steel. Mater Sci Eng A. 2007;460–461:149–152. doi: 10.1016/j.msea.2007.01.016
  • Lutterotti L, Chateigner D, Ferrari S, et al. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films. 2004;450:34–41. doi: 10.1016/j.tsf.2003.10.150
  • Gavard L, Bhadeshia HKDH, MacKay DJC, et al. Bayesian neural network model for austenite formation in steels. Mater Sci Technol. 1996;12:453–463. doi: 10.1179/mst.1996.12.6.453
  • Turnbull A, Nimmo B. Stress corrosion testing of welded supermartensitic stainless steels for oil and gas pipelines. Corr Eng Sci Technol. 2005;40(2):103–109. doi: 10.1179/174327805X46940
  • Bilmes PD, LLorente C, Solari M. Role of then retained austenite on the mechanical properties of 13Cr-4NiMo Weld Metal. Proc. 20th Heat Treating Society (ASM-International) Conference, St. Louis, Missouri, (USA), paper RA 5.2; 2000.
  • Carrouge D, Bhadeshia HKDH, Woollin P. Effect of δ-ferrite on impact properties of supermartensitic stainless steel heat affected zones. Sci Technol Weld Jo. 2004;9:377–389. doi: 10.1179/136217104225021823
  • Bilmes PD, Solari M, Llorente CL. Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Mater Charact. 2001;46:285–296. doi: 10.1016/S1044-5803(00)00099-1
  • Della Rovere CA, Ribeiro CR, Silva R, et al. Local mechanical properties of radial friction welded supermartensitic stainless steel pipes. Mater Design. 2014;56:423–427. doi: 10.1016/j.matdes.2013.11.020
  • Della Rovere CA, Ribeiro CR, Silva R, et al. Microstructural and mechanical properties characterization of radial friction welded supermartensitic stainless steel joints. Mater Sci Eng A. 2013;586:86–92. doi: 10.1016/j.msea.2013.08.014
  • Bungardt K, Kunze E, Horn E. Untersuchungen über den Autbau des Systems Eisen-Chrom-Kohlenstoff. Arch eisenhüttenwes. 1958;29:193–203.
  • Bilmes PD, Llorente CL, Huaman LS, et al. Microstructure and pitting corrosion of 13CrNiMo weld metals. Corros Sci. 2006;48:3261–3270. doi: 10.1016/j.corsci.2005.10.009
  • Kimura M, Miyata Y, Toyooka T, et al. Effect of retained austenite on corrosion performance for modified 13% Cr steel pipe. Corrosion. 2001;57(5):433–439. doi: 10.5006/1.3290367
  • Ogawa K, Hirata H, Kondo K, et al. Weldability of super 13Cr martensitic stainless steel. Proc. Conf. Supermatensitic Stainless Steel, Brussels, Belgium; 1999, 214–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.